Bryant, R. M.
(2003)
*Free Lie algebras and Adams operations.*
Journal of the London Mathematical Society, 68 (2).
pp. 355-370.
ISSN 0024-6107

PDF
S0024610703004484a.pdf Restricted to Repository staff only Download (187kB) |

## Abstract

Let $G$ be a group and $K$ a field. For any finite-dimensional $KG$-module $V$ and any positive integer $n$, let $L^n(V)$ denote the $n$th homogeneous component of the free Lie $K$-algebra generated by (a basis of) $V$. Then $L^n(V)$ can be considered as a $KG$-module, called the $n$th Lie power of $V$. The paper is concerned with identifying this module up to isomorphism. A simple formula is obtained which expresses $L^n(V)$ in terms of certain linear functions on the Green ring. When $n$ is not divisible by the characteristic of $K$ these linear functions are Adams operations. Some results are also obtained which clarify the relationship between Adams operations defined by means of exterior powers and symmetric powers and operations introduced by Benson. Some of these results are put into a more general setting in an appendix by Stephen Donkin.

Item Type: | Article |
---|---|

Subjects: | MSC 2010, the AMS's Mathematics Subject Classification > 17 Nonassociative rings and algebras MSC 2010, the AMS's Mathematics Subject Classification > 20 Group theory and generalizations |

Depositing User: | Ms Lucy van Russelt |

Date Deposited: | 09 Aug 2006 |

Last Modified: | 20 Oct 2017 14:12 |

URI: | http://eprints.maths.manchester.ac.uk/id/eprint/471 |

### Actions (login required)

View Item |