
A Recursive Blocked Schur Algorithm for
Computing the Matrix Square Root

Deadman, Edvin and Higham, Nicholas J. and Ralha,
Rui

2012

MIMS EPrint: 2012.26

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

A Recursive Blocked Schur Algorithm for
Computing the Matrix Square Root

Edvin Deadman
University of Manchester

Numerical Algorithms Group
edvin.deadman@nag.co.uk

Nicholas J. Higham
University of Manchester

higham@maths.manchester.ac.uk

Rui Ralha
University of Minho, Portugal
r_ralha@math.uminho.pt

Abstract—The Schur method for computing a matrix square
root reduces the matrix to the Schur triangular form and then
computes a square root of the triangular matrix. We show that
by using a recursive blocking technique the computation of the
square root of the triangular matrix can be made rich in matrix
multiplication. Numerical experiments making appropriate use of
level 3 BLAS show significant speedups over the point algorithm,
both in the square root phase and in the algorithm as a whole.
The excellent numerical stability of the point algorithm is shown
to be preserved by recursive blocking. These results are extended
to the real Schur method. Recursive blocking is also shown to
be effective for multiplying triangular matrices.

I. INTRODUCTION

A square root of matrix A ∈ Cn×n is any matrix satisfying
X2 = A. Matrix square roots have many applications, includ-
ing in Markov models of finance, the solution of differential
equations and the computation of the polar decomposition and
the matrix sign function [9].

A square root of a matrix (if one exists) is not unique.
However, if A has no eigenvalues on the closed negative real
line then there is a unique principal square root A1/2 whose
eigenvalues all lie in the open right half-plane. If A is real,
then so is A1/2. For proofs of these facts and more on the
theory of matrix square roots see [9].

The most numerically stable way of computing matrix
square roots is via the Schur method of Björck and Ham-
marling [3]. The matrix A is reduced to upper triangular
form and a recurrence relation enables the square root of the
triangular matrix to be computed a column or superdiagonal at
a time. In §II we show that the recurrence can be reorganized
using a standard blocking scheme or recursive blocking in
order to make it rich in matrix multiplications. We show
experimentally that significant speedups result when level 3
BLAS are exploited in the implementation. In §III we show
that the blocked methods maintain the excellent backward
stability of the non-blocked method. In §IV we discuss the use
of the new approach within the Schur method and explain how
it can be extended to the real Schur method of Higham [7].
We compare our implementations written for the NAG Library
with existing MATLAB functions. Finally, in §V we discuss
some further applications of recursive blocking for triangular
matrices.

II. THE USE OF BLOCKING IN THE SCHUR METHOD

To compute A1/2, a Schur decomposition A = QTQ∗ is
obtained, where T is upper triangular and Q is unitary. Then
A1/2 = QT 1/2Q∗. For the remainder of this section we will
focus on upper triangular matrices only. The equation

U2 = T (1)

can be solved by noting that U is also upper triangular, so that
by equating elements,

U2
ii = Tii, (2)

UiiUij + UijUjj = Tij −
j−1∑
k=i+1

UikUkj . (3)

These equations can be solved either a column or a superdiag-
onal at a time. Different choices of sign in the scalar square
roots of (2) lead to different matrix square roots. This method
will be referred to hereafter as the “point” method.

The algorithm can be blocked by letting the Uij and Tij in
(2) and (3) refer to m×m blocks, where m� n. The diagonal
blocks Uii are then obtained using the point method and the
off-diagonal blocks are obtained by solving the Sylvester equa-
tions (3) using LAPACK routine xTRSYL (where ’x’ denotes
D or Z according to whether real or complex arithmetic is
used) [2]. Level 3 BLAS can be used in computing the right-
hand side of (3) so significant improvements in efficiency are
expected. This approach is referred to as the block method.

To test this approach, a Fortran implementation was written
and compiled with gfortran on a 64 bit Intel i3 dual-core
machine, using the ACML Library for LAPACK and BLAS
calls. Complex upper triangular matrices were generated, with
random elements whose real and imaginary parts were chosen
from the uniform distribution on [0, 1). Figure 1 shows the run
times for the methods, for various different sized matrices.
A block size of 32 was chosen, although the speed did not
appear to be particularly sensitive to the block size—similar
results were obtained with blocks of size 16, 64 and 128. The
block method was found to be up to 17 times faster than the
point method. The residuals ‖Û2 − T‖/‖T‖, where Û is the
computed value of U , were similar for both methods. Table II
shows that, for n = 4096, over 90% of the run time is spent
in ZGEMM calls.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

100

200

300

400

500

600

n

tim
e

(s
)

point
block
recursion

Fig. 1. Run times for the point, block and recursion methods for computing
the square root of a complex n× n triangular matrix.

A larger block size enables larger GEMM calls to be made.
However, it leads to larger calls to the point algorithm and
to xTRSYL (which only uses level 2 BLAS). A recursive
approach may allow increased use of level 3 BLAS.

Equation (1) can be rewritten as(
U11 U12

0 U22

)2

=

(
T11 T12
0 T22

)
, (4)

where the submatrices are of size n/2 or (n±1)/2 depending
on the parity of n. Then U2

11 = T11 and U2
22 = T22 can

be solved recursively, until some base level is reached, at
which point the point algorithm is used. The Sylvester equation
U11U12 +U12U22 = T12 can then be solved using a recursive
algorithm devised by Jonsson and Kågström [11]. In this
algorithm, the Sylvester equation AX + XB = C, with A
and B triangular, is written as(

A11 A12

0 A22

)(
X11 X12

X21 X22

)
+(

X11 X12

X21 X22

)(
B11 B12

0 B22

)
=

(
C11 C12

C21 C22

)
,

where each submatrix is of size n/2 or (n± 1)/2. Then

A11X11 +X11B11 = C11 −A12X21, (5)
A11X12 +X12B22 = C12 −A12X22 −X11B12, (6)
A22X21 +X21B11 = C21, (7)
A22X22 +X22B22 = C22 −X21B12. (8)

Equation (7) is solved recursively, followed by (5) and (8),
and finally (6). At the base level a routine such as xTRSYL
is used.

The run times for a Fortran implementation of the recursion
method in complex arithmetic, with a base level of size 32,
are shown in Figure 1. The approach was found to be faster
than the block method, and up to 19 times faster than the

TABLE I
Profiling of the block method for computing the square root of a triangular

matrix, with n = 4096. Format: time in seconds (number of calls).

Total time taken: 30.74
Calls to looping method: 0.009 (128)
Calls to ZTRSYL 2.40 (8128)
Calls to ZGEMM with n = 32: 28.16 (341376)

TABLE II
Profiling of the recursive method for computing the square root of a

triangular matrix, with n = 4096. Format: time in seconds (number of calls).

Total time taken: 27.40
Calls to looping method: 0.006 (128)
Calls to ZTRSYL 2.22 (8128)
Calls to ZGEMM total: 22.06 (10668)
Calls to ZGEMM with n = 1024 8.01 (4)
Calls to ZGEMM with n = 512 6.19 (24)
Calls to ZGEMM with n = 256 3.82 (112)
Calls to ZGEMM with n = 128 2.13 (480)
Calls to ZGEMM with n = 64 1.18 (1984)
Calls to ZGEMM with n = 32 0.72 (8064)

point method, with similar residuals in each case. The precise
choice of base level made little difference to the run time.

Table II shows that the run time is dominated by GEMM
calls and that the time spent in ZTRSYL and the point
algorithm is similar to the block method. The largest GEMM
call uses a submatrix of size n/4.

III. STABILITY OF THE BLOCKED ALGORITHMS

We use the standard model of floating point arithmetic [8,
§2.2] in which the result of a floating point operation, op, on
two scalars x and y is written as

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u,

where u is the unit roundoff. In analyzing a sequence of
floating point operations it is useful to write [8, §3.4]

n∏
i=1

(1 + δi)
ρi = 1 + θn, ρi = ±1,

where
|θn| ≤

nu

1− nu
=: γn.

It is also convenient to define γ̃n = γcn for some small
integer c whose precise value is unimportant. We use a hat
denote a computed quantity and write |A| for the matrix whose
elements are the absolute values of the elements of A.

Björck and Hammarling [3] obtained a normwise backward
error bound for the Schur method. The computed square root
X̂ of the full matrix A satisfies X̂2 = A+ ∆A, where

‖∆A‖F ≤ γ̃n3‖X̂‖2F . (9)

Higham [9, §6.2] obtained a componentwise bound for the
triangular phase of the algorithm. The computed square root
Û of the triangular matrix T satisfies Û2 = T + ∆T , where

|∆T | ≤ γ̃n|Û |2. (10)

This bound implies (9). We now investigate whether the bound
(10) still holds when the triangular phase of the algorithm is
blocked.

Consider the Sylvester equation AX + XB = C in n ×
n matrices with triangular A and B. When it is solved in
the standard way by the solution of n triangular systems the
residual of the computed X̂ satisfies [8, §16.1]

|C − (AX̂ + X̂B)| ≤ γ̃n(|A||X̂|+ |X̂||B|). (11)

In the (non-recursive) block method, to bound ∆Tij we
must account for the error in performing the matrix multipli-
cations on the right-hand side of (3). Standard error analysis
for matrix multiplication yields, for blocks of size m,∣∣∣∣∣fl

(
j−1∑
k=i+1

ÛikÛkj

)
−

j−1∑
k=i+1

ÛikÛkj

∣∣∣∣∣ ≤ γ̃n|Û |2ij .
Substituting this into the residual for the Sylvester equation in
the off-diagonal blocks, we obtain the componentwise bound
(10).

To obtain a bound for the recursive blocked method we
must first check if (11) holds when the Sylvester equation
is solved using Jonsson and Kågström’s recursive algorithm.
This can be done by induction, assuming that (11) holds at
the base level. For the inductive step, if suffices to incorporate
the error estimates for the matrix multiplications in the right
hand sides of (5)–(8) into the residual bound.

Induction can then be applied to the recursive blocked
method for the square root. The bounds (10) and (11) are
assumed to hold at the base level. The inductive step is similar
to the analysis for the block method. Overall, (10) is obtained.

We conclude that both our blocked algorithms for comput-
ing the matrix square root satisfy backward error bounds of
the same forms (9) and (10) as the point algorithm.

IV. IMPLEMENTATION

When used with full (non-triangular) matrices, more modest
speedups are expected because of the significant overhead in
computing the Schur decomposition. Figure 2 compares run
times of the MATLAB function sqrtm (which does not use
any blocking) with Fortran implementations of the recursive
blocked method (fort_recurse) and the point algorithm
(fort_point), called from within MATLAB using a mex
interface. The recursive routine is found to be up to 2.5 times
faster than sqrtm and 2 times faster than fort_point.

An extension of the Schur method due to Higham [7]
enables the square root of a real matrix to be computed without
using complex arithmetic. A real Schur decomposition of A
is computed. Square roots of the 2× 2 diagonal blocks of the
upper quasi-triangular factor are computed using an explicit
formula. The recursion (3) now proceeds either a block column
or a block superdiagonal at a time, where the blocks are of
size 1 × 1, 1 × 2, 2 × 1 or 2 × 2 depending on the diagonal
block structure. A MATLAB implementation of this algorithm
sqrtm_real is available in the Matrix Function Toolbox
[6]. The algorithm can also be implemented in a recursive

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

n

tim
e

(s
)

sqrtm
fort_point
fort_recurse

Fig. 2. Run times for sqrtm, fort_recurse and fort_point for
computing the square root of a full n × n matrix with elements whose real
and imaginary parts are chosen from the uniform random distribution on the
interval [0, 1).

manner, the only subtlety being that the “splitting point” for
the recursion must be chosen to avoid splitting any 2 × 2
diagonal blocks. A similar error analysis to §III applies to the
real recursive method, though since only a normwise bound is
available for the point algorithm applied to the quasi-triangular
matrix the backward error bound (10) holds in the Frobenius
norm rather than elementwise.

Figure 3 compares the run times of sqrtm and
sqrtm_real with Fortran implementations of the real re-
cursive method (fort_recurse_real) and the real point
method (fort_point_real), also called from within MAT-
LAB. The recursive routine is found to be up to 6 times
faster than sqrtm and sqrtm_real and 2 times faster than
fort_point_real.

Both the real and complex recursive blocked routines spend
over 90% of their run time in computing the Schur decomposi-
tion, compared with 25% for sqrtm, 44% for fort_point,
16% for sqrtm_real and 46% for fort_point_real.
The latter four percentages reflect the overhead of the MAT-
LAB interpreter in executing the recurrences for the (quasi-)
triangular square root phase.

V. FURTHER APPLICATIONS OF RECURSIVE BLOCKING

We briefly mention two further applications of recursive
blocking schemes.

Currently there are no LAPACK or BLAS routines designed
specifically for multiplying two triangular matrices, T = UV
(the closest is the BLAS routine xTRMM which multiplies a
triangular matrix by a full matrix). However, a block algorithm
is easily derived by partitioning the matrices into blocks.
The product of two off-diagonal blocks is computed using
xGEMM. The product of an off-diagonal block and a diagonal
block is computed using xTRMM. Finally the point method
is used when multiplying two diagonal blocks.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

n

tim
e

(s
)

sqrtm_real
sqrtm
fort_point_real
fort_recurse_real

Fig. 3. Run times for sqrtm, sqrtm_real, fort_recurse_real and
fort_point_real for computing the square root of a full n × n matrix
with elements chosen from the uniform random distribution on [0, 1).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

100

200

300

400

500

600

n

tim
e

(s
)

point
block
recursion

Fig. 4. Run times for the point, block and recursion methods for multiplying
randomly generated triangular matrices.

In the recursive approach, T = UV is rewritten as(
T11 T12
0 T22

)
=

(
U11 U12

0 U22

)(
V11 V12
0 V22

)
.

Then T11 = U11V11 and T22 = U22V22 are computed
recursively and T12 = U11V12 + U12V22 is computed using
two calls to xTRMM.

Figure 4 shows run times for some triangular matrix multi-
plications using Fortran implementations of the point method,
standard blocking and recursive blocking (the block size and
base levels were both 32 in this case, although the results were
not too sensitive to the precise choice of these parameters). As
for the matrix square root, the block algorithms significantly
outperform the point algorithm, with the recursive approach
performing the best.

The inverse of a triangular matrix can be computed recur-
sively, by expanding UU−1 = I as(

U11 U12

0 U22

)(
(U−1)11 (U−1)12

0 (U−1)22

)
=

(
I 0
0 I

)
.

Then (Û−1)11 and (Û−1)22 are computed recursively and
(Û−1)12 is obtained by solving U11(Û−1)12 +U12(Û−1)22 =
0. Provided that forward substitution is used, the right (or left)
recursive inversion method can be shown inductively to satisfy
the same right (or left) elementwise residual bound as the point
method [4]. A Fortran implementation of this idea was found
to perform similarly to LAPACK code xTRTRI, so no real
benefit was derived from recursive blocking.

VI. CONCLUSIONS

We investigated two different blocking techniques within
Björck and Hammarling’s recurrence for computing a square
root of a triangular matrix, finding that recursive blocking
gives the best performance. Neither approach entails any loss
of backward stability. We implemented the recursive blocking
with both the Schur method and the real Schur method (which
works entirely in real arithmetic) and found the new codes
to be significantly faster than corresponding point codes,
which include the MATLAB functions sqrtm (built-in) and
sqrtm_real (from [6]). The new codes will appear in the
next mark of the NAG Library [12]. Recursive blocking is also
fruitful for multiplying triangular matrices.

Because of the importance of the (quasi-) triangular square
root, which arises in algorithms for computing the matrix
logarithm [1], matrix pth roots [5], and arbitrary matrix powers
[10], this computational kernel is a strong contender for
inclusion in any future extensions of the BLAS.

REFERENCES

[1] A. H. Al-Mohy and N. J. Higham. Improved inverse scaling and
squaring algorithms for the matrix logarithm. MIMS EPrint 2011.83,
The University of Manchester, Oct. 2011.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[3] Å. Björck and S. Hammarling. A Schur method for the square root of
a matrix. Linear Algebra Appl., 52/53:127–140, 1983.

[4] J. J. Du Croz and N. J. Higham. Stability methods for matrix inversion.
IMA J. Numer. Anal., 12(1):1–19, 1992.

[5] C.-H. Guo and N. J. Higham. A Schur–Newton method for the matrix
pth root and its inverse. SIAM J. Matrix Anal. Appl., 28(3):788–804,
2006.

[6] N. J. Higham. The Matrix Function Toolbox. http://www.ma.man.
ac.uk/˜higham/mftoolbox.

[7] N. J. Higham. Computing real square roots of a real matrix. Linear
Algebra Appl., 88/89:405–430, 1987.

[8] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
2nd edition, 2002.

[9] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM,
2008.

[10] N. J. Higham and L. Lin. A Schur–Padé algorithm for fractional powers
of a matrix. SIAM J. Matrix Anal. Appl., 32(3):1056–1078, 2011.

[11] I. Jonsson and B. Kågström. Recursive blocked algorithms for solving
triangular systems - part I: One-sided and coupled Sylvester-type matrix
equations. ACM Trans. Math. Software, 28(4):392–415, 2002.

[12] Numerical Algorithms Group. The NAG Fortran Library. http://
www.nag.co.uk.

