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Microscale process engineering requires precise control of bubbles and droplets. We investigate
geometry-induced control and find that a centered constriction in the cross section of rectangular
tubes can lead to new families of steadily propagating bubbles, which localize in the
least-constricted regions of the cross section. Tuning the constriction geometry can cause a
switchlike transition from centered to localized bubbles at a critical value of the flow rate: a
mechanism for flow-rate-driven bubble control. The accompanying large change in bubble volume
could be significant for liquid recovery applications. © 2009 American Institute of Physics.
�doi:10.1063/1.3247879�

The control of bubble and droplet traffic in microfluidic
devices is an essential element of microscale process engi-
neering and emerging lab-on-a-chip technologies,1 but the
development of efficient and effective control mechanisms
requires a detailed understanding of the fundamental physics
and chemistry occurring in two-phase flows at the
microscale.2 The generic two-phase flow underpinning drop-
let transport is the displacement of one fluid by another. This
flow has a wide range of other applications, including oil
extraction from porous reservoirs,3 and the biomechanics of
the lungs.4 If air, for instance, is driven with a constant flow
rate through a uniform tube initially filled with a viscous
liquid, after a short distance, it forms a single finger that
advances at constant speed, provided its speed is below the
threshold for secondary instabilities. Surprisingly, this impor-
tant interfacial flow has been studied only in tubes of simple
geometries, i.e., circular, rectangular, or polygonal cross
sections.5–7 In most practical applications, however, the ge-
ometry of the tubes is considerably more complex, with ar-
eas of local constriction due to connecting or irregularly
shaped pores in carbonate oil reservoirs,8 and airway col-
lapse or mucus build-up in the lungs.9 Similarly in micro-
channels, the three-dimensional nature of the microfluidic
network is often overlooked because bubble/droplet dynam-
ics are generally visualized in a plane.10–12 Rectangular chan-
nels are the norm, and the potential offered by more complex
flow geometries has for the most part been neglected.

In this letter, we show that the centered constriction of
the rectangular cross section of an axially uniform tube can
lead to fundamental changes in the nature of bubble propa-
gation within the tube, via the realization of new families of
steadily propagating, asymmetric bubbles that localize in the
least-constricted regions of the cross section. Moreover, the
change from symmetric to asymmetric bubbles can be ex-
tremely abrupt: both types of bubbles are observed at a criti-
cal value of the flow rate, but their volumes per unit length
differ by more than a factor of three. We demonstrate that
this switchlike transition, which is robust over a wide range

of tube geometries, is associated with a subcritical bifurca-
tion that underpins the dynamics of bubble propagation in
our system. Furthermore, we propose to exploit this switch-
like transition as a powerful new means of manipulating and
directing the transport of bubbles in microfluidic systems by
variations in flow rate alone, without the need for any small-
scale moving parts, electric/magnetic fields, lasers, or elec-
tronic valves.

We performed a series of experiments in rectangular
tubes with an axially uniform, centered rectangular occlusion
on the bottom surface of the tube, see Fig. 1�a� �inset�. The
height of the tube was fixed at b=3.077�0.009 mm,
sufficiently large to allow the introduction of a range of
occlusion heights, and the tube width was varied between
w=9–18 mm, giving aspect ratios of 3��=w /b�6, typi-
cal of microfluidic channels. The tubes consisted of two hori-
zontal, 60 cm long float-glass sheets separated by precision-
machined stainless steel strips and were uniform to less than
0.3% and 0.8% of their heights and widths, respectively.13

Two different occlusions were used, 4.38�0.05
�1.005�0.016 mm2 and 4.50�0.01�1.398�0.027 mm2

�width�height�. The occlusions were machined from
Perspex to enable direct visualization, and they were bonded
to the bottom glass plate of the tube to yield a 50 cm long
axially uniform tube with a locally constricted cross section.
The errors in the positional accuracy and axial uniformity of
the occlusions were less than 0.5% and 3% of the occlusion
width, respectively.

Initially, each tube was completely filled with silicone oil
�viscosity of 50 cS�. A two-phase displacement flow was
induced by using a syringe pump to withdraw liquid from
one end of the tube at a constant volumetric flow rate while
leaving the other end open to the atmosphere. The induced
flow consisted of a long bubble of air that propagated
steadily, following the decay of initial transients. Over a
small range of applied flow rates near bifurcations to local-
ized bubbles, these transients could extend beyond the length
of the tube, but for all other flow rates �away from bifurca-
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tion points�, they decayed over very short distances. The mo-
tion of the steady bubbles was recorded near the downstream
end of the tube with a top-view camera �10 frames/s� over a
distance of 4 cm ending 42.5 cm from the inlet. The bubble
velocity was measured from the differences in position of the
tip between frames.

Figure 1 shows the behavior of the system for increasing
flow rates in a tube with the smaller occluded volume,
in which the occlusion occupies approximately one third
of the total width and height of the cross section �dimen-
sionless occlusion width W=wocclusion /w=0.33, dimension-
less occlusion height B=bocclusion /b=0.33�. The non-
dimensional bubble speed, Ca=�U /�, known as the capil-
lary number, can be interpreted as the ratio of viscous
to surface tension forces, where U is the bubble speed,
�=5.4�10−2 kg m s−1 and �=2.1�10−2 N m−1 are the dy-
namic viscosity and surface tension of the silicone oil, re-
spectively. At low capillary numbers the entire bubble is
symmetric about the vertical center plane of the tube and
occupies the entire width of the tube �to within experimental
resolution�.14 As the capillary number increases, the bubble
tip loses its symmetry about the vertical center plane and,
eventually, the entire bubble localizes near one wall. The
localization is quantified by a parameter −0.5���0.5, de-
fined to be the offset from the middle of the bubble to the
middle of the tube, divided by the tube width �measured at a
distance of 3.55 cm behind the bubble tip where it had
reached a constant width�.15

Above a critical value of the capillary number,
Cac= �1.92�0.04��10−2, the relative offset, �, is propor-
tional to �Ca–Cac, consistent with the behavior of a super-
critical pitchfork bifurcation. Measurements were not taken
for Ca–Cac�0.16 Cac because the lengthening of transients
linked to critical slowing down meant that steadily propagat-
ing states were not reached within the length of the con-
stricted tube. The behavior for Ca�Cac is associated with a
fundamental change in the bubble configuration far behind
the tip, which is distinct from the previously observed thin-
wire perturbation of the bubble-tip in a cylindrical tube,
which broke the symmetry of the tip but did not result in
bubble localization.16

As Ca increases, the bubble narrows monotonically6 and
selects a path of least resistance by moving into one of the
less constricted regions of the tube cross section, resulting in
the observed bubble localization. A complete understanding
of the detailed dynamics will require three-dimensional nu-
merical simulations, but insight into the influence of the
cross-sectional geometry can be gained by considering the
shape of the steadily propagating bubble far behind its tip. In
the absence of surface-tension-driven instabilities of the
films, it is known that the system becomes axially uniform
with no interface curvature in the axial direction.6 Hence, the
transverse cross section of the bubble must always approach
a two-dimensional equilibrium configuration satisfying the
Young–Laplace equation, i.e., the product of surface tension
and curvature is balanced by the pressure difference across
the interface. The curvature is set by an integral force bal-
ance over the entire bubble surface, including viscous normal
stresses at the tip in the dynamic case �Ca�0�. In cross
sections with a centered constriction, three new families of
asymmetric static �Ca=0� solutions to the Young–Laplace
equation can be found if B	1 /3, which correspond to �i�
complete localization within one of the unconstricted regions
of the cross section, �ii� partial localization, in which the
bubble extends into the constricted region, and �iii� slight
localization, in which the bubble spans the entire constricted
region and one of the unconstricted regions, protruding only
slightly into the other unconstricted region. All three possi-
bilities are consistent with experimental observations. We
speculate that the geometric range of existence of these
asymmetric solutions underlies the observed symmetry-
breaking bifurcations. Hence, a simple change in cross-
sectional shape is sufficient to alter fundamentally the dy-
namics of bubble propagation, because the bubble can
remain localized even far behind the tip. Moreover, the ex-
istence of asymmetric bubbles at Ca=0 suggests that locally
constricted tube geometries could be of practical importance
in microfluidics and liquid recovery applications, which are
often characterized by very small values of Ca.

The character of the transition can be changed by alter-
ing the size of the occlusion. We consider variations in rela-
tive height and width of the occlusion. In Fig. 2, we compare
results for B=0.33 and B=0.45 for the same width W=0.33.
Although the bubble shape at low capillary numbers is dif-
ferent for higher occlusions �in this case the bubble is double
tipped�, a transition to localized bubbles is still observed.
However, it is so abrupt that both centered and localized
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FIG. 1. �Color online� �a� Dimensionless air finger offset �see text� as a
function of the capillary number. The line is a fit proportional to �Ca–Cac,
which assumes a pitchfork bifurcation and yields Cac= �1.92�0.04��10−2.
Note that unavoidable imperfections bias the localized finger tip systemati-
cally toward the same side of the tube. �b� Top-view images of steadily
propagating air fingers �left to right� in a tube with a locally constricted
cross section �see inset in �a� for the tube geometry� of aspect ratio �=4.5,
dimensionless obstacle width W=0.33, and dimensionless obstacle height
B=0.33. The occlusion is outlined with dotted lines in the first image.
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bubbles are observed at the same critical value of flow rate.
Moreover, evidence of hysteresis was uncovered by estab-
lishing a steady, localized bubble and then reducing the flow
rate to a value for which centered bubbles were usually ob-
served, see Fig. 2�d�. The presence of hysteresis suggests a
transition from a supercritical to a subcritical pitchfork bifur-
cation with the increase in the occlusion height, which is
often associated with tricritical phenomena.17,18 In order to
confirm that the observed behavior is not an artifact of
the local measure �, we also present results in terms of a
global measure of the system, the so-called wet fraction,
m=1−
 / �AU�, the ratio of the liquid volume that remains
once the finger has exited the tube to the total volume of the
tube. Above, 
 is the flow rate of the liquid and A is the
cross-sectional area of the tube. The wet fraction exhibits a
square-root variation with the excess parameter for B=0.33,
but becomes discontinuous for B=0.45. The discontinuity in
m may have implications for oil recovery applications, par-
ticularly in the highly irregular pore networks of carbonate
rocks.8 This is because, in our geometry, a small change in
flow rate causes a 300% increase in the relative volume of oil
remaining in the tube. Although pore-scale studies of multi-
phase flows in simple geometries are an established approach
to gain insight into oil recovery,19,20 the upscaling of our
findings to an irregular porous structure is not trivial.

A similar transition from a supercritical to a subcritical
bifurcation also takes place when the width of the tube is
increased relative to the obstacle width. The variation of wet
fraction with Ca shown in Fig. 3 indicates that the critical
capillary number is shifted to lower values for the wider
tube, suggesting that fine tuning of the geometry can be used

for precise control of the flow rate at which the transition
occurs. The square-root behavior was observed to W=0.40,
but for the narrowest tube �W=0.50�, the bubble evolved
continuously with increasing Ca. In contrast with the case
when the obstacle height is varied, the bifurcation becomes
subcritical for the narrower obstacle, where the tube is less
occluded �W=0.25�. Thus, even a small occlusion has a dra-
matic effect on the nature of the bubble propagation, for a
wide enough tube.

In our system, gravitational and surface-tension forces
are of approximately equal importance, as quantified by the
Bond number, Bo=�gb2 /�=1.00�0.02, where g is the ac-
celeration due to gravity and � is the difference of density
between the fluids. In microchannels, where typically
b�100 �m, the Bond number is of the order of 10−3 and
gravitational effects are negligible. A set of experiments in
the same tube geometry as presented in Fig. 1, with the effect
of gravity reduced by a factor of approximately 50 by using
water rather than air �Bo=0.02�, also showed transitions to
localized bubbles. As in air, viscous stresses in the finger are
not of major importance because the viscosity of the water is
50 times lower than the viscosity of the silicone oil. These
results demonstrate that the phenomenon is robust and does
not require the presence of gravitational forces. The localiza-
tion is not independent of gravity, however, and the critical
capillary number decreases to Cac= ��sil−�wat�U /�wat-sil

=0.009�0.005. The value of Cac is rather approximate be-
cause small water droplets, shed from the bubble, adhered to
the channel walls, perturbing subsequent experiments.

The reduction in Cac with decreasing Bond number is a
consequence of increased bubble surface area exposed to the
obstacle as buoyancy effects become less important. This
reduction in Cac and, more importantly, the existence of lo-
calized solutions to the Young–Laplace equations at Ca=0
suggest that a transition may be achievable in microfluidic
channels where operating capillary numbers are typically
10−5. The determination of a microfluidic geometry that can
induce transitions as sharp and robust as those of the
millimeter-scale experiments presented here remains an open
challenge, particularly given that control of imperfections at
microfluidic scales becomes more difficult.
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FIG. 2. �Color online� �a� Steady propagation of air fingers �right to left� for
�=4.5, W=0.33, and B=0.45. �b� Dimensionless air-finger offset as a func-
tion of Ca for B=0.33 �circles and previously shown in Fig. 1�b�� and
B=0.45 �squares� with W=0.33 and �=4.5. �c� Wet fraction as a function of
Ca for the same parameters as in �b�. �d� Wet fraction as a function of Ca for
B=0.45, W=0.25, and �=6. Diamonds depict experiments initiated from
rest, while circles were obtained by reduction of the capillary number, start-
ing with steady localized bubbles at Ca=1.11�10−2. The presence of hys-
teresis suggests a subcritical pitchfork bifurcation to localized bubbles.

FIG. 3. �Color online� Wet fraction as a function of Ca for B=0.33 and
W=0.50 �square�, 0.40 �triangle�, 0.33 �empty circle�, and 0.25 �full circle�.
Fewer data points were taken in the transition region in this set of experi-
ments, resulting in an apparent discontinuity at W=0.33, although the bifur-
cation is still supercritical. The bifurcation at W=0.25 is subcritical.

101702-3 Tube geometry can force switchlike transitions Phys. Fluids 21, 101702 �2009�

Downloaded 19 Oct 2009 to 130.88.16.96. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



The results presented so far are for semi-infinite air fin-
gers, but we also found that finite-length bubbles can exhibit
localized states, shown in Fig. 4. Individual bubbles of
length approximately equal to the width of the tube can be
localized on one side of the tube. The critical flow rate re-
mains approximately the same as that for the corresponding
air finger, suggesting that the transition is governed by the
hydrodynamic resistance of the tube’s cross section. The
propagation speed of a finite bubble is less than that of the
long finger for the same flow rate due to the presence of a
rear meniscus, inducing additional drag, and so the critical
capillary number decreases. Decreasing the volume of the
bubbles further will eventually lead to bubbles that are too
small to be deformed by the tube geometry leading to a
qualitative change in the dynamics because the bubbles will
simply act as passive tracers and follow streamlines of the
flow.

We propose that the switchlike localization of bubbles
can be used to achieve traffic control at tube junctions by
variation of flow rate alone. In a different set of experiments,
the tube shown in Fig. 1 is connected to a Y-junction leading
into two identical near-square daughter tubes. Long bubbles
can be preferentially directed into either daughter tube by
adjusting the flow rate. The transition occurs at the same
value of flow rate as the symmetry-breaking bifurcation dis-
cussed above. Two movies illustrating the transition are pro-
vided in the supplementary materials.21 This passive control
mechanism is robust provided that the minimal but unavoid-
able asymmetries introduced in the manufacture of the ob-
stacle and junction are deliberately biased to act in opposite
directions. As bubbles tend to break at Y-junctions, a decel-
erating bubble in the second daughter tube accompanies the
dominant accelerating bubble in our experiments. The same
mechanism could, however, be used to direct trains of drop-
lets and bubbles at T-junctions where short bubbles do not
break.22

In conclusion, we have shown that a simple geometric

modification can lead to fundamental changes in the dynam-
ics of two-phase displacement flows within three-
dimensional tubes. The robustness and simplicity of the ob-
served switchlike transitions offer powerful new means of
manipulating and directing bubbles in microchannels. More-
over, our findings suggest that in practical applications where
tube geometries with many length scales dominate the two-
phase flow dynamics, there could be at least threefold dis-
crepancies in fluid recovery efficiencies compared to models
that use tubes of simple geometries.
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FIG. 4. �Color online� �a� Finite bubble in partially occluded tube with �
=4.5, W=0.33, and B=0.33. �b� Offset for finite bubbles and fingers as a
function of flow rate for �=4.5, W=0.33, and B=0.33. The bifurcation takes
place at the same critical flow rate for fingers and finite bubbles, but the
finite bubbles propagate at a lower speed due to the presence of a rear
meniscus which causes additional viscous drag.
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