Chinburg, Ted and Pappas, Georgios and Taylor, Martin J. (2003) Duality and Hermitian Galois Module Structure. Proceedings of the London Mathematical Society, 87 (1). pp. 54-108. ISSN 0024-6115
PDF
Duality.pdf Restricted to Repository staff only Download (472kB) |
Abstract
Suppose $\mathcal{O}$ is either the ring of integers of a number field, the ring of integers of a $p$-adic local field, or a field of characteristic $0$. Let $\mathcal{X}$ be a regular projective scheme which is flat and equidimensional over $\mathcal{O}$ of relative dimension $d$. Suppose $G$ is a finite group acting tamely on $\mathcal{X}$. Define ${\rm HCl}(\mathcal{O} G)$ to be the Hermitian class group of $\mathcal{O} G$. Using the duality pairings on the de Rham cohomology groups $H^*(X, \Omega^\bullet_{X / F})$ of the fiber $X$ of $\mathcal{X}$ over $F = {\rm Frac}(\mathcal{O})$, we define a canonical invariant $\chi_H(\mathcal{X}, G)$ in ${\rm HCl}(\mathcal{O} G)$ . When $d = 1$ and $\mathcal{O}$ is either $\mathbb{Z}$, $\mathbb{Z}_p$ or $\mathbb{R}$, we determine the image of $\chi_H(\mathcal{X}, G)$ in the adelic Hermitian classgroup ${\rm Ad\,HCl}(\mathbb{Z} G)$ by means of $\epsilon$-constants. We also show that in this case, the image in ${\rm Ad\,HCl}(\mathbb{Z} G)$ of a closely related Hermitian Euler characteristic $\chi_{H}(\mathcal{X}, G)(0)$ both determines and is determined by the $\epsilon_0$-constants of the symplectic representations of $G$.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Galois structure; coherent cohomology; duality; Hermitian pairings. |
Subjects: | MSC 2010, the AMS's Mathematics Subject Classification > 11 Number theory MSC 2010, the AMS's Mathematics Subject Classification > 14 Algebraic geometry |
Depositing User: | Ms Lucy van Russelt |
Date Deposited: | 04 Dec 2006 |
Last Modified: | 20 Oct 2017 14:12 |
URI: | https://eprints.maths.manchester.ac.uk/id/eprint/661 |
Actions (login required)
View Item |