Buttari, Alfredo and Langou, Julien and Kurzak, Jakub and Dongarra, Jack (2007) A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures. [MIMS Preprint]
PDF
A_Class_of_Parallel.pdf Download (267kB) |
Abstract
As multicore systems continue to gain ground in the High Performance Computing world, linear algebra algorithms have to be re- formulated or new algorithms have to be developed in order to take ad- vantage of the architectural features on these new processors. Fine grain parallelism becomes a major requirement and introduces the necessity of loose synchronization in the parallel execution of an operation. This paper presents an algorithm for the Cholesky, LU and QR factorization where the operations can be represented as a sequence of small tasks that operate on square blocks of data. These tasks can be dynamically scheduled for execution based on the dependencies among them and on the availability of computational resources. This may result in an out of order execution of the tasks which will completely hide the presence of intrinsically sequential tasks in the factorization. Performance com- parisons are presented with the LAPACK algorithms where parallelism can only be exploited at the level of the BLAS operations and vendor implementations.
Item Type: | MIMS Preprint |
---|---|
Additional Information: | Also appears as LAPACK Working Note #191. |
Subjects: | MSC 2010, the AMS's Mathematics Subject Classification > 65 Numerical analysis MSC 2010, the AMS's Mathematics Subject Classification > 68 Computer science |
Depositing User: | Ms Lucy van Russelt |
Date Deposited: | 10 Oct 2007 |
Last Modified: | 08 Nov 2017 18:18 |
URI: | https://eprints.maths.manchester.ac.uk/id/eprint/856 |
Actions (login required)
View Item |