iGen 0.1: a program for the automated generation of models and parameterisations

Tang, D.F. and Dobbie, S. (2011) iGen 0.1: a program for the automated generation of models and parameterisations. Geoscientific Model Development, 4 (3). pp. 785-795.

[thumbnail of gmd-4-785-2011.pdf] PDF
gmd-4-785-2011.pdf

Download (395kB)

Abstract

Complex physical systems can often be simulated using very high resolution models but this is not always practical because of computational restrictions. In this case the model must be simplified or parameterised in order to make it computationally tractable. A parameterised model is created using an ad-hoc selection of techniques which range from the formal to the purely intuitive, and as a result it is very difficult to objectively quantify the fidelity of the model to the physical system. It is rare that a parameterised model can be formally shown to simulate a physical system to within some bounded error. Here we introduce a new approach to parameterising models which allows error to be formally bounded. The approach makes use of a newly developed computer program, which we call iGen, that analyses the source code of a high-resolution model and formally derives a much faster, parameterised model that closely approximates the original, reporting bounds on the error introduced by any approximations. These error bounds can be used to formally justify conclusions about a physical system based on observations of the model's behaviour. Using increasingly complex physical systems as examples we illustrate that iGen has the ability to produce parameterisations that run typically orders of magnitude faster than the underlying, high-resolution models from which they are derived.

Item Type: Article
Subjects: MSC 2010, the AMS's Mathematics Subject Classification > 65 Numerical analysis
MSC 2010, the AMS's Mathematics Subject Classification > 68 Computer science
MSC 2010, the AMS's Mathematics Subject Classification > 86 Geophysics
Depositing User: Mr D.F. Tang
Date Deposited: 30 Apr 2012
Last Modified: 20 Oct 2017 14:13
URI: https://eprints.maths.manchester.ac.uk/id/eprint/1812

Actions (login required)

View Item View Item