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ON SOLUBILITY OF GROUPS
WITH BOUNDED CENTRALIZER CHAINS
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Abstract. The c-dimension of a group is the maximum length of a chain of
nested centralizers. It is proved that a periodic locally soluble group of finite c-
dimension k is soluble of derived length bounded in terms of k, and the rank of
its quotient by the Hirsch–Plotkin radical is bounded in terms of k. Corollary: a
pseudo-(finite soluble) group of finite c-dimension k is soluble of derived length
bounded in terms of k.

2000 AMS classification. Primary: 20D10; Secondary: 03C20, 20D45, 20F16,
20F22.

1. Introduction

Groups with the minimal condition for centralizers arise naturally in several areas
of group theory. (It is easy to see that the ascending and descending chain conditions
for centralizers are equivalent: CG(X) < CG(Y ) ⇔ CG(CG(X)) > CG(CG(Y )).) In
model theory, this condition proved to be useful in the study of stable groups [14].
Several interesting properties of groups with the minimal condition for centralizers
were proved in [2, 3, 4, 6, 9, 15].

If there is a uniform bound for the length of chains of centralizers, then it is con-
venient to use the following terminology proposed by A. Myasnikov and P. Shumy-
atsky in [12] (where this stronger condition was used in the study of discriminating
groups).

Definition. The c-dimension of a group G is the maximum length of a nested chain
of centralizers of subsets in G.

The same notion is also known as the height of the lattice of centralizers. There
are several important classes of groups of finite c-dimension: abelian groups, stable
groups (in model theory), torsion-free hyperbolic groups, linear groups over fields
(or over finite direct products of fields), which include free groups, finitely generated
nilpotent groups, polycyclic groups, finitely generated metabelian groups, finitely
generated abelian-by-nilpotent groups. In addition, the class of groups of finite
c-dimension is closed under universal equivalence and under taking subgroups and
finite direct products. (Of course, some of these classes have the property in question
due to certain theorems by various authors; see [12, 7].)

In the present note we, in particular, obtain a bound for the derived length of
a finite soluble group in terms of its c-dimension. This result obviously extends to
periodic locally soluble groups, as well as to so-called pseudo-(finite soluble) groups.
Earlier such a bound was known for locally nilpotent groups [3]. We denote by
F (G) the Hirsch–Plotkin radical of a group G, which is the largest normal locally
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nilpotent subgroup of G, and by F2(G) the inverse image in G of F (F/F (G)). We
abbreviate “bounded in terms of k” to “k-bounded”.

Theorem 1. If a periodic locally soluble group G has finite c-dimension k, then
(a) G is soluble of k-bounded derived length;
(b) the quotient G/F (G) by the Hirsch–Plotkin radical has k-bounded rank; and

therefore
(c) the quotient G/F2(G) by the second Hirsch–Plotkin subgroup has an abelian

subgroup of finite k-bounded index.

Earlier R. Bryant and B. Hartley [4] proved that a periodic locally soluble group
with the minimal condition for centralizers

(1) is soluble,
(2) has a nilpotent normal subgroup with quotient of finite rank, and
(3) has a nilpotent-by-abelian subgroup of finite index.

Theorem 1(a) strengthens part (1) under the stronger hypothesis of finite c-dimen-
sion k, by giving a bound in terms of k to the derived length of the group. One
might expect that in the case of finite c-dimension k there must be similarly stronger
versions of parts (2) and (3), by analogy with linear groups. However, we produce
examples showing that there may not exist a nilpotent-by-abelian subgroup of fi-
nite k-bounded index. Another example shows that there may not exist a nilpotent
normal subgroup of k-bounded class with quotient of finite rank. (The examples
in [4] also highlight the difference between linear groups and groups with the min-
imal condition for centralizers.) It remains unclear if there must exist a nilpotent
subgroup with quotient of finite k-bounded rank.

It would be interesting to combine our theorem with the classification of finite
simple groups to yield results in the more general case of locally finite (not necessarily
locally soluble) groups of finite c-dimension. Note that O. Kegel [9] proved that a
locally finite group of finite exponent with the minimal condition on centralizers is
nilpotent-by-finite.

Conjecture (A.V. Borovik). Let G be a locally finite group of finite c-dimen-
sion k. Let S be the full inverse image of the “generalized Fitting subgroup”
F ∗(G/F (G)), which is equal to the product of F (G/F (G)) and all the quasi-simple
subnormal subgroups of G/F (G). Then

(1) the number of non-abelian simple composition factors of G is finite and k-
bounded;

(2) G/S has an abelian subgroup of finite k-bounded index.

In view of the importance of the c-dimension in model theory, it seems worth stat-
ing a corollary for pseudo-(finite soluble) groups. (In general, a group is pseudofinite
if it is elementarily equivalent to an ultraproduct of finite groups.)

Theorem 2. Suppose that a group G is elementarily equivalent to an ultraproduct
of finite soluble groups. If G has finite c-dimension k, then G is soluble of k-bounded
derived length.

Note that D. Macpherson and K. Tent [11] proved that a stable pseudofinite group
has a definable normal soluble subgroup of finite index. Other results on pseudofinite
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groups include J. Wilson’s characterization of simple pseudofinite groups [16]. One
may expect certain combinations of these results with our Theorems 1 and 2 to yield
further consequences for arbitrary pseudo-finite groups of finite c-dimension.

It is possible to give an explicit estimate for the function of k in the theorems,
but we do not write it out.

2. Proofs

The proof of Theorem 1 uses the Hall–Higman theorems and the following theorem
of J. Thompson [13] on automorphisms of soluble groups. Let h(X) denote the
Fitting height of a finite soluble group X.

Thompson’s theorem. Suppose that a finite soluble group G has an automorphism
α of prime order coprime to the order of the group: (|α|, |G|) = 1. Then h(G) 6
5h(CG(α)).

We shall freely use the simple fact that the c-dimension of any proper centralizer
CG(X) 6= G is strictly smaller than the c-dimension of G. It is also clear that the
c-dimension of a subgroup does not exceed that of the group.

The first step in the proof of Theorem 1(a) is the case of nilpotent groups, where
a sharp bound for the derived length can be found in the paper of R. Bryant [3]
(who attributes the result to T. Yen); we reproduce the proof here for the benefit
of the reader.

Lemma 1. If a nilpotent group N has finite c-dimension k, then the derived length
of N is at most k.

Proof. Induction on k. If k = 1, then the group is abelian and there is nothing
to prove. For k > 1, choose any non-central element g in the second centre: g ∈
ζ2(N) \ ζ1(N). Then N 6= CN(g) > [N, N ]. Since the c-dimension of CN(g) is at
most k − 1, by the induction hypothesis CN(g) has derived length at most k − 1,
and therefore so does [N, N ]. ¤

Proof of Theorem 1(a). It is obviously sufficient to consider finitely generated and
therefore finite subgroups of G, so we simply assume that G is finite. We proceed
by induction on k. The case k = 1 is trivial, so we assume that k > 1.

By Lemma 1 the derived length of all Sylow subgroups of G is at most k. Therefore
it is sufficient to bound the Fitting height of G.

By the Hall–Higman theorems it follows from Lemma 1 that the p-length of G is
at most k for each prime p. (Originally, this was proved by P. Hall and G. Higman
[8] for odd primes, then T. Berger and F. Gross [1] obtained the bound 2k − 2 for
p = 2, and finally the case of p = 2 was finished by E. Bryukhanova [5] with the
best possible bound k.)

Let h = h(G) be the Fitting height of G; we may of course assume that h > 1.
We now fix a prime divisor p of |G/Fh−1(G)|, the last non-trivial Fitting quotient
of G. Let H be a Hall p′-subgroup of Fh−1(G). Clearly, it is now sufficient to bound
the Fitting height of H.

Lemma 2. The Fitting height of H is k-bounded.
3



Proof. Since the Hall p′-subgroups of Fh−1(G) are conjugate in Fh−1(G), by an ana-
logue of Frattini’s argument we have G = NG(H)Fh−1(G). Therefore we can choose
a p-element a in NG(H) \ Fh−1(G). If a centralizes H, then we complete the proof
by the induction hypothesis of Theorem 1 applied to CG(a) > H. Indeed, CG(a)
has c-dimension at most k − 1, since CG(a) 6= G for a 6∈ Fh−1(G).

Thus, we can assume that |NG(H)/CG(H)| is divisible by p. Let β be the auto-
morphism of order p in Aut H induced by conjugation by some element b ∈ NG(H).
Then CH(β) = CH(b) has c-dimension at most k − 1. By the induction hypothesis
the derived length of CH(β) is bounded by a number f = f(k − 1). In particular,
the Fitting height of CH(β) is bounded by the same number. Now, by Thompson’s
theorem, the Fitting height of H is at most 5f . ¤

Since the p-length of G is at most k, Lemma 2 implies that the Fitting height of G
is k-bounded. Since the derived length of every Sylow q-subgroup, for any prime q,
is at most k by Lemma 1, this completes the proof of Theorem 1(a). ¤

For part (b) we shall need the following lemma.

Lemma 3. If an elementary abelian p-group E of order pn acts faithfully on a finite
nilpotent p′-group Q, then there is a series of subgroups E = E0 > E1 > E2 > · · · >
En = 1 such that all the inclusions CQ(E0) < CQ(E1) < · · · < CQ(En) are strict.

Proof. Induction on n. If n = 1, then CQ(E) 6= CQ(1) = Q, since the action is
faithful.

Let n > 1. First suppose that [Z(Q), E] 6= 1. Since the action is coprime, we have
C[Z(Q),E](E) = 1. Let V be a minimal non-trivial E-invariant subgroup of [Z(Q), E].
Then V is an elementary q-group, which can be regarded as an irreducible FqE-
module. Therefore, E/CE(V ) is cyclic, so that |CE(V )| = pn−1. By the induction
hypothesis, CE(V ) has a series CE(V ) = E1 > · · · > En = 1 such that all the
inclusions CQ(E1) < · · · < CQ(En) are strict. Since E acts non-trivially on V 6
CQ(E1), we also have CQ(E) 6= CQ(E1), which completes the proof in the case
[Z(Q), E] 6= 1.

In the general case, choose a maximal normal subgroup N 6 CQ(E). By the
properties of coprime action, E acts faithfully on Q/N , and E acts non-trivially
on Z(Q/N) by the maximal choice of N . By the above, there is a series of sub-
groups E = E0 > E1 > E2 · · · > En = 1 such that all the inclusions CQ/N(E0) <
CQ/N(E1) < · · · < CQ/N(En) are strict. Since each centralizer CQ/N(Ei) is the image
of CQ(Ei), it follows that all the inclusions CQ(E0) < CQ(E1) < · · · < CQ(En) are
also strict. ¤
Proof of Theorem 1(b). By the inverse limit argument we can again assume that G
is a finite soluble group.

It is known [10] that the rank of G/F (G) is at most 1 plus the maximum of the
ranks of Sylow subgroups of G/F (G). Let P be a Sylow p-subgroup of G/F (G); we
can also regard P as a Sylow p-subgroup of G/Op(G). Let Q = F (G/Op(G)); then Q
is a nilpotent p′-subgroup. We can regard P as a Sylow p-subgroup of (G/Op(G))/Q,
which acts faithfully on Q. It is sufficient to bound the rank of a maximal abelian
normal subgroup A of P . This is due to the well-known fact that the rank of a
p-group P/A of automorphisms of an abelian p-group A is bounded in terms of the
rank of A.
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In turn, the rank of A is equal to the rank of an elementary abelian subgroup
E 6 A. Let H be a Hall p′-subgroup of the full inverse image of Q in G, so that
Op(G)H/Op(G) = Q. By the generalized Frattini argument, Op(G)NG(H) = G.
Hence the semidirect product QE is isomorphic to a subgroup of NG(H). Therefore
QE has c-dimension at most k. By Lemma 3 it follows that the rank of E is at
most k. ¤
Proof of Theorem 1(c). We can again assume that G is a finite soluble group. Let
R = G/F (G) and let r be the rank of R. For every prime p the quotient R/Op′,p(R)
is a linear group of dimension 6 r in characteristic p, since it acts faithfully on the
Frattini quotient of Op′,p(R)/Op′(R). By the Lie–Zassenhaus–Kolchin–Mal’cev the-
orem, R/Op′,p(R) has a triangularizable normal subgroup of r-bounded index. Since
the unitrinagular part of R/Op′,p(R) is trivial, R/Op′,p(R) has an abelian subgroup
of r-bounded index. Hence, by Remak’s theorem, R/F (R) = R/

⋂
p Op′,p(R) has an

abelian subgroup of r-bounded exponent. Combined with the bound for the rank
of G/F (G) given by part (b), this gives a bound for the index of F2(G) in terms
of k. ¤
Proof of Theorem 2. We can obviously assume that G =

∏
i∈I Gi/U , where the Gi

are finite soluble groups and U is a non-principal ultrafilter on the set of indices I.
The property of a group to have c-dimension at most k can be written by a universal
formula of the first-order language of group theory. Therefore, since G has this
property, the set J of indices i such that Gi has c-dimension at most k belongs
to U . By Theorem 1 these groups Gi for i ∈ J are soluble of derived length at
most f(k), where f(k) depends only on k. Since J ∈ U , the ultraproduct G is also
soluble of derived length at most f(k). ¤

3. Examples

Example 1. Choose large primes p, q such that q− 1 is divisible by p and consider
the semidirect product QP of a normal cyclic group Q of order q and a cyclic group
P 6 Aut Q of order p, where CQ(P ) = 1. Let U be a vector space over a finite field of
characteristic r 6= p, q admitting a fixed-point-free linear action of Q. For simplicity
we can choose r so that r − 1 is divisible by q, and let Q act on a one-dimensional
space U over Fr as an automorphism group of order q of a cyclic group of order r,
so that CU(Q) = 0. Let V be the space of the representation of QP induced from
the representation of Q on U . Let G = V QP be the natural semidirect product,
where V also denotes the additive group of the vector space V . Then, for example,
|CV (P )| = r and CV (Q) = 0. It is easy to see that the c-dimension of G is 3, while
the index of a nilpotent-by-abelian subgroup is at least p.

Example 2. Let p be a prime. Consider a free group G in the variety A2∩Np−1∩Bp

of metabelian nilpotent groups of class p − 1 and of exponent p on free generators
x1, x2, . . . . We claim that CG(x) = 〈x〉Z(G) for any x ∈ G \ [G,G]. This obviously
also implies that CG(v) = [G,G] for any v ∈ [G,G] \ Z(G). Then the only chains
of centralizers are G > [G,G] > Z(G) > 1 and G > 〈x〉Z(G) > Z(G) > 1, so the
c-dimension of G is 3.

Indeed, it is well known that the group [G,G] can be regarded as a vector space
over Fp with a basis formed by all the simple basic commutators of weight 6 p− 1
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in the free generators

[xi1 , xi2 , xi3 , . . . , xin ], i1 > i2 6 i3 6 · · · 6 in, n 6 p− 1.

Let x ∈ G \ [G,G]; clearly, CG(x) 6 〈x〉 [G,G]. Let [c, x] = 1 for c ∈ [G,G]; we need
to show that c ∈ γp−1 = Z(G). Let c, x ∈ 〈x1, . . . , xm〉. It is known that x can be
included in a system of free generators of G. Thus we can assume that x = xm. But
[κ, xm] is again a simple basic commutator for any simple basic commutator κ in
x1, . . . , xm. Hence [c, xm] = 1 only if c is a linear combination of basic commutators
of maximal weight p− 1, which all belong to Z(G).

Thus, the c-dimension of G is 3, but any normal subgroup with quotient of finite
rank has nilpotency class exactly p−1. By considering finitely generated subgroups
of G we also obtain finite p-groups of c-dimension 3 without a bound for the rank
of the quotient by a subgroup of nilpotency class 6 p− 2.
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