Khukhro, E. I. and Shumyatsky, P.
(2015)
*On the length of finite groups and of fixed points.*
[MIMS Preprint]

PDF
khu-shu-133-arx.pdf Download (319kB) |

## Abstract

The generalized Fitting height of a finite group $G$ is the least number $h=h^*(G)$ such that $F^*_h(G)=G$, where the $F^*_i(G)$ is the generalized Fitting series: $F^*_1(G)=F^*(G)$ and $F^*_{i+1}(G)$ is the inverse image of $F^*(G/F^*_{i}(G))$. It is proved that if $G$ admits a soluble group of automorphisms $A$ of coprime order, then $h^*(G)$ is bounded in terms of $h^* (C_G(A))$, where $C_G(A)$ is the fixed-point subgroup, and the number of prime factors of $|A|$ counting multiplicities. The result follows from the special case when $A=\langle\varphi\rangle$ is of prime order, where it is proved that $F^*(C_G(\varphi ))\leqslant F^*_{9}(G)$. The nonsoluble length $\lambda (G)$ of a finite group $G$ is defined as the minimum number of nonsoluble factors in a normal series each of whose factors either is soluble or is a direct product of nonabelian simple groups. It is proved that if $A$ is a group of automorphisms of $G$ of coprime order, then $\lambda (G)$ is bounded in terms of $\lambda (C_G(A))$ and the number of prime factors of $|A|$ counting multiplicities.

Item Type: | MIMS Preprint |
---|---|

Subjects: | MSC 2010, the AMS's Mathematics Subject Classification > 20 Group theory and generalizations |

Depositing User: | Professor Evgeny Khukhro |

Date Deposited: | 24 Feb 2015 |

Last Modified: | 08 Nov 2017 18:18 |

URI: | http://eprints.maths.manchester.ac.uk/id/eprint/2255 |

### Actions (login required)

View Item |