
Vector spaces of linearizations for matrix
polynomials: a bivariate polynomial approach

Nakatsukasa, Yuji and Noferini, Vanni and Townsend,
Alex

2012

MIMS EPrint: 2012.118

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


VECTOR SPACES OF LINEARIZATIONS FOR MATRIX
POLYNOMIALS: A BIVARIATE POLYNOMIAL APPROACH

YUJI NAKATSUKASA∗, VANNI NOFERINI† , AND ALEX TOWNSEND‡

In memory of Leiba Rodman

Abstract. We revisit the landmark paper [D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann,
SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971–1004] and, by viewing matrices as coefficients
for bivariate polynomials, we provide concise proofs for key properties of linearizations for matrix
polynomials. We also show that every pencil in the double ansatz space is intrinsically connected to
a Bézout matrix, which we use to prove the eigenvalue exclusion theorem. In addition our exposition
allows for any polynomial basis and for any field. The new viewpoint also leads to new results.
We generalize the double ansatz space by exploiting its algebraic interpration as a space of Bézout
pencils to derive new linearizations with potential applications in the theory of structured matrix
polynomials. Moreover, we analyze the conditioning of double ansatz space linearization in the
important practical case of a Chebyshev basis.
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1. Introduction. The landmark paper by Mackey, Mackey, Mehl, and Mehrmann [20]
introduced three important vector spaces of pencils for matrix polynomials: L1(P ),
L2(P ), and DL(P ). In [20] the spaces L1(P ) and L2(P ) generalize the companion
forms of the first and second kind, respectively, and the double ansatz space is the
intersection, DL(P ) = L1(P ) ∩ L2(P ).

In this article we introduce new viewpoints for these vector spaces, which are
important for solving polynomial eigenvalue problems. The classic approach is lin-
earization, i.e., computing the eigenvalues of a matrix polynomial P (λ) by solving
a generalized linear eigenvalue problem. The vector spaces we study provide a fam-
ily of candidate generalized eigenvalue problems for computing the eigenvalues of a
matrix polynomial. We regard a block matrix as coefficients for a bivariate matrix
polynomial (see section 3), and point out that every pencil in DL(P ) is a (general-
ized) Bézout matrix [18] (see section 4). These novel viewpoints allow us to obtain
remarkably elegant proofs for many properties of DL(P ) and the eigenvalue exclusion
theorem, which previously required rather tedious derivations. Furthermore, our ex-
position includes matrix polynomials expressed in any polynomial basis, such as the
Chebyshev polynomial [8, 17]. We develop a generalization of the double ansatz space
(see section 5) and also discuss extensions to generic algebraic fields, and conditioning
analysis (see section 6).

Let us recall some basic definitions in the theory of matrix polynomials. Let
P (λ) =

∑k
i=0Aiφi(λ) be a matrix polynomial expressed in a certain polynomial basis

{φ0, . . . , φk}, where Ak 6= 0, Ai ∈ Fn×n, and F is a field. Of particular interest is
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the case of a degree-graded basis, i.e., {φi} is a polynomial basis where φj is of exact
degree j. We assume throughout that P (λ) is regular, i.e., detP (λ) 6≡ 0, which ensures
the finite eigenvalues of P (λ) are the roots of the scalar polynomial det(P (λ)). We
note that if the elements of Ai are in the field F then generally the finite eigenvalues
exist in the algebraic closure of F.

Given X,Y ∈ Fnk×nk a matrix pencil L(λ) = λX + Y is a linearization for P (λ)
if there exist unimodular matrix polynomials U(λ) and V (λ), i.e., detU(λ),detV (λ)
are nonzero elements of F, such that L(λ) = U(λ) diag(P (λ), In(k−1))V (λ) and hence,
L(λ) shares its finite eigenvalues and their partial multiplicities with P (λ). If P (λ),
when expressed in a degree-graded basis, has a singular leading coefficient then it has
an infinite eigenvalue and to preserve the partial multiplicities at infinity the matrix
pencil L(λ) needs to be a strong linearization, i.e., L(λ) is a linearization for P (λ)
and λY +X a linearization for λkP (1/λ).

In the next section we recall the definitions of L1(P ), L2(P ), and DL(P ) allowing
for matrix polynomials expressed in any polynomial basis. In section 3 we consider the
same space from a new viewpoint, based on bivariate matrix polynomials, and provide
concise proofs for properties of DL(P ). Section 4 shows that every pencil in DL(P )
is a (generalized) Bézout matrix and gives an alternative proof for the eigenvalue
exclusion theorem. In section 5 we generalize the double ansatz space to obtain a new
family of linearizations, including new structured linearizations for structured matrix
polynomials. Although these new linearizations are mainly of theoretical interest
they show how the new viewpoint can be used to derive novel results. In section 6
we analyze the conditioning of the eigenvalues of DL(P ) pencils, and in section 7
we describe a procedure to construct block symmetric pencils in DL(P ) and Bézout
matrices.

2. Vector spaces and polynomial bases. Given a matrix polynomial P (λ)
we can define a vector space, denoted by L1(P ), as [20, Def. 3.1]

L1(P ) =
{
L(λ) = λX + Y : X,Y ∈ Fnk×nk, L(λ) · (Λ(λ)⊗ In) = v ⊗ P (λ), v ∈ Fk

}
,

where Λ(λ) = [φk−1(λ), φk−2(λ), . . . , φ0(λ)]
T

and ⊗ is the matrix Kronecker product.
An ansatz vector v ∈ Fk generates a family of pencils in L1(P ), which are generically
linearizations for P (λ) [20, Thm. 4.7]. If {φ0, . . . , φk} is an orthogonal basis, then

the comrade form [26] belongs to L1(P ) with v = [1, 0, . . . , 0]
T

.
The action of L(λ) = λX + Y ∈ L1(P ) on (Λ(λ) ⊗ In) can be characterized by

the column shift sum operator, denoted by �→ [20, Lemma 3.4],

L(λ) · (Λ(λ)⊗ In) = v ⊗ P (λ)⇐⇒ X �→Y = v ⊗ [Ak, Ak−1, . . . , A0] .

In the monomial basis X �→Y can be paraphrased as “insert a zero column on the
right of X and a zero column on the left of Y then add them together”, i.e.,

X �→Y =
[
X 0

]
+
[
0 Y

]
,

where 0 ∈ Fnk×n. More generally, given a polynomial basis we define the column shift
sum operator as

X �→Y = XM +
[
0 Y

]
, (2.1)

where M ∈ Fnk×n(k+1) and 0 ∈ Fnk×n. The matrix M has a particularly nice form
if the basis is degree-graded. Indeed, suppose the degree-graded basis {φ0, . . . , φk}
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satisfies the recurrence relations

xφi−1 =

i∑
j=0

mk+1−i,k+1−jφj , 1 ≤ i ≤ k.

Then the matrix M in (2.1) is given by

M =


M11 M12 . . . M1k M1,k+1

0 M22
. . .

. . . M2,k+1

...
. . .

. . .
. . .

...
0 . . . 0 Mkk Mk,k+1

 , (2.2)

where Mpq = mpqIn, 1 ≤ p ≤ q ≤ k + 1, p 6= k + 1 and In is the n × n identity
matrix. An orthogonal basis satisfies a three term recurrence and in this case the
matrix M has only three nonzero block diagonals. For example, if P (λ) ∈ R[λ]n×n is
expressed in the Chebyshev basis1 {T0(x), . . . , Tk(x)}, where Tj(x) = cos

(
j cos−1 x

)
for x ∈ [−1, 1], we have

M =


1
2In 0 1

2In
. . .

. . .
. . .

1
2In 0 1

2In
In 0

 ∈ Rnk×n(k+1). (2.3)

The properties of the vector space L2(P ) are analogous to L1(P ) [16]. If L(λ) =
λX + Y is in L2(P ) then L(λ) = λXB + Y B belongs to L1(P ), where the superscript
B represents blockwise transpose2. This connection means the action of L(λ) ∈ L2(P )
is characterized by a row shift sum operator, denoted by �↓ ,

X �↓ Y =
(
XB �→Y B

)B
= MBX +

[
0T

Y

]
.

2.1. Extending the results to general polynomial bases. Many of the
derivations in [20] are specifically for P (λ) expressed in a monomial basis, though
the lemmas and theorems can be generalized to any polynomial basis. One ap-
proach to generalize [20] is to use the change of basis matrix S such that Λ(λ) =
S[λk−1, . . . , λ, 1]T and to define the mapping (see also [7])

C
(
L̂(λ)

)
= L̂(λ)(S−1 ⊗ In) = L(λ), (2.4)

where L̂(λ) is a pencil in L1(P ) for the matrix polynomial P (λ) expressed in the mono-
mial basis. In particular, the strong linearization theorem holds for any polynomial
basis.

Theorem 2.1 (Strong Linearization Theorem). Let P (λ) be a regular matrix
polynomial (expressed in any polynomial basis), and let L(λ) ∈ L1(P ). Then the
following statements are equivalent:

1Non-monomial bases are mainly of interest when working with numerical algorithms over some
subfield of C. For the sake of completeness, we note that in order to define the Chebyshev basis the
field characteristics must be different than 2.

2If X = (Xij)1≤i,j≤k, Xij ∈ Fn×n, then XB = (Xji)1≤i,j≤k.
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1. L(λ) is a linearization for P (λ),
2. L(λ) is a regular pencil,
3. L(λ) is a strong linearization for P (λ).

Proof. It is a corollary of [20, Theorem 4.3]. In fact, the mapping C in (2.4)
is a strict equivalence between L1(P ) expressed in the monomial basis and L1(P )
expressed in another polynomial basis. Therefore, L(λ) has one of the three properties
if and only if L̂(λ) also does, and the properties are equivalent for L̂(λ) because they
are for L(λ).

This strict equivalence can be used to generalize many properties of L1(P ), L2(P ),
and DL(P ); however, our approach based on bivariate polynomials allows for more
concise derivations.

3. Recasting to bivariate matrix polynomials. A block matrix X ∈ Fnk×nh
with n × n blocks can provide the coefficients for a bivariate matrix polynomial of
degree h− 1 in x and k− 1 in y. Let φ : Fnk×nh → Fh−1[x]×Fk−1[y] be the mapping
defined by

φ : X =

X11 . . . X1h

...
. . .

...
Xk1 . . . Xkh

 , Xij ∈ Fn×n 7→ F (x, y) =

k−1∑
i=0

h−1∑
j=0

Xk−i,k−jφi(y)φj(x).

Equivalently, we may define the map as follows:

φ : X =

X11 . . . X1h

...
. . .

...
Xk1 . . . Xkh

 7→ F (x, y) =
[
φk−1(y)I · · · φ0(y)I

]
X

φh−1(x)I
...

φ0(x)I

 .
Usually, and unless otherwise speficified, we will apply the map φ to square block

matrices, i.e., h = k.

We recall that a regular (matrix) polynomial P (λ) expressed in a degree-graded
basis has an infinite eigenvalue if its leading matrix coefficient is singular. In order to
correctly take care of infinite eigenvalues we write P (λ) =

∑g
i=0Aiφi(λ), where the

integer g ≥ k is called the grade [22]. If the grade of P (λ) is larger than the degree
then P (λ) has at least one infinite eigenvalue. Usually, and unless stated otherwise,
the grade is equal to the degree.

It is easy to show that the mapping φ is a bijection between h× k block matrices
with n×n blocks and n×n bivariate matrix polynomials of grade h−1 in x and grade
k − 1 in y. Even more, φ is an isomorphism preserving the group additive structure.
We omit the trivial proof.

Many matrix operations can be interpreted as functional operations via the above
described duality between block matrices and their continuous analogues. Bivariate
matrix polynomials allow us to interpret many matrix operations in terms of functional
operations. In many instances, existing proofs in the theory of linearizations of matrix
polynomials can be simplified, and throughout the paper we will often exploit this
parallelism. We summarize some computation rules in Table 3.1. We hope the table
will prove useful not only in this paper, but also for future work. All the rules are
valid for any basis and for any field F, except the last row that assumes F = C.

Other computational rules exist when the basis has additional properties. We
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Table 3.1
Correspondence between operations in the matrix and the bivariate polynomial viewpoints.

Block matrix operation Bivariate polynomial operation
Block matrix X Bivariate polynomial F (x, y)
X 7→ XM F (x, y) 7→ F (x, y)x
X 7→MBX F (x, y) 7→ yF (x, y)
X(Λ(λ)⊗ I) Evaluation at x = λ: F (λ, y)
X(Λ(λ)⊗ v) F (λ, y)v

(ΛT (µ)⊗ wT )X wTF (x, µ)
(ΛT (µ)⊗ wT )X(Λ(λ)⊗ v) wTF (λ, µ)v

X 7→ XB F (x, y) 7→ F (y, x)
X 7→ XT F (x, y) 7→ FT (y, x)
X 7→ X∗ F (x, y) 7→ F ∗(y, x)

give some examples in Table 3.2, in which

Σ =


. . .

I
−I

I

 , R =

 I

. .
.

I

 , (3.1)

and we say that a polynomial basis is alternating if φi(x) is even (odd) when i is even
(odd).

Table 3.2
Correspondence when the polynomial basis is alternating or the monomial basis.

Type of basis Block matrix operation Bivariate polynomial operation
Alternating X 7→ ΣX F (x, y) 7→ F (x,−y)
Alternating X 7→ XΣ F (x, y) 7→ F (−x, y)
Monomials X 7→ RX F (x, y) 7→ yk−1F (x, y−1)
Monomials X 7→ XR F (x, y) 7→ xh−1F (x−1, y)

As seen in Table 3.1, the matrix M in (2.1) is such that the bivariate matrix
polynomial corresponding to the coefficients XM is F (x, y)x, i.e., M applied on the
right of X represents multiplication of F (x, y) by x. This gives an equivalent definition
for the column shift sum operator: if the block matrices X and Y are the coefficients
for F (x, y) and G(x, y) then the coefficients of H(x, y) are Z, where

Z = X �→Y, H(x, y) = F (x, y)x+G(x, y).

Therefore, in terms of bivariate matrix polynomials we can define L1(P ) as

L1(P ) = {L(λ) = λX + Y : F (x, y)x+G(x, y) = v(y)P (x), v ∈ Πh−1(F)} ,

where Πh−1(F) is the space of polynomials in F[y] of degree ≤ h− 1.
Regarding the space L2(P ), the coefficient matrix MBX corresponds to the bi-

variate matrix polynomial yF (x, y), i.e., MB applied on the left of X represents
multiplication of F (x, y) by y. Hence, we can define L2(P ) as

L2(P ) = {L(λ) = λX + Y : yF (x, y) +G(x, y) = P (y)w(x), w ∈ Πk−1(F)} .
5



The space DL(P ) is the intersection of L1(P ) and L2(P ). It is an important vector
space because it contains block symmetric linearizations. A pencil L(λ) = λX + Y
belongs to DL(P ) with ansätze v(y) and w(x) if the following L1(P ) and L2(P )
conditions are satisfied:

F (x, y)x+G(x, y) = v(y)P (x), yF (x, y) +G(x, y) = P (y)w(x). (3.2)

It appears that v(y) and w(x) could be chosen independently; however, if we substitute
y = x into (3.2) we obtain the compatibility condition

v(x)P (x) = F (x, x)x+G(x, x) = xF (x, x) +G(x, x) = P (x)w(x)

and hence, v = w as elements of Πk−1(F) since P (x)(v(x)−w(x)) is the zero matrix.
This shows the double ansatz space is actually a single ansatz space; a fact that
required two quite technical proofs in [20, Prop. 5.2, Thm. 5.3].

The bivariate matrix polynomials F (x, y) and G(x, y) are uniquely defined by the
ansatz v(x) since they satisfy the explicit formulas

yF (x, y)− F (x, y)x = P (y)v(x)− v(y)P (x), (3.3)

yG(x, y)−G(x, y)x = yv(y)P (x)− P (y)v(x)x. (3.4)

In other words, there is an isomorphism between Πk(F) and DL(P ). It also follows
from (3.3) and (3.4) that F (x, y) = F (y, x) and G(x, y) = G(y, x). This shows
that all the pencils in DL(P ) are block symmetric. Furthermore, if F (x, y) and
G(x, y) are symmetric and satisfy F (x, y)x + G(x, y) = P (x)v(y) then we also have
F (y, x)x+G(y, x) = P (x)v(y), and by swapping x and y we obtain the L2(P ) condi-
tion, yF (x, y) +G(x, y) = P (y)v(x). This shows all block symmetric pencils in L1(P )
belong to L2(P ) and hence, also belong to DL(P ). Thus, DL(P ) is the space of block
symmetric pencils in L1(P ) [16, Thm. 3.4].

Remark 3.1. Although in this paper we do not consider singular matrix polyno-
mials, we note that the analysis of this section still holds even if we drop the assump-
tion that P (x) is regular. We only need to assume P (x) 6≡ 0 in our proof that DL(P)
is in fact a single ansatz space. This is no loss of generality, since DL(0) = {0}.

4. Eigenvalue exclusion theorem and Bézoutians. The eigenvalue exclu-
sion theorem [20, Thm. 6.9] shows that if L(λ) ∈ DL(P ) with ansatz v ∈ Πk−1(F) then
L(λ) is a linearization for the matrix polynomial P (λ) if and only if v(λ)In and P (λ)
do not share an eigenvalue. This theorem is important because, generically, v(λ)In
and P (λ) do not share eigenvalues and almost all choices for v ∈ Πk−1(F) correspond
to linearizations in DL(P ) for P (λ).

Theorem 4.1 (Eigenvalue Exclusion Theorem). Suppose that P (λ) is a regular
matrix polynomial of degree k and L(λ) is in DL(P ) with a nonzero ansatz polynomial
v(λ). Then, L(λ) is a linearization for P (λ) if and only if v(λ)In (with grade k − 1)
and P (λ) do not share an eigenvalue.

We note that the last statement also includes infinite eigenvalues. In the following
we will observe that any DL(P ) pencil is a (generalized) Bézout matrix and expand on
this theme. This observation tremendously simplifies the proof of Theorem 4.1 and the
connection with the classical theory of Bézoutian (for the scalar case) and the Lerer–
Tismenetsky Bézoutian (for the matrix case) allows us to further our understanding
of the DL(P ) vector space, and leads to a new vector space of linearizations. We first
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recall the definition of a Bézout matrix and Bézoutian function for scalar polynomials
[5, p. 277], [6, sec. 2.9].

Definition 4.2 (Bézout matrix and Bézoutian function). Let p1(x) and p2(x)
be scalar polynomials

p1(x) =

k∑
i=0

aiφi(x), p2(x) =

k∑
i=0

ciφi(x)

(ak and ck can be zero, i.e., we regard p1(x) and p2(x) as polynomials of grade k),
then the Bézoutian function associated with p1(x) and p2(x) is the bivariate function

B(p1, p2) =
p1(y)p2(x)− p2(y)p1(x)

x− y
=

k∑
i,j=1

bijφk−i(y)φk−j(x).

The k × k Bézout matrix associated to p1(x) and p2(x) is defined via the coefficients
of the Bézoutian function

B(p1, p2) = (bij)1≤i,j≤k .

Here are some standard properties of a Bézoutian function and Bézout matrix:
1. The Bézoutian function is skew-symmetric with respect to its polynomial

arguments: B(p1, p2) = −B(p2, p1).
2. B(p1, p2) is bilinear with respect to its polynomial arguments.
3. B(p1, p2) is nonsingular if and only if p1 and p2 have no common roots.
4. B(p1, p2) is a symmetric matrix.

Property 3 holds for polynomials whose coefficients lie in any field F, provided that
the common roots are sought after in the algebraic closure of F and roots at infinity
are included. Note in fact that the dimension of the Bézout matrix depends on the
formal choice of the grade of p1 and p2. Unusual choices of the grade are not completely
artificial: for example, they may arise when evaluating a bivariate polynomial along
x = x0 forming a univariate polynomial [25]. Moreover, it is important to be aware
that common roots at infinity make the Bézout matrix singular.

Example 4.3. Consider the finite field F2 = {0, 1} and let p1 = x2 and p2 = x+1,
whose finite roots are counting multiplicity {0, 0} and {1}, respectively. The Bézout
function is x + y + xy. If p1 and p2 are seen as grade 2, the Bézout matrix (in the

monomial basis) is

[
1 1
1 0

]
, which is nonsingular and has a determinant of 1. This is

expected as p1 and p2 have no shared root. If p1 and p2 are seen as grade 3 the Bézout

matrix becomes

0 0 0
0 1 1
0 1 0

, whose kernel is spanned by
[
1 0 0

]T
. Note indeed that

if the grade is 3 then the roots are, respectively, {∞, 0, 0} and {∞,∞, 1}, so p1 and
p2 share a root at ∞.

To highlight the connection with the classic Bézout matrix we first consider scalar
polynomials and show that the eigenvalue exclusion theorem immediately follows from
the connection with Bézoutians.

Proof. [Proof of Theorem 4.1 for n = 1] Let p(λ) be a scalar polynomial of degree
(and grade) k and v(λ) a scalar polynomial of degree ≤ k − 1. We first solve the

7



relations in (3.3) and (3.4) to obtain

F (x, y) =
p(y)v(x)− v(y)p(x)

x− y
, G(x, y) =

yv(y)p(x)− p(y)v(x)x

x− y

and thus, by Definition 4.2, F (x, y) = B(v, p) G(x, y) = B(p, vx) Moreover, B is
skew-symmetric and bilinear with respect to its polynomial arguments so we have

L(λ) = λX+Y = λB(v, p)+B(p, xv) = −λB(p, v)+B(p, xv) = B(p, (x−λ)v). (4.1)

Since B is a Bézout matrix, det(L(λ)) = det(B(p, (x− λ)v)) = 0 for all λ if and only
if p and v share a root. Finally, by Theorem 2.1, L(λ) is a linearization for p(λ) if
and only if p and v do not share a root.

An alternative (more algebraic) argument is to note that p and (x − λ)v are
polynomials in x whose coefficients lie in the field of fractions F(λ). Since p has
coefficients in the subfield F ⊂ F(λ), its roots lie in the algebraic closure of F, denoted
by F. The factorization (x − λ)v similarly reveals that this polynomial has one root
at λ, while all the others lie in F∪{∞}. Therefore, P and (x− λ) share a root in the
closure of F(λ) if and only if P and v share a root in F. Our proof of the eigenvalue
exclusion theorem is purely algebraic and holds without any assumption on the field
F. However, as noted by Mehl [23], if F is finite it could happen that no pencil in
DL is a linearization, because there are only finitely many choices available for the
ansatz polynomial v. Although this approach is extendable to any field, for simplicity
of exposition we assume for the rest of this section that the underlying field is C.

A natural question at this point is whether this approach generalizes to the matrix
case (n > 1). An appropriate generalization of the scalar Bézout matrix should:

• Depend on two matrix polynomials P1 and P2;
• Have nontrivial kernel if and only if P1 and P2 share an eigenvalue and the

corresponding eigenvector (note that for scalar polynomials the only possible
eigenvector is 1, up to multiplicative scaling).

The following examples show that the most straightforward ideas fail to satisfy
the second property above.

Example 4.4. Note first that the most näıve idea, i.e., P2(x)P1(y)−P1(x)P2(y)
x−y , is

generally not even a matrix polynomial.

Almost as straightforward is the generalization P1(y)P2(x)−P1(x)P2(y)
x−y , which is in-

deed a bivariate matrix polynomial. However, consider the associated Bézout block
matrix. Let us check that it does not satisfy the property of being singular if and only
if P1 and P2 have a shared eigenpair by providing two examples over the field Q and

in the monomial basis. Consider first P1 =

[
x 0
0 x− 1

]
and P2 =

[
x− 6 −1

12 x+ 1

]
. P1

and P2 have disjoint spectra. The corresponding Bézout matrix is

[
6 1
−12 −2

]
, which

is singular. Conversely, let P1 =

[
x 1
0 x

]
and P2 =

[
0 x
x 1

]
. Here, P1 and P2 share

the eigenpair {0,
[
1 0

]T }, but the corresponding Bézout matrix is

[
1 0
0 −1

]
, which is

nonsingular.
Fortunately, an extension of the Bézoutian to the matrix case was studied in

the 1980s by Lerer, Tismenetsky, and others, see, e.g., [3, 18, 19] and the references
therein. It turns out that it provides exactly the generalization that we need.

8



Definition 4.5. For n×n regular matrix polynomials P1(x) and P2(x) of grade
k, the associated Bézoutian function BM2,M1

is defined by [3, 18]

BM2,M1
(P1, P2) =

M2(y)P2(x)−M1(y)P1(x)

x− y
=

`,k∑
i,j=1

Bijφ`−i(y)φk−j(x), (4.2)

where M1(x) and M2(x) are regular matrix polynomials, ` is the maximal degree of
M1(x) and M2(x), and M1(x)P1(x) = M2(x)P2(x), [9, Ch. 9]. The n` × nk Bézout
block matrix is defined by BM2,M1

(P1, P2) = (Bij)1≤i≤`,1≤j≤k.
Note that the Lerer–Tismenetsky Bézoutian function and the corresponding Bézout

block matrix are not unique as there are many possible choices of M1 and M2. Indeed,
the matrix B does not even need to be square.

Example 4.6. Let P1 =

[
x 0
0 x− 1

]
and P2 =

[
x− 6 −1

12 x+ 1

]
and select3 M1 =[

x2 − 3x+ 6 x
14x− 12 x2 + 2x

]
and M2 =

[
x2 + 3x 2x

2x x2

]
. It can be verified that M1P1 =

M2P2. The associated Lerer–Tismenetsky Bézout matrix is
6 1
−12 −2
−6 0
−12 0


and has a trivial kernel.

Example 4.7. Let P1 =

[
x 1
0 x

]
, P2 =

[
0 x
x 1

]
and select M1 = P1 and M2 =

P1F , where F =

[
0 1
1 0

]
. The Lerer–Tismenetsky Bézout matrix is

[
0 0
0 0

]
. Its kernel

has dimension 2 because P1 and P2 only share the eigenvalue 0 and the associated

Jordan chain
[
1 0

]T
,
[
0 −1

]T
.

When P1(x) and P2(x) commute, i.e., P2(x)P1(x) = P1(x)P2(x), the natural
choice of M1 and M2 are M1 = P2 and M2 = P1 and we write B(P1, P2) :=
BP1,P2

(P1, P2). In this case the Lerer–Tismenetsky Bézout matrix is square and of
size nk × nk. Here are some important properties of the Lerer–Tismenetsky Bézout
matrix:

1. The Bézoutian function is skew-symmetric with respect to its arguments:
BM2,M1(P1, P2) = −BM1,M2(P2, P1),

2. B(P1, P2) is bilinear with respect to its polynomial arguments, i.e., B(aP1 +
bP2, P3) = aB(P1, P3) + bB(P2, P3) if P1, P2 both commute with P3,

3. The kernel of the Bézout block matrix is

kerB(P1, P2) = Im

XFφk−1(TF )
...

XFφ0(TF )

 ⊕ Im

 X∞φ0(T∞)
...

X∞φk−1(T∞)

 , (4.3)

and does not depend on the choice of M1 and M2. This was proved (in the
monomial basis) in [18, Thm. 1.1]. Equation (4.3) holds for any polynomial

3M1 and M2 are of minimal degree as there are no M1 and M2 of degree 0 or 1 such that
M1P1 = M2P2 exists.
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basis: it can be obtained from that theorem via a congruence transformation
involving the mapping C in (2.4). Here (XF , TF ), (X∞, T∞) are the greatest
common restrictions [9, Ch. 9] of the finite and infinite Jordan pairs [9, Ch.1,
Ch. 7] of P1(x) and P2(x). The infinite Jordan pairs are defined regarding
both polynomials as grade k.

4. If for any x and y we have P1(y)P2(x) = P2(x)P1(y), then B(P1, P2) is
a (block) symmetric matrix. Note that the hypothesis is stronger than
P1(x)P2(x) = P2(x)P1(x), but it is always satisfied when P2(x) = v(x)I.

The following lemma shows that, as in the scalar case, property 3 is the eigenvalue
exclusion theorem in disguise.

Lemma 4.8. The greatest common restriction of the (finite and infinite) Jordan
pairs of the regular matrix polynomials P1 and P2 is nonempty if and only if P1 and
P2 share both an eigenvalue and the corresponding eigenvector.

Proof. Suppose that the two matrix polynomials have only finite eigenvalues.
We denote by (X1, J1) (resp., (X2, J2)) a Jordan pair of P1 (resp., P2). Observe
that a greatest common restriction is nonempty if and only if there exists at least one
nonempty common restriction. First assume there exist v and x0 such that P1(x0)v =
P2(x0)v = 0. Up to a similarity on the two Jordan pairs (which is without loss of
generality, see [9, p. 204]) we have X1S1e1 = X2S2e1 = v, J1S1e1 = S1e1x0, and
J2S2e1 = S2e1x0, where S1 and S2 are two similarity matrices. This shows that (v, x0)
is a common restriction [9, p. 204, p.235] of the Jordan pairs of P1 and P2. Conversely,
let (X,J) be a common restriction with J in Jordan form. We have the four equations
X1S1 = X, X = X2S2, J1S1 = S1J , and J2S2 = S2J for some full column rank
matrices S1 and S2. Letting v := Xe1, x0 := eT1 Je1, it is easy to check that (v, x0)
is also a common restriction, and that X1S1e1 = v = X2S2e1, J1S1e1 = S1e1x0, and
J2S2e1 = S2e1x0. From [9, eq. 1.64]4, it follows that P1(x0)v = P2(x0)v = 0.

The assumption that all the eigenvalues are finite can be easily removed (although
complicating the notation appears unavoidable). In the argument above replace every
Jordan pair (X, J) with a decomposable pair [9, pp. 188–191] of the form [XF , X∞]
and JF ⊕ J∞, where (XF , JF ) is a finite Jordan pair and (X∞, J∞) is an infinite
Jordan pair [9, Ch. 7]. As the argument is essentially the same we omit the details.

The importance of the connection with Bézout theory is now clear. The proof of
the eigenvalue exclusion theorem in the matrix polynomial case becomes immediate.

Proof. [Proof of Theorem 4.1 for n > 1]

Let P1 = P (x) and P2 = (x − λ)v(x)In in (4.2). Then, P1 and P2 commute for
all x, so we take M1 = P2 and M2 = P1 and obtain

B(P (x), (x− λ)v(x)In) =
P (y)(x− λ)v(x)− (y − λ)v(y)P (x)

x− y

=

k∑
i,j=1

Bijφk−i(y)φk−j(x).

This gives the nk × nk Bézout block matrix B(P, (x − λ)vI) = (Bij)1≤i,j≤k. Com-
pletely analogously to the scalar case, we have

DL(P, v) = L(λ) = B(P, (x− λ)vI) = λB(v, P ) +B(P, xv). (4.4)

4Although strictly speaking [9, eq. 1.64] is for a monic matrix polynomial, it is extendable in a
straightforward way to a regular matrix polynomial (see also [9, Ch. 7]).
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If vIn and P share a finite eigenvalue λ0 and P (λ0)w = 0 for a nonzero w, then
(λ0−λ)v(λ0)w = 0 for all λ. Hence, the kernel of L(λ) = B(P, (x−λ)v) is nonempty
for all λ and L(λ) is singular. An analogous argument holds for a shared infinite
eigenvalue. Conversely, suppose v(λ)In and P (λ) have no common eigenvalues. If λ0
is an eigenvalue of P then (λ0 − λ)v(λ0)I is nonsingular unless λ = λ0. Thus, if λ is
not an eigenvalue for P then the common restriction is empty, which means L(λ) is
nonsingular. In other words, L(λ) is regular and a linearization by Theorem 2.1.

5. Barnett’s theorem and “beyond DL” linearization space. In this sec-
tion we work for simplicity in the monomial basis, and we assume that the matrix
polynomial P (x) =

∑k
i=0 Pix

i has an invertible leading coefficient Pk. Given a ring
R, a left ideal L is a subset of R such that (L,+) is a subgroup of (R,+) and r` ∈ L
for any ` ∈ L and r ∈ R [12, Ch. 1]. A right ideal is defined analogously.

Given a matrix polynomial P (x) over some field F the set LP = {Q(x) ∈
Fn×n[x] | Q(x) = A(x)P (x), A(x) ∈ Fn×n[x]} is a left ideal of the ring Fn×n[x].
Similarly, RP = {Q(x) ∈ Fn×n[x] | Q(x) = P (x)A(x), A(x) ∈ Fn×n[x]} is a right
ideal of Fn×n[x].

A matrix polynomial of grade k − 1 can be represented as G(x) = ΓΦ(x), where
Γ = [Γk−1,Γk−2, . . . ,Γ0] ∈ Fn×nk are its coefficient matrices when expressed in the

monomial basis and Φ(x) =
[
xk−1I, . . . , xI, I

]B
. Let C

(1)
P be the first companion

matrix5 of P (x):

C
(1)
P =


−P−1k Pk−1 −P−1k Pk−2 · · · −P−1k P1 −P−1k P0

I
I

. . .

I 0

 .

A key observation is that the action of C
(1)
P on Φ is that of the multiplication-by-

xI operator in the quotient module R/LP :
xk−1I
xk−2I
...
xI
I

xI ≡ C(1)
P


xk−1I
xk−2I
...
xI
I

 =


xk−1I
xk−2I
...
xI
I

xI+


−P−1k P (x)

0
...
0
0

 ,

−P−1k P (x)

0
...
0
0

 ∈ RkL.

Premultiplying by the coefficients Γ, we can identify the map Γ 7→ ΓC
(1)
P with the

map G(x) 7→ G(x)x in Fn×n[x]/LP . That is, we can write ΓC
(1)
P Φ = xG(x) + Q(x)

for some Q(x) ∈ LP . More precisely, we have Q(x) = Γk−1P
−1
k P (x).

Theorem 5.1. Let P (x) =
∑k
i=0 Pix

i ∈ Fn×n[x] be a matrix polynomial of degree
k such that Pk is invertible, and let V (x) ∈ Fn×n[x] be any matrix polynomial. Then
there exists a unique Q(x) of grade k − 1 such that Q(x) ≡ V (x) in the quotient
module Fn×n[x]/LP , i.e., there exists a unique A(x) ∈ Fn×n[x] such that V (x) =
A(x)P (x) +Q(x).

5Some authors define the first companion matrix with minor differences in the choice of signs.
Here, we make our choice for simplicity of what follows. For other polynomial bases the matrix
should be replaced accordingly [4].
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Moreover, there exists a unique S(x) of grade k − 1 such that S(x) ≡ V (x) in
the quotient module Fn×n[x]/RP , i.e., there exists a unique B(x) ∈ Fn×n[x] such that
V (x) = P (x)B(x) + S(x).

Proof. If deg V (x) < k, then take Q(x) = V (x) and A(x) = 0. If deg V ≥ k, then
our task is to find A(x) with degA = deg V − k that satisfies M(x) = A(x)P (x) =∑deg V
i=0 Mix

i and Mi =
∑
j+`=i(AjP`) = Vi for k ≤ i ≤ deg V . This is equivalent to

solving the following block matrix equation:

[
AdegA · · · A0

]

Pk Pk−1 Pk−2 · · ·

Pk Pk−1 Pk−2 · · ·
. . .

. . .

Pk Pk−1
Pk

 =
[
Vdeg V · · · Vk

]
, (5.1)

which shows explicitly that A(x) exists and is unique. This implies that exists unique
Q(x) = V (x)−A(x)P (x).

An analogous argument proves the existence and uniqueness of B(x) and S(x)
such that V (x) = P (x)B(x) + S(x).

Thanks to the connection between DL and the Bézoutian, we find that [16, The-
orem 4.1] is a generalization of Barnett’s theorem to the matrix case. The proof that
we give below is a generalization of that found in [13] for the scalar case. It is an-
other example where the algebraic interpretation and the connection with Bézoutians
simplify proofs (compare with the argument in [16]).

Theorem 5.2 (Barnett’s theorem for matrix polynomials). Let P (x) be a matrix
polynomialof degree k with nonsingular leading coefficient and v(x) a scalar polynomial

of grade k − 1. We have DL(P, v(x)) = DL(P, 1)v(C
(1)
P ), where C

(1)
P is the first

companion matrix of P (x).
Proof. It is easy to verify that the following recurrence formula holds:

P (y)xj(x− λ)− yj(y − λ)P (x)

x− y
=
P (y)xj−1(x− λ)− yj−1(y − λ)P (x)

x− y
x+yj−1(y−λ)P (x).

Hence, we have B(P, (x− λ)xj) ≡ B(P, (x− λ)xj−1)x where the equivalence is in the
quotient space F[y, λ]n×n[x]/LP . Taking into account the interpretation of the action

of C
(1)
P on the right as multiplication by x, this proves by induction the theorem when

v(C
(1)
P ) is a monomial of the form (C

(1)
P )j for 0 ≤ j ≤ k − 1. The case of a generic

v(C
(1)
P ) follows by linearity of the Bézoutian.
An analogous interpretation as a multiplication operator holds for the second

companion matrix:

C
(2)
P =


−Pk−1P−1k I
−Pk−2P−1k I

...
. . .

−P1P
−1
k I

−P0P
−1
k

 .

Indeed, C
(2)
P represents multiplication by y modulo the right ideal generated by P (y).

Again, it is thanks to (the second part of) Theorem 5.1 that this becomes a rigorous
statement. A dual version of Barnett’s theorem holds for the second companion
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matrix. Indeed, one has DL(P, v(x)) = v(C
(2)
P )DL(P, 1). The proof is analogous to

the one for Theorem 5.2 and is omitted.
As soon as we interpret the two companion matrices in this way, we are implicitly

defining a map ψ from block matrices to bivariate polynomials modulo LP (x) and

RP (y), i.e., if X ∈ Fnk×nk is a block matrix then the bivariate polynomial ψ(X) is
defined up to an additive term of the form L(x, y)P (x) + P (y)R(x, y) where L(x, y)
and R(y, x) are bivariate polynomials. In this setting, ψ(X) is seen as an equivalence
class. However, in this equivalence class there exists a unique bivariate polynomial
having grade equal to degP −1 separately in both x and y, as we now prove. (Clearly,
this unique bivariate polynomial must be precisely φ(X), where φ is the map defined in
section 3). The following theorem gives the appropriate matrix polynomial analogue
to Euclidean polynomial division applied both in x and y.

Theorem 5.3. Let P (z) =
∑k
i=0 Piz

i ∈ Fn×n[z] be a matrix polynomial with Pk
invertible, and let F (x, y) =

∑k1
i=0

∑k2
j=0 Fijx

iyj ∈ Fn×n[x, y] be a bivariate matrix
polynomial. Then there is a unique decomposition F (x, y) = Q(x, y) +A(x, y)P (x) +
P (y)B(x, y) + P (y)C(x, y)P (x) such that

(i) Q(x, y), A(x, y), B(x, y) and C(x, y) are all bivariate matrix polynomials,
(ii) Q(x, y) has grade k − 1 separately in x and y,

(iii) A(x, y) has grade k − 1 in y, and
(iv) B(x, y) has grade k − 1 in x.

Moreover, Q(x, y) is determined uniquely by P (z) and F (x, y).
Proof. Let us first apply Theorem 5.1 taking F(y) as the base field. Then there

exist unique A(x, y) and Q1(x, y) such that F (x, y) = A1(x, y)P (x) +Q1(x, y), where
A1(x, y) and Q1(x, y) are polynomials in x. Furthermore, degxQ1(x, y) ≤ k − 1. A
priori, the entries of A1(x, y) and Q1(x, y) could be rational functions in y. How-
ever, a careful analysis of (5.1) shows that the coefficients of A1(x, y) =

∑
iA1,i(y)xi

can be obtained by solving a block linear system, say, Mw = v, where v depends
polynomially in y whereas M is constant in y. Hence, A1(x, y), and a fortiori
Q1(x, y) = F (x, y) − A1(x, y)P (x), are also polynomials in y. At this point we
can apply Theorem 5.1 again to write (uniquely) Q1(x, y) = Q(x, y) + P (y)B(x, y)
and A1(x, y) = A(x, y) + P (y)C(x, y), where degy Q(x, y) and degy A(x, y) are both
≤ k − 1. Moreover, comparing again with (5.1), it is easy to check that it must also
hold degxQ(x, y) ≤ k − 1 and degxB(x, y) ≤ k − 1. Hence, F (x, y) = Q(x, y) +
A(x, y)P (x) + P (y)B(x, y) + P (y)C(x, y)P (x) is the sought decomposition.

The next example illustrates the concepts just introduced.
Example 5.4. Let P (x) = Ix2 + P1x + P0 and consider the block matrix X =[

A B
C D

]
. We have φ(X) = Axy + By + Cx + D. Let Y = C

(2)
P XC

(1)
P . Then we

know that ψ(Y ) ≡ Ax2y2 + Bxy2 + Cx2y + Dxy. In particular, we have Ax2y2 +
Bxy2 + Cx2y + Dxy ≡ −(P1y − P0)(Ax2 + Bx) + Cx2y + Dxy ≡ (−P1Ay − P0A +
Cy)(−P1x−P0) + (D−P1B)xy−P0Bx = (P1AP1 +D−P1B−CP1)xy+ (P1AP0−
CP0)y + (P0AP1 − P0B)x + P0AP0 = φ(Y ), by Theorem 5.3. Equivalenty we could

have taken quotients directly on the bases. The argument is that
[
y2I yI

]
X

[
x2I
xI

]
≡[

−P1y − P0 yI
]
X

[
−P1x− P0

xI

]
= ψ(Y ), and leads to the same result. A third way

of computing Y = C
(2)
P XC

(1)
P is to formally apply the linear algebraic definition of

matrix multiplication, and then apply the mapping φ as in Section 3 (forgetting about
quotient spaces). One remarkable consequence of Theorem 5.3 is that these three
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approaches are all equivalent. Note that the same remarks apply to any block matrix

of the form ψ(v(C
(2)
P )Xw(C

(1)
P )), for any pair of polynomials v(y) and w(x).

For this example, we have taken a monic P (x) for simplicity. If its leading co-
efficient Pk is not the identity matrix, but still is nonsingular, explicit formulae get
more complicated and involve P−1k .

5.1. Beyond DL space. The key messsage in Theorem 5.2 is that one can
start with the pencil in DL associated with ansatz polynomial v = 1 and keep right

multiplying by the first companion matrix C
(1)
P , thus obtaining all the pencils in the

“canonical basis” of DL [20]. In the scalar case (n = 1) there is a bijection between

pencils in DL and polynomials in C
(1)
P . However, the situation is quite different when

n > 1, as the dimension of the space of polynomials in C
(1)
P can have dimension up to

kn, depending on the Jordan structure of P (x).
Remark 5.5. For some matrix polynomials P (x), the dimension of the polyno-

mials in C
(1)
P can be much lower than nk, although generically this upper bound is

achieved. An extreme example is P (x) = p(x)I for some scalar p(x), as in this case
the dimension achieves the lowest possible bound, which is k.

It makes sense then to investigate further the pencils of the form v(C
(2)
P )DL(P, 1) =

DL(P, 1)v(C
(1)
P ) for deg v > k− 1, because for a generic P they do not belong to DL.

We refer to the space of such pencils as the “beyond DL” space of potential lineariza-
tions and write

DL(P, 1)v(C
(1)
P ) =: BDL(P, v).

Note that DL is now seen as a subspace of BDL: if deg v ≤ k − 1, then BDL(P, v) =
DL(P, v).

An important fact is that, even if the degree of the polynomial v(x) is larger

than k − 1, it still holds BDL(P, v) = v(C
(2)
P )DL(P, 1) = DL(P, 1)v(C

(1)
P ). When

deg v ≤ k − 1, i.e., for pencils in DL, this is a consequence of the two equivalent
versions of Barnett’s theorem, but we now prove this more generally.

Theorem 5.6. For any polynomial v(x), v(C
(2)
P )DL(P, 1) = DL(P, 1)v(C

(1)
P ).

Proof. Since both C
(2)
P −λI and C

(1)
P −λI are strong linearizations of P (λ), they

have the same minimal polynomial m(λ). Let γ = degm(λ). By linearity, it suffices
to check the statement for v(x) = xj , j = 0, . . . , γ − 1.

We give an argument by induction. Note first that the base case, i.e., v(x) = x0 =
1, is a trivial identity. From the recurrence relation displayed in the proof of Barnett’s

theorem, we have that ψ(DL(P, 1)(C
(1)
P )j−1) ≡ B(P, xj−1I) modLP . By the inductive

hypothesis we also have ψ(DL(P, 1)(C
(1)
P )j−1) ≡ ψ((C

(2)
P )j−1DL(P, 1)) ≡ B(P, yj−1I)

modRP . Now, let δ(x, y) = φ(DL(P, 1)(C
(1)
P )j − (C

(2)
P )jDL(P, 1)). It must be

δ(x, y) ≡ (x− y)B(P, xj−1I) + L(x, y)P (x) + P (y)R(x, y). But (x− y)B(P, xj−1I) =
P (y)xj−1−yj−1P (x), and hence, δ(x, y) ≡ 0+L1(x, y)P (x)+P (y)R1(x, y). Applying
Theorem 5.3, and noting that, by the definition of the mapping φ, δ(x, y) must have
grade k − 1 separately in x and y, we can argue that δ(x, y) = 0.

Clearly, an eigenvalue exclusion theorem continues to hold. Indeed, by assumption
DL(P, 1) is a linearization, because we suppose P (x) has no eigenvalues at infinity.

Thus, BDL(P, v) will be a linearization as long as v(C
(1)
P ) is nonsingular, which hap-

pens precisely when P (x) and v(x)I do not share an eigenvalue. Nonetheless, it is less
clear what properties, if any, pencils in BDL will inherit from pencils in DL. Besides
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the theoretical interest of deriving its properties, BDL finds an application in the
theory of the sign characteristics of structured matrix polynomials [1]. To investigate
this matter, we will apply Theorem 5.1 taking V (x) = v(x)I.

To analyze the implications of Theorem 5.1 and Theorem 5.3, it is worth sum-
marizing the theory that we have built so far with a commuting diagram. Let
BDL(P, v) = λX + Y and DL(P, 1) = λX̃ + Ỹ . Below, F (x, y) (resp. F̃ (x, y) )
denotes the continuous analogue of X (resp. X̃ ).

X̃ F̃ (x, y)

F̃ (x, y)v(x)

X F (x, y)

v(y)F̃ (x, y)A 7→ Av(C
(1)
P )A 7→ v(C

(2)
P )A

quotient modulo LP

φ

φ

H(x, y) 7→ v(x)H(x, y) H(x, y) 7→ H(x, y)v(y)

quotient modulo RP

An analogous diagram can be drawn for Y , Ỹ , G(x, y), and G̃(x, y). The diagram
above illustrates that we may work in the bivariate polynomial framework (right side
of the diagram), which is often more convenient for algebraic manipulations than the
matrix framework (left side). In particular, using Theorem 5.1, Theorem 5.3 and
(3.2), we obtain the following relations:

v(y)P (x) ≡ S(y)P (x) = F (x, y)x+G(x, y), yF (x, y)+G(x, y) = P (y)Q(x) ≡ P (y)v(x)
(5.2)

From (5.2) it appears clear that a pencil in BDL generally has distinct left and
right ansatz vectors, and that these ansatz vectors are now block vectors, associated
with left and right ansatz matrix polynomials. For convenience of those readers who
happen to be more familiar with the matrix viewpoint, we also display what we obtain
by translating back (5.2):

X �→Y =

Sk−1...
S0

 [Pk, Pk−1, . . . , P0] , X �↓ Y =


Pk
Pk−1
...
P0

 [Qk−1, . . . , Q0] . (5.3)

Note that if deg v ≤ k− 1 then S(x) = Q(x) = v(x)I and we recover the familiar
shifted sum equations for DL.

The eigenvalue exclusion theorem continues to hold for BDL with a natural ex-
tension that replaces the ansatz vector v with the matrix polynomial Q (or S).

Theorem 5.7 (Eigenvalue exclusion theorem for BDL). BDL(P, v) is a strong
linearization of P (x) if and only if P (x) and Q(x) (or S(x)) do not share an eigenpair,
where Q(x), S(x) are the unique matrix polynomials satisfying (5.2).

Proof. We prove the eigenvalue exclusion theorem for P and Q, as the proof for P
and S is analogous. We know that BDL(P, v) is a strong linearization if and only if we
cannot find an eigenvalue x0 and a nonzero vector w such that P (x0)w = v(x0)w = 0.
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But Q(x0)w = v(x0)w − A(x0)P (x0)w. Hence, P (x) and v(x)I share an eigenpair if
and only if P (x) and Q(x) do.

We now show that pencils in BDL still are Lerer–Tismenetsky Bézoutians. It is
convenient to first state a lemma and a corollary.

Lemma 5.8. Let U ∈ Fnk×nk be an invertible block-Toeplitz upper-triangular
matrix. Then (UB)−1 = (U−1)B.

Proof. We claim that, more generally, if U is an invertible Toeplitz upper-
triangular matrix with elements in any ring with unity, and L = UT , then U−1 =
(L−1)T . Taking Fn×n as the base ring yields the statement. To prove the claim, recall
that if L−1 exists then L−1 = L#, where the latter notation denotes the group inverse
of L. Explicit formulae for L# appeared in [11, eq. (3.4)]6. Hence, it can be checked
by direct computation that (L−1)TU = U(L−1)T = I.

Corollary 5.9. Let U ∈ Fnk×nk be invertible and block Toeplitz upper-triangular,

and Υ =

v1In...
vkIn

, vi ∈ F. Then (U−1Υ)B = ΥB(UB)−1.

Proof. Since the block elements of Υ commute with any other matrix, it suffices
to apply Lemma 5.8.

Theorem 5.10. If Q(x), A(x), S(x), B(x) are defined as in Theorem 5.1 with
V (x) = v(x)I, then P (x)Q(x) = S(x)P (x) and A(x) = B(x).

Proof. Let v(x)I − Q(x) = A(x)P (x) and v(x)I − S(x) = P (x)B(x). Note first
that degA = degB = deg v − k because by assumption the leading coefficient of
P (x) is not a zero divisor. The coefficients of A(x) must satisfy (5.1), while block
transposing (5.1) we obtain an equation that must be satisfied by the coefficients of
B(x). Equating term by term and using Corollary 5.9 we obtain A(x) = B(x), and
hence, P (x)Q(x)− S(x)P (x) = P (x)B(x)P (x)− P (x)A(x)P (x) = 0.

Hence, it follows that BDL(P, v) is a Lerer–Tismenetsky Bézoutian; compare the
result with (4.4).

Corollary 5.11. It holds BDL(P, v) = λBS,P (Q,P ) +BP,xS(P, xQ).
Once again, if deg v ≤ k−1 then we recover DL(P, v) because S = Q = vI. More

generally, we have S(x)−Q(x) = [A(x), P (x)].
For the rest of this section, we assume that the underlying field F is a metric

space; for simplicity, we focus on the case F = C. As mentioned in section 2.1, one
property of a pencil in DL is block symmetry. It turns out that this property does not
hold for pencils in BDL. Nonetheless, an even deeper algebraic property is preserved.
Since each matrix coefficient in a pencil in DL is a Lerer-Tismenetsky Bézout matrix,
the inverses of those matrices are block Hankel – note that unless n = 1, the inverse
of a block Hankel matrix needs not be block symmetric. This is a general result: a
matrix is the inverse of a block Hankel if and only if it is a Lerer–Tismenetsky Bézout
matrix [19, Corollary 3.4]. However, for completeness, we give a simple proof for the
special case of our interest.

Theorem 5.12. Let λX + Y be a pencil either in DL or in BDL associated with
a polynomial P (x) ∈ C[x]n×n with an invertible leading coefficient. Then, X−1 and
Y −1 are both block Hankel matrices if the inverses exist.

Proof. Assume first P (0) is invertible, implying that C
(1)
P is invertible as well.

We have that H0 = (B(P, 1))−1 is block Hankel, as can be easily shown by induction

6It should be noted that if L−1 exists then L11 must be invertible too. Moreover, [11, Theorem
2] implies that [11, eq. (3.2)] is satisfied.
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on k [9, Sec. 2.1]. By Barnett’s theorem, (C
(2)
P )jB(P, 1) = B(P, 1)(C

(1)
P )j . Then

Hj := (C
(1)
P )−jH0 = H0(C

(2)
P )−j . Taking into account the structure of (C

(1)
P )−1 and

(C
(2)
P )−1, we see by induction that Hj is block Hankel. For a general v that does not

share eigenvalues with P , we have that (B(P, v))−1 = v(C
(1)
P )−1H0. Since v(C

(1)
P )−1

is a polynomial in (C
(1)
P )−1, this is a linear combination of the Hj , hence is block

Hankel.

If P (0) is singular consider any sequence (Pn)n∈N = P (x)+En such that ‖En‖ → 0
as n → ∞ and Pn(0) = P (0) + En is invertible ∀n (such a sequence exists because
singular matrices are nowhere dense). Since the Lerer–Tismenetsky Bézout matrix
is linear in its arguments, B(Pn, v) → B(P, v). In particular, B(Pn, v) is eventually
invertible if and only if no root of v is an eigenvalue of P . The inverse is continuous
as a matrix function, and thus B(P, v)−1 = limn→∞B(Pn, v)−1. We conclude by
observing that the limit of a sequence of block Hankel matrices is block Hankel.

Note that the theorem above implies that if λ0 is not an eigenvalue of P then the
evaluation of a linearization in DL or BDL at λ = λ0 is the inverse of a block Hankel
matrix.

Recall that a Hermitian matrix polynomial is a polynomial whose coefficients are
all Hermitian matrices. If P is Hermitian we write P ∗(x) = P (x). It is often argued
that block-symmetry is important because, if P was Hermitian in the first place and
v has real coefficients, then DL(P, v) is also Hermitian. Although BDL(P, v) is not
block-symmetric, it still is Hermitian when P is.

Theorem 5.13. Let P (x) ∈ Cn×n[x] be a Hermitian matrix polynomial with
invertible leading coefficient and v(x) ∈ R[x] a scalar polynomial with real coefficients.
Then, BDL(P, v) is a Hermitian pencil.

Proof. Recalling the explicit form of BDL(P, v) = λX + Y from Corollary
5.11, we have X = BS,P (Q,P ) and Y = BP,xS(P, xQ). Then −X is associated

with the Bézoutian function F (x, y) = P (y)Q(x)−S(y)P (x)
x−y . By definition, S(x) =

v(x)I − P (x)A(x). Taking the transpose conjugate of this equation, and noting
that by assumption P (x) = P ∗(x), v(x) = v∗(x), we obtain S∗(x) = v(x)I −
A∗(x)P (x). But since Q(x) is unique by Theorem 5.1, S∗(x) = Q(x). Hence,

F (x, y) = P (y)Q(x)−Q∗(y)P (x)
x−y = Q∗(y)P (x)−P (y)Q(x)

y−x = F ∗(y, x), proving that X is
Hermitian because the formula holds for any x, y.

Analogously G(x, y) = P (y)xQ(x)−yQ∗(y)P (x)
x−y = yQ∗(y)P (x)−P (y)xQ(x)

y−x = G∗(y, x),
allowing us to deduce that Y is also Hermitian.

The theory of functions of a matrix [14] allows one to extend the definition of BDL
to a general function f , rather than just a polynomial v, as long as f is defined on the

spectrum of C
(1)
P (for a more formal definition see [14]). One just puts BDL(P, f) :=

BDL(P, v) where v(x) is the interpolating polynomial such that v(C
(1)
P ) = f(C

(1)
P ).

Corollary 5.14. Let P (x) ∈ Cn×n[x] be a Hermitian matrix polynomial with

invertible leading coefficient and f : C→ C a function defined on the spectrum of C
(1)
P

and such that f(x∗) = (f(x))∗. Then BDL(P, f) is a Hermitian pencil.

Proof. It suffices to observe that the properties of f and P imply that f(C
(1)
P ) =

v(C
(1)
P ) with v ∈ R[x] [14, Def. 1.4].

In the monomial basis, other structures of interest have been defined, such as
∗-even, ∗-odd, T -even, T -odd (all these definition can be extended to any alternating
basis, such as Chebyshev) or ∗-palindromic, ∗-antipalindromic, T -palindromic, T -
antipalindromic. For DL, analogues of Theorem 5.13 can be stated in all these cases
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[21]. These properties extend to BDL. We state and prove them for the ∗-even and
the ∗-palindromic case:

Theorem 5.15. Assume that P (x) = P ∗(−x) is ∗-even and with an invertible

leading coefficient, and that f(x) = f∗(−x), and let Σ =


. . .

I
−I

I

. Then

ΣBDL(P, f) is a ∗-even pencil. Furthermore, if P (x) = xkP ∗(x−1) is ∗-palindromic

and f(x) = xk−1f(x−1), and if R =


I

I

. .
.

I

, then RBDL(P, f) is a ∗-

palindromic pencil.
Proof. The proof goes along the same lines as that of Theorem 5.13: we first use

the functional viewpoint and the Bézoutian interpretation of BDL(P, v) = λX +Y to

map φ(X) = F (x, y) = −P (y)Q(x)+S(y)P (x)
x−y and φ(Y ) = G(x, y) = P (y)xQ(x)−yS(y)P (x)

x−y .
Assume first that P ∗-even: we claim that λΣX∗+ΣY ∗ = −λΣX+ΣY . Indeed, note
that the interpolating polynomial of f(x) must also satisfy v∗(x) = v(−x). Taking
the tranpose conjugate of the equation S(x) = v(x)I − P (x)B(x) we obtain Q∗(x) =

S(−x). This, together with Table 3.2, implies that φ(−ΣX) = P (−y)Q(x)−Q∗(y)P (x)
x+y =

−Q
∗(y)P∗(−x)−P∗(y)Q(x)

x+y = φ(X∗Σ).

Similarly, φ(ΣY ) = P (−y)xQ(x)+yQ∗(y)P (x)
x+y = yQ∗(y)P∗(−x)+P∗(y)xQ(x)

y+x = φ(Y ∗Σ).
The case of a ∗-palindromic P is dealt with analgously and we omit the details.
Similar statements hold for other structures. We summarize them in the following

table, omitting the proofs as they are completely analogous to those of Theorems 5.13
and 5.15.

Table 5.1
Structures of P , degP = k, and potential linearizations that are structure-preserving

Structure of P Requirement on f Pencil
Hermitian: P (x) = P ∗(x) f(x∗) = f∗(x) BDL(P, f)

skew-Hermitian: P (x) = −P ∗(x) f(x∗) = f∗(x) BDL(P, f)
symmetric: P (x) = PT (x) any f(x) BDL(P, f)

skew-symmetric: P (x) = −P (x)T any f(x) BDL(P, f)
*-even: P (x) = P ∗(−x) f(x) = f∗(−x) ΣBDL(P, f)
*-odd: P (x) = −P ∗(−x) f(x) = f∗(−x) ΣBDL(P, f)
T-even: P (x) = PT (−x) f(x) = f(−x) ΣBDL(P, f)
T-odd: P (x) = −PT (−x) f(x) = f(−x) ΣBDL(P, f)

*-palindromic: P (x) = xkP ∗(x−1) f(x) = xk−1f∗(x−1) RBDL(P, f)
*-antipalindromic: P (x) = −xkP ∗(x−1) f(x) = xk−1f∗(x−1) RBDL(P, f)

T-palindromic: P (x) = P ∗(x−1) f(x) = xk−1f(x−1) RBDL(P, f)
T-antipalindromic: P (x) = −PT (x−1) f(x) = xk−1f(x−1) RBDL(P, f)

With a similar technique, one may produce pencils with a structure that is related
to that of the linearized matrix polynomial, e.g., if P is ∗-odd and f(x) = −f∗(−x),
then ΣBDL(P, f) will be ∗-even. To keep the paper within a reasonable length, we
will not include a complete list of such variations on the theme. However, we note
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that generalizations of this kind are immediate to prove with the Bézoutian functional
approach.

We conclude this section by giving the following result which has an application
in the theory of sign characteristics [1]:

Theorem 5.16. Let P (x) be ∗-palindromic of degree k, with nonsingular leading
coefficient, and f(x) = xk/2; if k is odd, suppose furthermore that the the square root
is defined in such a way that P (x) has no eigenvalues on the branch cut. Furthermore,
BDL(P, f) = λX + Y . Then Z = iRX is a Hermitian matrix.

Proof. We claim that the statement is true when P (x) has all distinct eigenvalues.
Then it must be true in general. This follows by continuity, if we consider a sequence
(Pn)n of ∗-palindromic polynomials converging to P (x) and such that Pn(x) has all
distinct eigenvalues, none of which lie on the branch cut. Such a sequence exists
because the set of palindromic matrix polynomials with distinct eigenvalues is dense,
as can be seen arguing on the characteristic polynomial seen as a polynomial function
of the n2(k + 1) independent real parameters.

It remains to prove the claim. Since X is the linear part of the pencil BDL(P, f),

we get φ(X) = P (y)Q(x)−S(y)P (x)
x−y , where v(x)I = Q(x)+A(x)P (x) = S(x)+P (x)A(x)

are defined as in Theorem 5.1 and v(x) is the interpolating polynomial of f(x) on the
eigenvalues of P (x). By assumption P (x) has kn distinct eigenvalues. Denote by
(λi, wi, ui), i = 1, . . . , nk, an eigentriple, and consider the matrix in Vandermonde

form V whose ith column is Vi = Λ(λi)⊗wi (V is the matrix of eigenvectors of C
(1)
P );

recall moreover that if (λi, wi, ui) is an eigentriple then (1/λ∗i , u
∗
i , w

∗
i ) is. Observe that

by definition Q(λi)wi = λ
k/2
i wi and uiS(λi) = uiλ

k/2
i .

Our task is to prove that RX = −X∗R; observe that this is equivalent to
V ∗RXV = −V ∗X∗RV . Using Table 3.1 and Table 3.2, we see that V ∗i RXVj is

equal to the evaluation of w∗i
ykP (1/y)Q(x)−ykS(1/y)P (x)

xy−1 wj at (x = λj , y = λ∗i ). Sup-

pose first that λiλ
∗
j 6= 1. Then, using P (λj)wj = 0 and w∗i P (1/λ∗i ) = 0, we get

V ∗i RXVj = 0. When λ−1i = λ∗j , we can evaluate the fraction using De L’Hôpital rule,

and obtain w∗i
−(λ∗i )

kS(1/λ∗i )P
′(λj)

λ∗i
wj = −w∗i (λ∗i )

k/2−1P ′(λj)wj . A similar argument

shows that V ∗i X
∗RVj = w∗i (λ∗i )

k/2−1P ′(λj)wj when λiλ
∗
j = 1.

We have thus shown that V ∗i X
∗RVj = −V ∗i R∗XVj for all (i, j), establishing the

claim.

6. Conditioning of eigenvalues of DL(P ). In [15], a conditioning analysis is
carried out for the eigenvalues of the DL(P ) pencils, which identifies situations in
which the DL(P ) linearization itself does not worsen the eigenvalue conditioning of
the original matrix polynomial P (λ) expressed in the monomial basis.

Here, we use the bivariate polynomial viewpoint to analyze the conditioning, using
concise arguments and allowing for P (λ) expressed in any polynomial basis. As shown
in [27], the first-order expansion of a simple eigenvalue λi of P (λ) + ∆P (λ) is

λi = λi(P )− y∗i ∆P (λi)xi
y∗i P

′(λi)xi
+O(‖∆P (λi)‖2), (6.1)

where yi and xi are the left and right eigenvectors corresponding to λi.

When applied to a DL(P ) pencil L(λ) = λX + Y with ansatz v, defining x̂i =

xi ⊗ Λ(λi), ŷi = yi ⊗ Λ(λi), where Λ(λ) = [φk−1(λ), . . . , φ0(λ)]
T

as before and noting
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that L′(λ) = X, (6.1) becomes

λi = λi(L)− ŷ∗i ∆L(λi)x̂i
ŷ∗iXx̂i

+O(‖∆L(λi)‖2), i = 1, . . . , nk. (6.2)

Note from X = B(v, P ) and Table 3.1 that ŷ∗iXx̂i is evaluation of the n×n Bezoutian
function B(v(λ), P (λ)) at λ = λi, followed by left and right multiplication by y∗i and
xi. Therefore we have

ŷ∗iXx̂i = y∗i

(
lim

s,t→λi

v(s)P (t)− P (s)v(t)

s− t

)
xi

= y∗i (v′(λi)P (λi)− P ′(λi)v(λi))xi

= −y∗i P ′(λi)v(λi)xi.

Here we used L’Hôpital’s rule for the second equality and P (λi)xi = 0 for the last.
Hence, the expansion (6.2) becomes

λi = λi(L) +
1

v(λi)

ŷ∗i ∆L(λi)x̂i
y∗i P

′(λi)xi
+O(‖∆L(λi)‖2). (6.3)

Comparing (6.3) with (6.1) we see that the ratio between the perturbation of λi in
the original P (λ) and the linearization L(λ) is

rλi =
1

v(λi)

‖ŷi‖2‖∆L(λi)‖2‖x̂i‖2
‖yi‖2‖∆P (λi)‖2‖xi‖2

. (6.4)

Here we used the fact that equality in |y∗i ∆P (λi)xi| ≤ ‖yi‖2‖∆P (λi)‖2‖xi‖2 and
|ŷ∗i ∆L(λi)x̂i| ≤ ‖yi‖2‖∆L(λi)‖2‖xi‖2 can hold in (6.1) and (6.3), which can be verified
by taking ∆P (λ) = σ1yix

∗
i and ∆L(λ) = σ2ŷix̂

∗
i for any scalars σ1, σ2.

Now recall that the absolute condition number of an eigenvalue of a matrix poly-
nomial may be defined as

κ(λ) = lim
ε→0

sup{|∆λ| : (P (λ+ ∆λ) + ∆P (λ+ ∆λ)) x̂ = 0, x̂ 6= 0, ‖∆P (·)‖ ≤ ε‖P (·)‖}.
(6.5)

Here, we are taking the norm for matrix polynomials to be ‖P (·)‖ = maxλ∈D ‖P (λ)‖2,
where D is the domain of interest that below we take to be the interval [−1, 1].
In (6.5), λ + ∆λ is the eigenvalue of P + ∆P closest to λ such that limε→0 ∆λ = 0.
Note that definition (6.5) is the absolute condition number, in contrast to the relative
condition number treated in [27], in which the supremum is taken of |∆λ|/(ε|λ|),
and over ∆P (·) =

∑k
i=0 ∆Aiφi(·) such that ‖∆Ai‖2 ≤ ε‖Ei‖ where Ei are prescribed

tolerances for the term with φi. Combining this definition with the analysis above, we
can see that the ratio of the condition numbers of the eigenvalue λ for the linearization
L and the original matrix polynomial P is

r̂λi =
1

v(λi)

‖ŷi‖2‖L(·)‖‖x̂i‖2
‖yi‖2‖P (·)‖‖xi‖2

. (6.6)

The eigenvalue λi can be computed stably from the linearization L(λ) if r̂λi
is not

significantly larger than 1. Identifying conditions to guarantee r̂λi
= O(1) is nontrivial

and depends not only on P (λ) and the choice of the ansatz v, but also on the value
of λi and the choice of polynomial basis. For example, [15] considers the monomial
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case and shows that the coefficientwise conditioning of λi does not worsen much by

forming L(λ) if maxi ‖Ai‖2
max{‖A0‖2,‖Ak‖2} is not too large, where P (λ) =

∑k
i=0Aiλ

i, and the

ansatz choice is v = λk−1 if |λi| ≥ 1 and v = 1 if |λi| ≤ 1.
Although it is difficult to make a general statement on when rλi

is moderate,
here we show that in the practically important case where the Chebyshev basis is
used and λi ∈ D := [−1, 1], the conditioning ratio can be bounded by a modest
polynomial in n and k, with an appropriate choice of v: v = 1. This means that the
conditioning of these eigenvalues does not worsen much by forming the linearization,
and the eigenvalues can be computed in a stable manner from L(λ).

Theorem 6.1. Let L(λ) be the DL(P ) linearization with ansatz v(x) = 1 of a
matrix polynomial P (λ) expressed in the Chebyshev basis. Then for any eigenvalue
λi ∈ [−1, 1], the conditioning ratio r̂λi

in (6.6) is bounded by

r̂λi
≤ 16n(e− 1)k4. (6.7)

Proof. Since the Chebyshev polynomials are all bounded by 1 on [−1, 1], we have
‖x̂i‖2 = ci‖xi‖2, ‖ŷi‖2 = di‖yi‖2 for some ci, di ∈ [1,

√
k]. Therefore, we have

r̂λi ≤
k

v(λi)

‖L(·)‖
‖P (·)‖

. (6.8)

We next claim that ‖L(·)‖ can be estimated as ‖L(·)‖ = O(‖P (·)‖‖v(·)‖). To
verify this it suffices to show that writing L(λ) = λX + Y

‖X‖2 ≤ qX(n, k)‖P (·)‖‖v(·)‖, ‖Y ‖2 ≤ qY (n, k)‖P (·)‖‖v(·)‖ (6.9)

where qX , qY are low-degree polynomials with modest coefficients. Let us first prove
the bound for ‖X‖2 in (6.9) (to gain a qualitative understanding one can consult the
construction of X,Y in section 7).

Recalling (4.4), X is the Bézout block matrix B(vI, P ), so its (k− i, k− j) block
is the coefficients for Ti(y)Tj(x) of the function

B(P,−vI) =
−P (y)v(x) + v(y)P (x)

x− y
:= H(x, y).

Recall that H(x, y) is an n × n bivariate matrix polynomial, and denote its (s, t)
element by Hst(x, y). For every fixed value of y ∈ [−1, 1], by [24, Lem. B.1] we have

|Hst(x, y)| ≤ (e−1)k2 max
x∈[−1,1]

|Hst(x, y)(x−y)| ≤ 2(e−1)k2‖P (·)‖‖v(·)‖ for |x−y| ≤ k−2,

and clearly

|Hst(x, y)| ≤ 2k2‖P (·)‖‖v(·)‖ for |x− y| ≥ k−2.

Together we obtain maxx∈[−1,1] |Hst(x, y)| ≤ 2(e− 1)k2‖P (·)‖‖v(·)‖. Since this holds
for every (i, j) and every fixed value of y ∈ [−1, 1] we obtain

max
x∈[−1,1],y∈[−1,1]

|Hst(x, y)| ≤ 2(e− 1)k2‖P (·)‖‖v(·)‖. (6.10)

To obtain (6.9) it remains to bound the coefficients in the representation of a degree-k

bivariate polynomial Hst(x, y) =
∑k
i=0

∑k
j=0 h

(st)
k−i,k−jTi(y)Tj(x). It holds

h
(st)
k−i,k−j =

(
2

π

)2 ∫ 1

−1

∫ 1

−1

Hst(x, y)Ti(y)Tj(x)√
(1− x2)(1− y2)

dxdy,
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(for i = k and j = k the constant is 1
π ) and hence using |Ti(x)| ≤ 1 on [−1, 1] we

obtain

|h(st)k−i,k−j | ≤
(

2

π

)2

max
x∈[−1,1],y∈[−1,1]

|Hst(x, y)|
∫ 1

−1

∫ 1

−1

1√
(1− x2)(1− y2)

dxdy

= 4 max
x∈[−1,1],y∈[−1,1]

|Hst(x, y)|

≤ 8(e− 1)k2‖P (·)‖‖v(·)‖,

where we used (6.10) for the last inequality. Since this holds for every (s, t) and (i, j)
we conclude that

‖X‖2 ≤ 8n(e− 1)k3‖P (·)‖‖v(·)‖

as required.
To bound ‖Y ‖2 we use the fact that Y is the Bézout block matrix B(P,−vxI),

and by an analogous argument we obtain the bound

‖Y ‖2 ≤ 8n(e− 1)k3‖P (·)‖‖v(·)‖.

This establishes (6.9) with qX(n, k) = qY (n, k) = 8n(e− 1)k3 , and we obtain

‖L(·)‖ ≤ 16n(e− 1)k3‖P (·)‖‖v(·)‖. (6.11)

Substituting this into (6.8) we obtain

rλi
≤ k

v(λi)

‖L(·)‖
‖P (·)‖

≤ k

v(λi)

16n(e− 1)k3‖P (·)‖‖v(·)‖
‖P (·)‖

.

With the choice v = 1 we have v(λi) = ‖v(·)‖ = 1, which yields (6.7).
Note that our discussion deals with the normwise condition number, as opposed

to the coefficientwise condition number as treated in [15]. In practice, we observe that
the eigenvalues of L(λ) computed via the QZ algorithm are sometimes less accurate
than those of P (λ), obtained via QZ for the colleague linearization [10], which is
normwise stable [24]. The reason appears to be that the backward error resulting
from the colleague matrix has a special structure, but a precise explanation is an
open problem.

7. Construction. We now describe an algorithm for computing DL pencils.
The shift sum operation provides a means to obtain the DL pencil given the ansatz
v. For general polynomial bases, however, the construction is not as trivial as for the
monomial basis. We focus on the case where {φi} is an orthogonal polynomial basis, so
that the multiplication matrix (2.2) has tridiagonal structure. Recall that F (x, y) and
G(x, y) satisfy the formulas (3.2), (3.3) and (3.4). Hence for L(λ) = λX+Y ∈ DL(P )
with ansatz v, writing the bivariate equations in terms of their coefficient matrix
expansions, we see that X and Y need to satisfy the following equations: defining
v = [vk−1, . . . , v0]T to be the vector of coefficients of the ansatz,

S = v ⊗ [Ak, Ak−1, . . . , A0] and T = vT ⊗ [Ak, Ak−1, . . . , A0]
B
,

by (3.4) we have [
0
Y

]
M −MT

[
0 Y

]
= TM −MTS, (7.1)
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and

XM = S −
[
0 Y

]
. (7.2)

Note that we have used the first equation of (3.2) instead of (3.3) to obtain an equation
for X because the former is simpler to solve. Now we turn to the computation of X,Y ,
which also explicitly shows that X,Y satisfying (7.1), (7.2) is unique7. We first solve
(7.1) for Y . Recall that M in (2.3) is block tridiagonal, the (i, j) block being mi,jIn.
Defining R = TM −MTS and denoting by Yi, Ri the ith block rows of Y and R
respectively, the first block row of (7.1) yields m1,1Y1 = −R1, hence Y1 = − 1

m1,1
R1

(note that mi,i 6= 0 because the polynomial basis is degree-graded). The second block
row of (7.1) gives Y1M−(m1,2Y1+m2,2Y2) = R2, hence Y2 = 1

m2,2
(Y1M−m1,2Y1−R2).

Similarly, from the i(≥ 3)th block row of (7.1) we get

Yi =
1

mi,i
(Yi−1M −mi−2,iYi−2 −mi−1,iYi−1 −Ri),

so we can compute Yi for i = 1, 2, . . . , n inductively. Once Y is obtained, X can
be computed easily by (7.2). The complexity is O((nk)2), noting that Yi−1M can
be computed with O(n2k) cost. In Subsection 7.1 we provide a Matlab code that
computes DL(P ) for any orthogonal polynomial basis.

If P (λ) is expressed in the monomial basis we have (see [6, Eqn. 2.9.3] for scalar
polynomials)

L(λ) =

Ak−1 . . . A0

... . .
.

A0


v̂kIn . . . v̂1In

. . .
...

v̂kIn

−
v̂k−1In . . . v̂0In

... . .
.

v̂0In


Ak . . . A1

. . .
...
Ak

 ,
where v̂i = (vi−1 − λvi). This relation can be used to obtain expressions for the block
matrices X and Y . For other orthogonal bases the relation is more complicated.

Matrix polynomials expressed in the Legendre or Chebyshev basis are of practical
importance, for example, for a nonlinear eigenvalue solver based on Chebyshev inter-
polation [8]. Following [20, Table 5.2], in Table 7.1 we depict three DL(P ) pencils for
the cubic matrix polynomial P (λ) = A3T3(λ) +A2T2(λ) +A1T1(λ) +A0T0(λ), where
Tj(λ) is the jth Chebyshev polynomial.

7.1. Matlab code for DL(P ). The formulae (3.3) and (3.4) can be used to
construct any pencil in DL(P ) without basis conversion, which can be numerically
important [2, 25]. We provide a Matlab code that constructs pencils in DL(P )
when the matrix polynomial is expressed in any orthogonal basis. If P (λ) is ex-
pressed in the monomials then a = [ones(k, 1)]; b = zeros(k, 1); c = zeros(k, 1); and
if expressed in the Chebyshev basis then a = [ones(k− 1, 1); 2]/2; b = zeros(k, 1);
c = ones(k, 1)/2;.

function [X Y] = DLP(AA,v,a,b,c)

%DLP constructs the DL pencil with ansatz vector v.

% [X,Y] = DLP(AA,v,a,b,c) returns the DL pencil lambda*X + Y

% corresponding to the matrix polynomial with coefficients AA in an

% orthogonal basis defined by the recurrence relations a, b, c.

7We note that (7.1) is a singular Sylvester equation, but if we force the zero structure in the first
block column in [0 Y ] then the solution becomes unique.
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Table 7.1
Three instances of pencils in DL(P ) and their linearization condition for the cubic matrix

polynomial P (λ) = A3T3(λ) + A2T2(λ) + A1T1(λ) + A0T0(λ), expressed in the Chebyshev basis of
the first kind. These three pencils form a basis for the vector space DL(P ).

v L(λ) ∈ DL(P ) for given v Linearization condition

1
0
0

 λ

2A3 0 0
0 2A3 − 2A1 −2A0

0 −2A0 A3 −A1

 +

 A2 A1 −A3 A0

A1 −A3 2A0 A1 −A3

A0 A1 −A3 A0

 det(A0+ −A3+A1√
2

) 6= 0

det(A0− −A3+A1√
2

) 6= 0

0
1
0

 λ

 0 2A3 0
2A3 2A2 2A3

0 2A3 A2 −A0

 +

−A3 0 −A3

0 A1 − 3A3 A0 −A2

−A3 A0 −A2 −A3

 det(−A2 +A0) 6= 0

det(A3) 6= 0

0
0
1

 λ

 0 0 2A3

0 4A3 2A2

2A3 2A2 A1 +A3

 +

 0 −2A3 0
−2A3 −2A2 −2A3

0 −2A3 A0 −A2

 det(A3) 6= 0

[n m] = size(AA); k=m/n-1; s=n*k; % matrix size & degree

M = spdiags([a b c],[0 1 2],k,k+1);

M = kron(M,eye(n)); % multiplication matrix

S = kron(v,AA);

for j=0:k-1, jj=n*j+1:n*j+n; AA(:,jj)=AA(:,jj)’;end % block transpose

T = kron(v.’,AA’); R=M’*S-T*M; % construct RHS

% The Bartels-Stewart algorithm on M’Y+YM=R

X = zeros(s); Y=X; ii=n+1:s+n; nn=1:n; % useful indices

Y(nn,:)=R(nn,ii)/M(1); X(nn,:)=T(nn,:)/M(1); % 1st column of X and Y

Y(nn+n,:)=(R(nn+n,ii)-M(1,n+1)*Y(nn,:)+Y(nn,:)*M(:,n+1:s+n))/M(n+1,n+1);

X(nn+n,:)=(T(nn+n,:)-Y(nn,:)-M(1,n+1)*X(nn,:))/M(n+1,n+1); % 2nd cols

for i = 3:k % backwards subs

ni=n*i; jj=ni-n+1:ni; j0=jj-2*n; j1=jj-n; % useful indices

M0=M(ni-2*n,ni); M1=M(ni-n,ni); m=M(ni,ni); % consts of 3-term

Y0=Y(j0,:); Y1=Y(j1,:); X0=X(j0,:); X1=X(j1,:); % vars in 3-term

Y(jj,:)=(R(jj,ii)-M1*Y1-M0*Y0+Y1*M(:,n+1:s+n))/m;

X(jj,:)=(T(jj,:)-Y1-M1*X1-M0*X0)/m; % use Y to solve for X

end
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functions via Bézout resultants. Numerische Mathematik, 129(1):181–209, 2015.

[26] W. Specht. Die lage der nullstellen eines polynoms. III. Mathematische Nachrichten, 16(5-
6):369–389, 1957.

[27] F. Tisseur. Backward error and condition of polynomial eigenvalue problems. Linear Algebra
Appl., 309(1):339–361, 2000.

25


