Computational approahes to parameter estimation and model selection in immunology

Baker, C. T. H. and Bocharov, G. A. and Ford, J. M. and Lumb, P. M. and Norton, S. J. and Paul, C. A. H. and Junt, T. and Krebs, P. and Ludewig, B. (2005) Computational approahes to parameter estimation and model selection in immunology. Journal of Computational and Applied Mathematics, 184 (1). pp. 50-76. ISSN 0377-0427

[thumbnail of sdarticle1.pdf] PDF
sdarticle1.pdf
Restricted to Repository staff only

Download (586kB)

Abstract

One of the significant challenges in biomathematics (and other areas of science) is to formulate meaningful mathematical models. Our problem is to decide on a parametrized model which is, in some sense, most likely to represent the information in a set of observed data. In this paper, we illustrate the computational implementation of an information-theoretic approach (associated with a maximum likelihood treatment) to modelling in immunology. The approach is illustrated by modelling LCMV infection using a family of models based on systems of ordinary differential and delay differential equations. The models (which use parameters that have a scientific interpretation) are chosen to fit data arising from experimental studies of virus-cytotoxic T lymphocyte kinetics; the parametrized models that result are arranged in a hierarchy by the computation of Akaike indices. The practical illustration is used to convey more general insight. Because the mathematical equations that comprise the models are solved numerically, the accuracy in the computation has a bearing on the outcome, and we address this and other practical details in our discussion.

Item Type: Article
Uncontrolled Keywords: Mathematical model; Computational modelling; Parameter estimation; Numerical accuracy; Maximum likelihood; Parsimony; Immune response; Experimental LCMV infection
Subjects: MSC 2010, the AMS's Mathematics Subject Classification > 62 Statistics
MSC 2010, the AMS's Mathematics Subject Classification > 92 Biology and other natural sciences
Depositing User: Ms Lucy van Russelt
Date Deposited: 22 Aug 2006
Last Modified: 20 Oct 2017 14:12
URI: https://eprints.maths.manchester.ac.uk/id/eprint/578

Actions (login required)

View Item View Item