Bryant, R. M. and Kovàcs, L. G. and Stöhr, Ralph (2002) Lie powers of modules for groups of prime order. Proceedings of the London Mathematical Society, 84 (2). pp. 343-374. ISSN 0024-6093
PDF
S0024611502013266a.pdf Restricted to Repository staff only Download (303kB) |
Abstract
Let $L(V)$ be the free Lie algebra on a finite-dimensional vector space $V$ over a field $K$, with homogeneous components $L^n(V)$ for $n \geq 1$. If $G$ is a group and $V$ is a $KG$-module, the action of $G$ extends naturally to $L(V)$, and the $L^n(V)$ become finite-dimensional $KG$-modules, called the Lie powers of $V$. In the decomposition problem, the aim is to identify the isomorphism types of indecomposable $KG$-modules, with their multiplicities, in unrefinable direct decompositions of the Lie powers. This paper is concerned with the case where $G$ has prime order $p$, and $K$ has characteristic $p$. As is well known, there are $p$ indecomposables, denoted here by $J_1,\dots,J_p$, where $J_r$ has dimension $r$. A theory is developed which provides information about the overall module structure of $L(V)$ and gives a recursive method for finding the multiplicities of $J_1,\dots,J_p$ in the Lie powers $L^n(V)$. For example, the theory yields decompositions of $L(V)$ as a direct sum of modules isomorphic either to $J_1$ or to an infinite sum of the form $J_r \oplus J_{p-1} \oplus J_{p-1} \oplus \ldots $ with $r \geq 2$. Closed formulae are obtained for the multiplicities of $J_1,\dots,J_p$ in $L^n(J_p)$ and $L^n(J_{p-1})$. For $r < p-1$, the indecomposables which occur with non-zero multiplicity in $L^n(J_r)$ are identified for all sufficiently large $n$.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | free Lie algebras; cyclic groups; modular representations. |
Subjects: | MSC 2010, the AMS's Mathematics Subject Classification > 17 Nonassociative rings and algebras MSC 2010, the AMS's Mathematics Subject Classification > 20 Group theory and generalizations |
Depositing User: | Ms Lucy van Russelt |
Date Deposited: | 09 Aug 2006 |
Last Modified: | 20 Oct 2017 14:12 |
URI: | https://eprints.maths.manchester.ac.uk/id/eprint/473 |
Actions (login required)
View Item |