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1 Introduction

Nonparametric modelling of covariance structures for longitudinal data has recently received

an increasing attention. Nowadays it is well known that a good covariance estimation not

only improves statistical inference of the mean but also characterizes covariance structures,

which in some circumstances is of scientific importance. In the literature, Diggle and Verbyla

(1998) studied nonparametric estimation of covariance structures using kernel-weighted local

linear regression of sample variograms, which, though has a clear statistical interpretation,

does not guarantee positive-definiteness of the estimated covariance matrices. Based on a

modified Cholesky decomposition, Pourahmadi (1999; 2000) proposed parametric regressions

for modelling covariance structures. Wu and Pourahmadi (2003) further considered local

polynomial smoothing for certain sub-diagonals of the lower triangular matrix in the decom-

position, by assuming other elements are zero. Their method is related to antedependence

covariance structures (Zimmerman and Núñez-Antón, 2001) and is only applicable to bal-

anced longitudinal data due to the involvement of the sample covariance matrix (Wu and

Pourahmadi, 2003).

Local polynomial smoothing is one of the most commonly used nonparametric regression

methods for modelling independent data, see Fan and Gijbels (1996) and Ruppert and Wand

(1994). Recently, this technique has been applied to longitudinal data analysis, see Hoover,

et al. (1998), Fan and Zhang (2000), Lin and Ying (2001) and references therein. This kind

of work, however, ignores the within-subject correlation in longitudinal data. Based on local

kernel smoothing, Lin and Carroll (2000) concluded that an independent covariance structure

is actually the best one in the sense of the mean squared error, indicating that correct speci-

fication of within-cluster correlation has an adverse effect on the mean curve estimation (Lin,

et al., 2004). Chen and Jin (2005) explained this counter-intuitive phenomenon is due to a

mismatch of ‘local observations with global variances’, and proposed an alternative approach
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based on the principle of ‘local observations with local variances’. In other words, only co-

variances of local observations make a contribution to the mean curve estimation when using

local polynomial smoothing. In this manner, correct specification of within-subject correla-

tion does have a positive effect on the mean curve estimation.

In this paper a nonparametric data-driven approach is proposed to model the mean and

covariance structures for longitudinal data. Based on a modified Cholesky decomposition,

the within-subject covariance matrix is decomposed into a unit lower triangular matrix and

a diagonal matrix (Pourahmadi, 1999). A smoothing function in time is then used to model

the off-diagonal elements (also known as generalized autoregressive coefficients) of the lower

triangular matrix, and the logarithm of the diagonal elements (also known as log-innovation

variances) of the diagonal matrix. A local polynomial smoothing approach (Fan, et al., 1998)

is applied to fit smoothing curves in the mean, generalized autoregressive coefficients and

log-innovation variances. In the spirit of ‘local observations with local variances’ (Chen and

Jin, 2005), the mean curve estimation takes into account the within-subject correlation for

longitudinal data. We show that the fitted smoothing curves have very nice theoretical prop-

erties. We also propose a modified cross-validation criterion with leave-one-subject-out to

select the best value of the bandwidth. For illustration, real data analysis and simulation

studies are conducted, showing the proposed approach works well for modelling the mean

and covariance structures, simultaneously.

This paper is organized as follows. In Section 2, we propose smoothing curve models for

the mean, generalized autoregressive parameters and log-innovation variances. In Section 3,

we develop a local polynomial based approach for modelling the mean and covariance struc-

tures for longitudinal data, and then discuss the issue of bandwidth selection. In Section

4, asymptotic properties of the proposed estimation approaches are studied, with technical

details included in the Appendices. In Section 5 the proposed approach is illustrated by real
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data analysis and simulation studies. Some further discussions are provided in Section 6.

2 Nonparametric models for mean-covariance structures

Let yij be the jth of mi measurements on the ith of n subjects. Assume that tij is the

time at which the measurement yij is made. Denote by yi = (yi1, yi2, . . . , yimi)
′ and ti =

(ti1, ti2, . . . , timi)
′ be the (mi× 1) vector of responses and measuring times of the ith subject,

respectively. Suppose E(yi) = µi = (µi1, µi2, . . . , µimi)
′ and Var(yi) = Σi are the (mi × 1)

mean vector and (mi × mi) positive definite variance-covariance matrix of yi, respectively.

Throughout this paper, we assume yi follows a normal distribution, i.e., yi ∼ Nmi(µi, Σi) for

i = 1, 2, . . . , n.

Accordingly, there exits a unique lower triangular matrix Ti with 1’s as diagonal entries

and a unique diagonal matrix Di with positive diagonals such that TiΣiT
′
i = Di. This modi-

fied Cholesky decomposition has a clear statistical interpretation, that is, the below-diagonal

entries of Ti are the negatives of the autoregressive coefficients, φijk, in the autoregressive

model

ŷij = µij +
j−1∑

k=1

φijk(yik − µik). (2.1)

In other words, (2.1) is the linear least squares predictor of yij based on its predecessors

yi(j−1), . . . , yi1. Note that as j = 1 the notation
∑0

k=1 means zero. It can also be shown

that the diagonal entries of Di are the prediction error/innovation variances σ2
ij = var(εij)

where εij = yij − ŷij and ŷij are given in (2.1) (1 ≤ j ≤ mi; 1 ≤ i ≤ n) (Pourahmadi, 1999).

Obviously, we have cov(εij , εik) = 0 if j 6= k. We refer to φijk as generalized autoregressive

parameters and σ2
ij as innovation variances. It follows immediately that Σ−1

i = T ′iD
−1
i Ti.

We propose to use three nonparametric smoothing functions in time to model the uncon-

strained parameters µij , φijk and logσ2
ij as follows

µij = f(tij), φijk = g(tij , tik) and log σ2
ij = q(tij), (2.2)
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where the unknown functions f(t) and q(t) are univariate but g(t, s) may be two-dimensional.

For simplicity, we only assume that φijk depends on the two time points tij and tik through

g(·, ·). When longitudinal data are stationary, the function g reduces to one-dimensional

function in time lag, that is, g(t, s) ≡ g(t−s). Clearly, the models in (2.2) are very broad and

contain many commonly used covariance structures, such as compound symmetric, AR(1),

antedependence structure and others. We refer to the models in (2.2) as nonparametric

mean-covariance models.

Pourahmadi (1999) and Pan and MacKenzie (2003) considered parametric modelling of

µij , φijk and log σ2
ij in (2.2) for balanced and unbalanced longitudinal data, respectively. Ye

and Pan (2006) discussed parametric modelling of covariance structures for unbalanced longi-

tudinal data within the framework of generalized estimation equations. Wu and Pourahmadi

(2003) studied local polynomial smoothing for a few of subdiagonals of the lower triangular

matrix Ti by assuming others are zero. This differs from our smoothing approach in the sense

that we model the whole correlation function surface rather than only a few of the profile

functions on the surface. As long as the estimated smoothing functions ĝ(t, s) and q̂(t) can

be obtained, the estimators T̂i and D̂i of the matrices Ti and Di can be constructed according

to (2.2). The estimators of the covariance matrices are then formed by Σ̂i = T̂−1
i D̂iT̂

′−1
i ,

implying that the positive definiteness of Σ̂i is assured. Furthermore, baseline covariates of

interest may be included in the models in (2.2) as a parametric part, thus creating semi-

parametric models for the mean and covariance structures. In this paper we focus on the

nonparametric regression models. The extension to semiparametric models is straightforward

and not considered here.
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3 Local polynomial smoothing of mean-covariance structures

3.1 Local maximum likelihood estimation

Local maximum likelihood estimation was proposed by Fan, et al. (1998), which can be

viewed as a nonparametric counterpart of the widely used parametric maximum likelihood

technique. Suppose that the ith univariate observation yi and its measurement time ti have

a contribution `{b(ti), yi} to the log-likelihood, where b(·) is an unknown smooth function of

interest and is assumed to have a continuous (p + 1)th derivative at the time point t0. Then

for ti in a neighborhood of t0, a polynomial of degree p is used to approximate b(ti) via Taylor

expansion:

b(ti) ≈ b(t0) + (ti − t0)b′(t0) + · · ·+ (ti − t0)p b(p)(t0)
p!

≡ x′iβ, (3.1)

where xi = (1, (ti − t0), . . . , (ti − t0)p)′ and β = (β0, . . . , βp)′ with βv = b(v)(t0)/v! (v =

0, . . . , p). The local kernel-weighted log-likelihood is defined by

`p(β, h, t0) =
n∑

i=1

`{x′iβ, yi}Kh(ti − t0), (3.2)

where Kh(ti− t0) = K ((ti − t0)/h) /h, K(·) is a known kernel function and h is a bandwidth

parameter. The estimator of β that maximizes the local kernel-weighted log-likelihood, i.e.,

β̂(t0) = arg max
β
{`p(β, h, t0)} (3.3)

is called the local maximum likelihood estimator of β at t0 (Fan, et al.,1998). When vary-

ing t0, we obtain the estimated function β̂(t). Obviously, the first component β̂0(t) is the

local maximum likelihood estimation function of b(t). For further details on local maximum

likelihood estimation, one can refer to Fan et al. (1998).

3.2 Estimation of the mean function

Recall the ith subject responses yi = (yi1, yi2, . . . , yimi)
′ and the measurement time ti =

(ti1, ti2, . . . , timi)
′. Since yi ∼ Nmi(µi, Σi), then the log-likelihood function `, apart from a
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constant, can be written as

−2` =
n∑

i=1

log|Σi|+
n∑

i=1

(yi − f(ti))′Σ−1
i (yi − f(ti)), (3.4)

where µi = f(ti) = (f(ti1), . . . , f(timi))
′ and f(t) is the mean smooth function in (2.2).

Assume that in a neighborhood of t0 the mean function f(tij) has the Taylor expansion

(3.1), i.e., f(tij) = x′ijβ with xij = (1, (tij − t0), . . . , (tij − t0)p)′ and β = (β0, . . . , βp)′

with βv = f (v)(t0)/v! (v = 0, . . . , p). Note that the first term in (3.4) does not make any

contribution when estimating the mean function. In the spirit of Chen and Jin (2005) we

propose to minimize the following partial local-weighted log-likelihood,

Q1(β) =
n∑

i=1

(yi −X ′
iβ)′K1/2

ih1
(t0)(IiΣiIi)−1K

1/2
ih1

(t0)(yi −X ′
iβ) (3.5)

with respect to β, where Xi = (xi1, . . . , ximi)
′, Kih1(t0) = diag{Kh1(ti1 − t0), . . . ,Kh1(timi −

t0)} with the entries Kh1(tij − t0) = K((tij − t0)/h1)/h1, and Ii = diag{I(|ti1 − t0| ≤

h1), . . . , I(|timi−t0| ≤ h1)} where I(·) is the indicator function and h1 is the bandwidth. Typi-

cal choices of the kernel function K(·) include the Gaussian density K(t) = (1/
√

2π) exp{−t2/2}

and Epanechnikov kernel K(t) = 0.75(1− t2)I(|t| ≤ 1). It is noted that the matrix IiΣiIi in

(3.5) may be singular and so (IiΣiIi)−1 represents the Moore-Penrose generalized inverse of

the matrix IiΣiIi.

Note that the proposed criterion in (3.5) is different from the one proposed by Chen and

Jin (2005) in that they assume the localization through Ii is only made to the correlation

matrix with the variances being treated as nuisance parameters. In contrast, we propose to

localize the variance-covariance matrices Σi when estimating the mean function. By min-

imizing Q1(β) over β = (β0, . . . , βp)′, one can easily obtain the local maximum likelihood

estimator

β̂(t0) =

(
n∑

i=1

X ′
iV

−1
i Xi

)−1 (
n∑

i=1

X ′
iV

−1
i yi

)
, (3.6)
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where V −1
i = K

1/2
ih1

(t0)(IiΣiIi)−1K
1/2
ih1

(t0). Denote f̂ν(t0) = ν!β̂ν(t0) as the estimator of the

νth derivative f (ν)(t0) for ν = 0, 1, . . . , p. In particular, f̂0(t0) is the estimator of f(t0). By

varying t0 we obtain the estimator f̂0(t) ≡ f̂(t) of the mean function f(t).

The calculation of the estimator β̂(t0) in (3.6) assumes that the within-subject covariance

matrices Σi are known. When unknown they can be replaced by the estimators Σ̂i, which

are given in the next subsections.

3.3 Estimation of the generalized autoregressive parameter function

Applying the modified Cholesky decomposition to Σi, the log-likelihood function ` in (3.4)

can be rewritten as

−2` =
n∑

i=1

log|Di|+
n∑

i=1

mi∑

j=1

(
rij −

j−1∑

k=1

φijkrik

)2

/σ2
ij , (3.7)

where rij = yij − µij with µij = f(tij) and Di = diag(σ2
i1, . . . , σ

2
imi

). The generalized autore-

gressive parameters φijk are modelled in terms of a smooth function g(tij , tik), which may

be one or two-dimensional, depending on whether or not the longitudinal data is stationary.

Below we consider the general case. Similar to the mean function estimation, for the points

(tij , tik) (tik < tij) in a neighborhood of (t0, s0) (s0 < t0), the function g(t, s) (s < t) can be

approximated by the Taylor expansion, for example, only through the linear term

g(tij , tik) ≈ g(t0, s0) + (tij − t0)g′t(t0, s0) + (tik − s0)g′s(t0, s0) ≡ Z ′ijkγ, (3.8)

where g′t(t0, s0) = ∂g(t, s)/∂t|t=t0,s=s0 and g′s(t0, s0) = ∂g(t, s)/∂s|t=t0,s=s0 , whereas Zijk =

(1, (tij − t0), (tik − s0))′ and γ = (g(t0, s0), g′t(t0, s0), g′s(t0, s0))′ are (3 × 1) vectors. The use

of high-order Taylor expansion of g(t, s) is straightforward but Zijk and γ are more than

three-dimensional in this case.

Motivated by the local maximum likelihood estimation and using (3.7) and (3.8), we
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propose to minimize the partial local-weighted log-likelihood

Q2(γ) =
n∑

i=1

mi∑

j=1

(
rij −

j−1∑

k=1

(Z ′ijkγ)rikK
1/2
h2

(tij − t0, tik − s0)

)2

/σ2
ij (3.9)

with respect to γ, where Kh2(t − t0, s − s0) is the two-dimensional kernel function, which

is usually chosen as Kh2(t − t0, s − s0) = K({(t − t0)2 + (s − s0)2}/h2
2)/h2 where K(·) is

the univariate kernel function. In (3.9), h2 is the bandwidth parameter for estimating g(·, ·),

which in general is different from h1, the bandwidth parameter when estimating the mean

function f(t). The following proposition provides the solution to the equation ∂Q2(γ)/∂γ = 0.

PROPOSITION 3.1. Let Z(i,j) =
∑j−1

k=1 rikK
1/2
h2

(tij−t0, tik−s0)Zijk and Z(i) = (Z(i,1), . . . ,

Z(i,mi))
′. Minimizing the partial local-weighted log-likelihood Q2(γ) in (3.9) over γ leads to

the local maximum likelihood estimator

γ̂(t0, s0) =

(
n∑

i=1

Z ′(i)D
−1
i Z(i)

)−1 (
n∑

i=1

Z ′(i)D
−1
i ri

)
, (3.10)

where ri = yi − µi ≡ (ri1, . . . , rimi)
′ is the (mi × 1) residual vector.

Proof: See Appendix A.

Proposition 3.1 provides an explicit solution of the local maximum likelihood estimator of

the parameter γ at (t0, s0). When varying (t0, s0) over the range {(t, s) : s < t and (t, s) ∈ R2},

we obtain the estimated function γ̂(t, s). The first component γ̂0(t, s) is then the estimated

function of the generalized autoregressive parameter function g(t, s).

It is noted that when calculating the estimator of γ we assume that the mean and in-

novation variance are known. When unknown, they can be replaced by the corresponding

estimators. For example, the mean parameter β can be replaced by its estimator (3.6) and

the innovation variance parameter λ be replaced by the estimator given below.
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3.4 Estimation of the innovation variance function

When written as a function of the innovation variances σ2
ij , the log-likelihood ` in (3.4) has

the alternative form

−2` =
n∑

i=1

mi∑

j=1

(
logσ2

ij + (rij − r̂ij)
2 exp

{−logσ2
ij

})
, (3.11)

where rij = yij−µij and r̂ij =
∑j−1

k=1 φijkrik. By using the Taylor expansion in a neighborhood

of t0, the innovation variance function q(tij) can be approximated by q(tij) = z′ijλ where zij =

(1, (tij − t0), . . . , (tij − t0)d)′ and λ = (λ0, λ1, . . . , λd)′ with λν = q(ν)(t0)/ν! (ν = 0, 1, . . . , d).

Therefore, similar to (3.2) we propose to minimize the following local-weighted function

Q3(λ) =
n∑

i=1

mi∑

j=1

(
z′ijλ + (rij − r̂ij)

2 exp
(−z′ijλ

))
Kh3(tij − t0) (3.12)

with respect to λ, where Kh3(tij− t0) is the standardized kernel function, i.e., Kh3(tij− t0) =

K((tij − t0)/h3)/h3, and h3 is the bandwidth for estimating q(t0).

In contrast to Q1(β) and Q2(γ), minimizing Q3(λ) does not enjoy analytical solution as

the score function ∂Q3(λ)/∂λ is nonlinear in λ. Therefore, in order to calculate the estimator

of λ, we have to look for an iterative solution, for example, using the New-Raphson algorithm.

The following proposition gives the Newton-Raphson iterative solution for obtaining the local

maximum likelihood estimator of the innovation variance parameter λ at t0.

PROPOSITION 3.2. Let V −1
i = diag{(ri1− r̂i1)2/σ2

i1, . . . , (rimi− r̂imi)
2/σ2

imi
}, Kih3(t0) =

diag{Kh3(ti1−t0), . . . , Kh3(timi−t0)} and W−1
i = V

−1/2
i Kih3(t0)V

−1/2
i (i = 1, 2, . . . , n). Then

the Newton-Raphson solution for minimizing the local-weighted log-likelihood function Q3(λ)

at t0, can be iterated through

λ̂(t0) =

(
n∑

i=1

Z ′iW
−1
i Zi

)−1 (
n∑

i=1

Z ′iW
−1
i ui

)
, (3.13)
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where Zi = (zi1, . . . , zimi)
′, ui = (logDi + Imi − Vi)1mi is the working response with logDi =

diag{logσ2
i1, . . . , logσ2

imi
}, and Imi and 1mi are the (mi×mi) identity matrix and the (mi×1)

vector of 1’s, respectively.

Proof: See Appendix A.

It is noted that when updating the estimator of λ we assume the mean and general-

ized autoregressive parameters are known. When unknown, they can be replaced by the

corresponding estimators. In other words, the mean parameter β and the generalized autore-

gressive parameter γ can be replaced by their estimators in (3.6) and (3.10), respectively.

3.5 Bandwidth selection

It is well established that the choice of bandwidth parameters is more crucial than that

of the kernel function. A selection criterion is needed to find the optimal value of band-

width, which actually controls the ‘local neighborhood’ of observations. Obviously, the wider

the local neighborhood the less rough the smoothing curve. Without loss of generality, we

propose to use a constant bandwidth for each of the three smoothing functions. In the litera-

ture, cross-validation method was exclusively used to choose the optimal value of bandwidth.

For longitudinal data, as suggested by Rice and Silverman (1991) we propose to use the

cross-validation method with leave-one-subject-out, rather than leave-one-observation-out,

to choose the optimal bandwidth. Similar strategies were considered by Hart and Wehrly

(1993) where consistency of the principle was studied. Specifically, we use the modified cross-

validation with leave-one-subject-out (MCVS) criteria for the mean and covariance smoothing
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functions as follows:

MCVS(h1) =
n∑

i=1

(
yi − f̂ (−i)(ti)

)′
Σ−1

i

(
yi − f̂ (−i)(ti)

)
(3.14)

MCVS(h2) =
n∑

i=1

(
ri − r̂

(−i)
i

)′
D−1

i

(
ri − r̂

(−i)
i

)
(3.15)

MCVS(h3) =
n∑

i=1

(
ε2
i − exp

(
q̂(−i)(ti)

))′
Ω−1

i

(
ε2
i − exp

(
q̂(−i)(ti)

))
(3.16)

where in (3.14) f̂ (−i)(ti) denotes the estimator of f(t) using the data when the ith subject is

excluded. In (3.15) r̂
(−i)
i = (0, r̂

(−i)
i2 , . . . , r̂

(−i)
imi

)′ with r̂
(−i)
ij =

∑j−1
k=1 ĝ(−i)(tij , tik)(yik − f(tik))

where ĝ(−i)(tij , tik) is the estimator of g(t, s) under the reduced dataset. In (3.16) ε2
i =

(ε2
i1, . . . , ε

2
imi

)′ with εij = rij− r̂ij and q̂(−i)(ti) is the estimator of q(t) using the data without

the ith subject. It can be shown that Di = diag
{
σ2

i1, . . . , σ
2
imi

}
is actually the covariance

matrix of the residuals ri. It is noted that in (3.16) Ωi is the covariance matrix of ε2
i and

is given by Ωi = Var(ε2
i ) = 2diag{σ4

i1, . . . , σ
4
imi
}. In fact, as yi ∼ Nmi(µi, Σi) we have

εi ∼ Nmi(0, Di) according to the definition of εi = Ti(yi − µi), see Section 2. Since Di is

diagonal, we know that εij and εik(j 6= k) are independent and so do ε2
ij and ε2

ik(j 6= k).

On the other hand, as ε2
ij/σ2

ij ∼ χ2
1 it is obvious that Var(ε2

ij) = 2σ4
ij so that we have

Ωi = 2diag{σ4
i1, . . . , σ

4
imi
}. In contrast to the responses yi (3.14), ri and ε2

i play a role of

responses in MCVS(h2) and MCVS(h3), respectively.

We then minimize MCVS(hl) to obtain the optimal value of the bandwidth, that is,

ĥl = arg minhl>0{MCVS(hl)} for l = 1, 2, 3. Note that MCVS(h1) and MCVS(h2) can be

easily calculated by using the estimators in (3.6) and (3.10) as the score functions of Q1(β)

and Q2(γ) are linear in β and γ, respectively. But the calculation of MCVS(h3) is difficult

because the score function of Q3(λ) is nonlinear in λ. As a result, it may be very time-

consuming for finding the optimal value that minimizes MCVS(h3) in the whole range of

h3 > 0. Instead, we propose to pre-select a subarea of the bandwidth and then minimize the

MCVS criterion in the subarea. This strategy is applied to the bandwidth selection in the
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numerical studies which will be presented later, and works reasonably well.

3.6 Backfitting algorithm

Based on the principles described above, we propose a backfitting algorithm to calculate the

estimators of the smoothing functions in the mean, generalized autoregressive coefficients and

log-innovation variances.

Step 1. Given starting values of ĝ(0)(t, s) and q̂(0)(t) of the functions g(t, s) and q(t), the

local weighted least square estimator of the mean function f̂ (0)(t) can be extracted from the

first component of the vector β̂(0)(t) given by

β̂(0)(t) =

(
n∑

i=1

X ′
iV̂

(0)−1
i Xi

)−1 (
n∑

i=1

X ′
iV̂

(0)−1
i yi

)

where V̂
(0)−1
i = K

1/2

ĥ
(0)
1

(ti − t)Σ̂(0)−1
i K

1/2

ĥ
(0)
1

(ti − t) and Σ̂(0)
i is formed by ĝ(0)(t, s) and q̂(0)(t).

The bandwidth estimator ĥ
(0)
1 is obtained by minimizing the MCVS(h1) in (3.14).

Step 2. Denote r̂
(0)
ij = yij − f̂ (0)(tij) (i = 1, . . . , n, j = 1, . . . , mi). Form û

(0)
i , Ẑ

(0)
(i)

and Ŵ
(0)
i (i = 1, . . . , n) defined in Propositions 3.1 and 3.2. Then the local weighted least

square estimators ĝ(1)(t, s) and q̂(1)(t) of the functions g(t, s) and q(t) in the generalized

autoregressive parameters and log-innovation variances are the first components of γ̂(1)(t)

and λ̂(1)(t), respectively, where

γ̂(1)(t) =

(
n∑

i=1

Ẑ
′(0)
(i) D̂

(0)−1
i Ẑ

(0)
(i)

)−1 (
n∑

i=1

Ẑ
′(0)
(i) D̂

(0)−1
i r̂

(0)
i

)

λ̂(1)(t) =

(
n∑

i=1

Z ′iŴ
(0)−1
i Zi

)−1 (
n∑

i=1

Z ′iŴ
(0)−1
i û

(0)
i

)

The bandwidth estimators ĥ
(0)
2 and ĥ

(0)
3 are obtained by minimizing MCVS(h2) in (3.15) and

MCVS(h3) in (3.16), respectively.

Step 3. Use the resulting estimators ĝ(1)(t, s) and q̂(1)(t) to replace ĝ(0)(t, s) and q̂(0)(t),

respectively, and then repeat Step 1 and Step 2 above until convergence.
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A convenient starting value for ĝ(0)(t, s) and q̂(0)(t) may be taken as ĝ(0)(t, s) = 0 (s ≤ t)

and q̂(0)(t) = 0. In other words, the (mi ×mi) identity matrix can be chosen as the starting

value for estimating the covariance matrix Σi.

4 Asymptotic properties

In this section we discuss the asymptotic properties of the nonparametric smoothing estima-

tors in (3.6), (3.10) and (3.13). Without loss of generality, we only consider the scenario of

stationary longitudinal data. In other words, the lower triangular elements φijk in Ti only

depend on the lag in time through a univariate smoothing function g(t∗) where t∗ ≡ t − s

with s < t.

We naturally assume that all time points tij are positive, i.e., tij > 0. If some tij < 0

(e.g., after centralization), a shift of the times is necessary to ensure all tij are positive. Below

we use the principle of a counting process (Lin and Ying, 2001) to obtain asymptotic results

of the nonparametric smoothing estimators. The counting process which characterizes the

distribution of the time points tij , is defined by

Ni(t) =
mi∑

j=1

I(tij ≤ t) (4.1)

where I(·) is the indicator function. Assume that the response function yi(t) and the mean

function f(t) are observed at each of the jump points of the counting processes Ni(t) and

N(t), respectively. Using the notation of the counting process we rewrite the local least

squares (3.5) as:

n∑

i=1

∫ ∞

0

(
yi(t)−X ′

i(t)β
)′

K
1/2
h1

(t− t0)(IiΣiIi)−1K
1/2
h1

(t− t0)
(
yi(t)−X ′

i(t)β
)
dNi(t) (4.2)

Suppose that ϕi(t) and ϕ(t) are the intensity functions of the processes Ni(t) and N(t),

respectively. The following mild regularity conditions are necessary for the technical proofs

provided in Appendices B and C.
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(i) The smooth functions f(t), g(t∗), and q(t) are all bounded and have continuous

(p + 1)th, (b + 1)th and (d + 1)th derivatives, respectively, where p, b and d are

fixed integers.

(ii) The elements of the covariance matrices Σi(t) =Var(Yi|t) and of the inverses

Σ−1
i (t) are all bounded and continuous in time. Furthermore, the third and fourth

moments of Yi(t) exist and are all bounded.

(iii) The intensity functions ϕi(t) and ϕ(t) are positive, bounded and differentiable.

(iv) The kernel function K(·) is a bounded density function satisfying
∫
R K(u)du = 1,

∫
R u2iKj(u)du < +∞, and

∫
R u2i−1Kj(u)du = 0 (j = 1, 2; i = 1, 2, 3, ...).

(v) The functional spaces C, B and V for the local parameters β(t), γ(t) and λ(t) are

all compact. In other words, each space above is closed and bounded.

(vi) The bandwidth parameters, hν , satisfy hν → 0 and nhν → ∞ as n → ∞ (ν =

1, 2, 3).

We also denote

cK =
∫

R
u2K(u)du and dK =

∫

R
K2(u)du.

Note that the conditions imposed on K(·), which are for convenience of technical proofs,

are very regular but can be relaxed further. Let ε(t) represent the stochastic process of the

random error having the observed realization εi = (εi(ti1), . . . , εi(timi))
′. It is actually the

random error in the nonparametric regression model yi = f(ti) + εi (i = 1, 2, . . . , n). A

sequence of function estimator f̂(t) is said to be a consistent estimator of the function f(t)

if for any t the sequence f̂(t) converges to f(t) in probability, that is f̂(t) P→ f(t) as n →∞.

The theorems below provide the consistencies of the mean and covariance smooth function

estimators when the local polynomial estimation method is used.
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Theorem 1. Suppose the regularity conditions (i)-(vi) above are satisfied. When using the

local maximum likelihood estimation method in (3.6) to model the mean function f(t), the

resulting estimator f̂(t) has the conditional mean square errors:

E[(f̂(t)− f(t))2|t1, . . . , tn] =
1
4
h4

1(f
′′
(t))2c2

K +
V ar(ε(t))dK

(nh1)ϕ(t)
+ op(h4

1 +
1

nh1
) (4.3)

Therefore, f̂(t) converges to f(t) in probability, that is, f̂(t) P→ f(t) as n →∞.

Proof: See Appendix B.

Theorem 2. Suppose the regularity conditions (i)-(vi) above are satisfied. When using the

local maximum likelihood estimation methods in (3.10) and (3.13) to model the generalized

autoregressive coefficients function g(t∗) and the log-innovation variances function q(t), the

resulting estimators ĝ(t∗) and q̂(t) converge to g(t∗) and q(t) in probability, respectively, that

is, ĝ(t∗) P→ g(t∗) and q̂(t) P→ q(t) as n →∞.

Proof: See Appendix C.

5 Numerical studies

5.1 Cattle data

We reanalyze Kenward (1987)’s Cattle data in which 60 cattle were assigned randomly to two

treatment groups A and B. Half the cattle received treatment A and the other half received

treatment B. The cattle were weighted 11 times over 133-day period at 0, 14, 28, 42, 56, 70,

84, 98, 112, 126 and 133 in days. The objective of the study was to investigate treatment

effects on intestinal parasites.

This data set was analyzed by many authors, including Pourahmadi (1999), Wu and

Pourahmadi (2003), and Pan and Mackenzie (2003). For illustration, the proposed non-

parametric estimation method is used to model the mean and covariance structures for the
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treatment A data only. Without loss of generality, we assume a univariate smooth function

g(t∗ijk) for modelling the generalized autoregressive parameters φijk where t∗ijk ≡ tij − tik. In

other words, we assume a stationary correlation structure for the data.

Figure 1 is about here.

The bandwidth parameter estimators, obtained by using the MCVS method, are h1 = 0.80,

h2 = 0.80 and h3 = 0.55, respectively. Note that the cattle data are balanced, and so in

Figure 1 we plot the sample generalized autoregressive coefficients and sample log-innovation

variances against time/lag. We also display the fitted curves for the mean and covariance

structures using the proposed nonparametric smoothing methods. Figure 1 shows that the

estimated smoothing curves fit the data well, though for the log-innovation variances there is

a slight departure from the samples at the right corner. This may be due to the fact that the

log transformation made to the innovation variances can be further improved. The estimated

smoothing curves are very similar to the ones obtained by Pan and MacKenzie (2003), where

three polynomials in time, one of degree 8 and two cubics, were used to model the mean

parameters, the generalized autoregressive parameters and the log-innovation variances. The

nonparametric estimators of the mean and covariance structures are much more parsimonious

and can be regarded as a guide to the formulation of parametric models.

Table 1 gives the correlation matrix obtained by the resulting nonparametric smoothing

estimators. We also compare our estimators to those obtained by Wu and Pourahmadi (2003),

where they only model the first two subdiagonals of T̂ and assume others to be zero. Table 1

shows some differences in the estimated correlation matrix obtained by the two approaches.

Table 1 is about here.
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5.2 CD4+ Cell data

CD4+ data comprise CD4+ cell counts for 369 HIV-infected men (Diggle, et al., 2002).

Altogether there are 2376 values of CD4+ cell counts, with several repeated measurements

being made for each individual at different times covering a period of approximately eight

and a half years. For further details on design and medical implications of the study, one can

refer to Diggle, et al. (2002).

Modelling of the CD4+ data is really challenging as the data are highly unbalanced. In

the literature, various estimation methods were proposed to model the mean and covariance

structures of the data, see Diggle and Verbyla (1998), Ye and Pan (2006) and references

therein. Below we reanalyze the CD4+ data using our proposed local maximum likelihood

estimation methods. The resulting nonparametric estimators of the mean, generalized au-

toregressive parameters, and log-innovation variances are presented in Figure 2. Here we

assume a univariate smoothing function g(t∗ijk) where t∗ijk ≡ tij − tik when modelling the

generalized autoregressive parameters φijk. In other words, the within-subject correlation is

assumed to be stationary.

Figure 2 is about here.

The estimated bandwidth parameters obtained by the MCVS method are h1 = 0.68, h2 =

0.02, and h3 = 0.17. Figure 2 shows that the smoothing function for modelling the generalized

autoregressive parameters displays a cubic polynomial pattern, confirming the discovery made

by Ye and Pan (2006). The resulting mean trajectory is similar to the one obtained by Diggle

et al. (2002) who used smoothing spline to model the mean by assuming certain covariance

structures. From Figure 2 we can also see that the mean smoothing function is roughly

a constant between around 1000 cells and the time of seroconversion and then decreases

afterwards, indicating that the CD4+ cell loss may be more rapid after seroconversion. For the
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log-innovation variances, it seems that the fitted smooth curve is a higher order polynomial,

in contrast to the cubic polynomial suggested by Ye and Pan (2006). But if we ignore

some small wiggly part the cubic polynomial curve may be reasonable for modelling the log-

innovation variances. Note that when modelling the mean and log-innovation variances, the

curve patterns near the end of time may not be reliable as there are fewer observations there

for highly unbalanced longitudinal data.

5.3 Monte Carlo simulation

In this section a simulation study is made to assess the performance of the proposed ap-

proach. For each subject we assume that there are five repeated measurements and the

corresponding time points at which the observations are made are randomly chosen from the

uniform distribution over the interval [−2, 2]. Denote ti = (ti1, . . . , ti5) as the time points and

t∗i = {tij − tik : j = 2, . . . , 5; k = 1, j − 1} as the lag in time (i = 1, . . . , n) for the ith subject.

We choose three underlying target function curves for the mean, generalized autoregressive

parameters and log-innovation variances as follow.

f(ti) = 7×
[
exp

{
− (ti + 1)2

}
+ exp

{
− (ti − 1)2

}]
− 5.5 (5.1)

g(t∗i ) = 0.9× sin
(π

8
(4− t∗i )

)
(5.2)

q(ti) = 2− 1
3
× t2i (5.3)

Based on (5.1)-(5.3) we then use f(ti) to form the mean vectors µi and use g(t∗i ) and q(ti)

to construct the covariance matrices Σi. We generate random vectors yi ∼ N5(µi, Σi) (i =

1, . . . , n). We choose three sample sizes n = 250, 500 and 1000 in our simulation studies

to monitor the effects of the sample size. For each subject the generated data have five

correlated observations, but the corresponding observation times may be very irregular so

that the generated longitudinal data are unbalanced.

For each sample size above, we perform 100 simulations for the target function curves and
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calculate the average of estimated curves in the simulations, which are displayed in Figure 3.

Figure 3 is about here.

Here the MCVS criterion is used to find the optimal value of bandwidth parameter for each

simulated data set. From Figure 3 we see that, on average, the local kernel weighted likelihood

estimation for modelling of the mean and covariance structures performs very well, though for

log-innovation variances there is a small discrepancy between the target curve and simulated

curve when the sample size is 500.

An argument may be that, the average simulation curves may not be always good enough

to reflect the efficacy of the methodology. As an alternative we give some typical simula-

tion replicates, for example, the most wiggly, the median and the smoothest ones. Figure

4 provides such information when the sample size is n = 250, where the solid curve is the

truth, and the dotted curve represents the most wiggly replicate in the 100 simulated data,

corresponding to the optimal bandwidths h1 = 0.12, h2 = 0.01 and h3 = 0.10 for smoothing

the mean, the generalized autoregressive parameters and log-innovation variances, respec-

tively. The dash-dotted curve represents the replicate close to the median of the estimated

smoothing parameters, that is, h1 = 0.22, h2 = 0.04 and h3 = 0.12. The dashed curve in

contrast is the smoothest replicate in the 100 simulated data, which has the optimal band-

widths h1 = 0.42, h2 = 0.06 and h3 = 0.40 for the estimated functions f̂(t), ĝ(t∗) and q(t),

respectively. It is noted that when modelling the log-innovation variances the median repli-

cate increases rapidly near the right boundary of time, see Figure 4. This phenomenon is

the well-known boundary problem. In other words, nonparametric smoothing methods espe-

cially kernel methods may not perform very well in the boundary area due to the sparse data

problem.

Figure 4 is about here.
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6 Discussion

More and more evidence show that statistical inference for longitudinal data may not be

efficient when misspecification of the within-subject covariance structures occurs. In some

circumstances parameter estimators in the mean could be very biased when covariance struc-

tures are misspecified. Therefore statistical modelling for covariance structures has attracted

more attention in the past decade. In this paper we propose a nonparametric local kernel

weighted likelihood based approach to model the mean and covariance structures, simulta-

neously. The modelling approach involves the use of the modified Cholesky decomposition,

which decomposes the within-subject covariances into the generalized autoregressive param-

eters and the innovation variances. These reparameterized covariance parameters, together

with the mean, are in turn parsimoniously modelled by three nonparametric smooth functions

of time/lag. Local kernel-weighted likelihood estimation methods are then used to estimate

the nonparametric smooth functions. Numerical results show that the proposed approach

performs very well.

We propose to use a modified cross-validation with leave-one-subject-out criterion to find

the optimal value of the bandwidth parameter. Numerical results confirm the efficacy of this

bandwidth selector. In practice, however, it might be more attractive if we have a bandwidth

selection criterion that can adaptively find the location-varying bandwidth parameter esti-

mator. This deserves a further investigation. Furthermore, it is very common that certain

baseline covariates, along with the time, might be of interest, so the models in (2.2) could

include an additional parametric part. This actually forms semiparametric models for mod-

elling the mean, generalized autoregressive parameters and log-innovation variances. Within

this framework, the assumption of homogeneous covariances across subjects become testable

(Pan and MacKenzie, 2003). More sophisticated models including varying-coefficients models

and functional models are under investigation in our studies.
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Appendix A. Proof of Propositions 3.1 and 3.2

Proof of Proposition 3.1: Consider the first-order derivative of Q2(γ) with respect to γ

∂Q2(γ)
∂γ

= −2
n∑

i=1

mi∑

j=1

(
rij −

j−1∑

k=1

Z ′ijkγrikK
1/2
h2,ijk

)(
j−1∑

k=1

rikK
1/2
h2,ijkZijk

)
/σ2

ij

= −2
n∑

i=1

mi∑

j=1

(
rij − Z ′(i,j)γ

)
Z(i,j)/σ2

ij

= −2
n∑

i=1

Z ′(i)D
−1
i

(
ri − Z(i)γ

)

where Kh2,ijk = Kh2(tij − t0, tik − s0). Therefore, the equation ∂Q2(γ)/∂γ = 0 has the

solution (3.10), which is obviously the minimizer of the partial local-weighted log-likelihood

Q2(γ). The proof is complete.

Proof of Proposition 3.2: First, the first-order derivative of Q3(λ) is equal to

∂Q3(λ)
∂λ

=
n∑

i=1

mi∑

j=1

(
1− (rij − r̂ij)

2 exp
{−z′ijλ

})
zijKh3(tij − t0)

=
n∑

i=1

Z ′iW
−1
i (Vi − Imi)1mi

where the second equality is rewritten in matrix notation. Then, the second-derivative of

Q3(λ) can be written as

∂2Q3(λ)
∂λ∂λ′

=
n∑

i=1

mi∑

j=1

(rij − r̂ij)2 exp{−z′ijλ}zijz
′
ijKh3(tij − t0)

=
n∑

i=1

Z ′iW
−1
i Zi
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Therefore, given a starting value of λ the Newton-Raphson one-step iteration for the solution

at t0 is obtained by

λ̂(t0) = λ +

(
−

n∑

i=1

Z ′iW
−1
i Zi

)−1 (
n∑

i=1

Z ′iW
−1
i (Vi − Imi)1mi

)

=

(
n∑

i=1

Z ′iW
−1
i Zi

)−1 (
n∑

i=1

Z ′iW
−1
i {Ziλ− (Vi − Imi)1mi}

)

=

(
n∑

i=1

Z ′iW
−1
i Zi

)−1 (
n∑

i=1

Z ′iW
−1
i (logDi + Imi − Vi)1mi

)

=

(
n∑

i=1

Z ′iW
−1
i Zi

)−1 (
n∑

i=1

Z ′iW
−1
i ui

)

and the proof is complete.

Appendix B. Proof of Theorem 1

Recall that the local weighted least square estimator of the mean parameters is

β̂(t) =

(
n∑

i=1

X ′
i(t)V

−1
i (t)Xi(t)

)−1 (
n∑

i=1

X ′
i(t)V

−1
i (t)yi

)
(B.1)

where V −1
i = K

1/2
ih1

(t)(IiΣiIi)−1K
1/2
ih1

(t). We denote (IiΣiIi)−1 = (σjk
i )j,k=1,...,mi . Note that

(IiΣiIi)−1 denotes the Moore-Penrose generalized inverse of the matrix IiΣiIi. We then

conclude that |σjk
i | < ∞ under regularity condition (ii) . Without loss of generality, we

only provide the proof for the local linear regression estimation. In other words, xij(t) =

(1, (tij − t))′ and β(t) = (β0(t), β1(t))′ and so f̂(t) = e′1β̂(t) with e1 = (1, 0)′.

Note that Ef̂(t) = e′1
(∑n

i=1 X ′
i(t)V

−1
i (t)Xi(t)

)−1 (∑n
i=1 X ′

i(t)V
−1
i (t)f(ti)

)
where f(ti) =

(f(ti1), ..., f(timi))
′ with

f(tij) = f(t) + (tij − t)f ′(t) + (tij − t)2
1
2
f
′′
(t) + Rij(t) = x′ij(t)β(t) + Qij(t) + Rij(t),

Qij(t) = (tij − t)2f
′′
(t)/2, and Rij(t) is the remainder. The bias of the mean estimator can

thus be approximated by

E[f̂(t)|t1, . . . , tn]− f(t) .= e′1

(
n∑

i=1

X ′
i(t)V

−1
i (t)Xi(t)

)−1 (
n∑

i=1

X ′
i(t)V

−1
i (t)Qi(t)

)
(B.2)
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where ti = (ti1, ..., timi)
′ and Qi(t) = (Qi1(t), ..., Qimi(t))

′ for i = 1, 2, ..., n.

Based on (B.2) we first consider the asymptotic behavior of V −1
i (t). From its definition

we know that the (j, k)th element of V −1
i (t) is K

1/2
h1

(tij− t)σjk
i K

1/2
h1

(tik− t) (j, k = 1, . . . , mi).

When the bandwidth h1 is sufficiently small, K
1/2
h1

(tij− t)σjk
i K

1/2
h1

(tik− t) is almost negligible

where j 6= k and |σjk
i | < ∞. Therefore, V −1

i (t) can be approximately viewed as diagonal

matrices, that is, V −1
i (t) .= diag{Kh1(ti1 − t)σ11

i , . . . , Kh1(timi − t)σmimi
i }, as long as the

bandwidth h1 is small enough.

We continue by considering the asymptotic behavior of Sn = n−1
∑n

i=1 X ′
i(t)V

−1
i (t)Xi(t).

When h1 is small enough, Sn can be approximated by

(
Sn,0 Sn,1

Sn,1 Sn,2

)
where Sn,l = n−1

n∑

i=1

mi∑

j=1

σjj
i Kh1(tij − t)(tij − t)l for l = 0, 1, 2.

Below we apply the counting process Ni(t) in (4.1) to the estimation procedure. Obviously,

the response process yi(t) is observed at the jump points of Ni(t). Let ϕ(t) be the intensity

function of the counting process N(t) and denote τ(tij) = σjj
i . Then we have

Sn,l = n−1
n∑

i=1

mi∑

j=1

τ(tij)Kh1(tij − t)(tij − t)l = n−1
n∑

i=1

∫ ∞

0
τ(s)Kh1(s− t)(s− t)ldNi(s)

for l = 0, 1, 2. Under the regularity conditions, we obtain Sn,l → E(Sn,l) as n →∞. On the

other hand, the expectation E(Sn,l) is give by

E(Sn,l) = n−1
n∑

i=1

E

∫ ∞

0
τ(s)

K ((s− t)/h1)
h1

(s− t)ldNi(s)

=
∫ ∞

0
τ(s)

K ((s− t)/h1)
h1

(s− t)lϕ(s)ds

=
∫ ∞

−t/h1

τ(t + uh1)K(u)ulhl
1ϕ(t + uh1)du

.= hl
1

∫ +∞

−∞
(τ(t)ϕ(t) + op(1))K(u)uldu

= hl
1

{
τ(t)ϕ(t)

∫ +∞

−∞
ulK(u)du + op(1)

∫ +∞

−∞
ulK(u)du

}

= hl
1τ(t)ϕ(t)

∫ +∞

−∞
ulK(u)du (1 + op(1))
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Using the condition (iv) we then have the asymptotic behavior of Sn being

Sn =
(

Sn,0 Sn,1

Sn,1 Sn,2

)
=

(
τ(t)ϕ(t) + op(1) 0

0 h2
1τ(t)ϕ(t)cK + op(h2

1)

)
.

In a similar manner we can show that n−1
(∑n

i=1 X ′
i(t)V

−1
i (t)Qi(t)

)
satisfies




n−1
n∑

i=1

mi∑

j=1

τ(tij)Kh1(tij − t)(f
′′
(t)/2)(tij − t)2

n−1
n∑

i=1

mi∑

j=1

τ(tij)Kh1(tij − t)(f
′′
(t)/2)(tij − t)3




=




1
2h2

1τ(t)ϕ(t)f
′′
(t)cK + op(h2

1)

0


 .

Based on (B.2), the asymptotic behavior of the bias of f̂(t) is given by

Bias(f̂(t)|t1, . . . , tn) = {E[f̂(t)|t1, . . . , tn]− f(t)} =
1
2
h2

1f
′′
(t)cK + op(h2

1) (B.3)

as long as n is large enough. Finally, we consider the asymptotic behavior of the variances

of f̂(t). Obviously,

Var(f̂(t)|t1, . . . , tn) =
1
n

e′1S
−1
n

(
n−1

n∑

i=1

X ′
i(t)V

−1
i (t)ΣiV

−1
i (t)Xi(t)

)
S−1

n e1. (B.4)

Below we study the asymptotic behavior of S∗n = n−1
∑n

i=1 X ′
i(t)V

−1
i (t)ΣiV

−1
i (t)Xi(t). Note

that the (j, k)th off-diagonal elements of V −1
i (t)ΣiV

−1
i (t) must be of the form

mi∑

s′=1

mi∑

s=1

K
1/2
h1

(tij − t)σjs
i K

1/2
h1

(tis − t)Cov(yi(tis), yi(tis′))K
1/2
h1

(tis′ − t)σs′k
i K

1/2
h1

(tik − t),

which is negligible as j 6= k and h1 is sufficiently small. In other words, V −1
i (t)ΣiV

−1
i (t)

can be approximately viewed as diagonal matrices when the bandwidth h1 is small enough.

Therefore, the elements of S∗n can be approximated by

S∗n,l = n−1
n∑

i=1

ni∑

j=1

(tij − t)lK2
h1

(tij − t)(σjj
i )2Var(yi(tij)) (for l = 0, 1, 2)

Similar to Sn,l above, we can show that

S∗n,l = hl−1
1 τ2(t)ϕ(t)Var (ε(t))

∫ +∞

−∞
ulK2(u)du (1 + op(1)) . (l = 0, 1, 2)
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Based on (B.4) we have

Var(f̂(t)|t1, . . . , tn) = (nh1)−1(ϕ(t))−1Var(ε(t))dK + op(
1

nh1
). (B.5)

Combining this with (B.3) we obtain the local conditional MSE of the mean smooth estimator

f̂(t) in (4.3). Furthermore, it follows that under the mild regular conditions we have E[(f̂(t)−

f(t))2|t1, . . . , tn] → 0 as h1 → 0 and nh1 → ∞, implying f̂(t) P→ f(t) as n → ∞. The proof

is complete.

Appendix C. Proof of Theorem 2

The proof of Theorem 1 requires an analytical form of the smooth estimator. This similar

strategy, thus, can be used to show the consistency of the smooth estimator for the generalized

autoregressive parameters, as it has a closed form. For the log-innovation variances, however,

the smooth estimator does not have a simple analytical form and so the technical strategy

shown above cannot be directly used. In a spirit of Chiu et al. (1996) we propose an

alternative method to show the consistency of the smooth estimator for the log-innovation

variances. The conclusion made here is actually q̂(t) a.s.→ q(t) as n →∞, that is, q̂(t) converges

almost surely to q(t), implying q̂(t) P→ q(t) as n →∞.

First, the local kernel-weighted log-likelihood contributed by the ith subject at the time

t can be written as

−2`
(
yi;Z ′iλ(t)

)
=

mi∑

j=1

(
z′ijλ(t) + (rij − r̂ij)2 exp

{−z′ijλ(t)
})

Kh3(tij − t) (C.1)

where zij = (1, (tij − t))′ and λ(t) = (λ0(t), λ1(t))′. We assume λ0(t) = (λ0
0(t), λ

1
0(t))

′ is

the true value of λ(t). Note that q(t) ≡ λ0(t) = e′1λ(t) and the true value is q0(t) ≡

λ0
0(t) = e′1λ0(t). Since E(rij − r̂ij)2 = σ2

ij = exp{log σ2
ij} = exp{q(tij)}, the expectation of
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−2 log `(yi;Ziλ(t)) at λ(t) = λ0(t) is give by

E0

[−2 log `
(
yi; Z ′iλ(t)

)]

=
mi∑

j=1

[
z′ijλ(t) + exp {q0(tij)} · exp

{−z′ijλ(t)
} ]

Kh3(tij − t)

.=
mi∑

j=1

[
z′ijλ(t) + exp

{
z′ij(λ0(t)− λ(t)) +

(tij − t)2

2
q
′′
0 (t)

}]
Kh3(tij − t)

where q0(tij)
.= q0(t)+q′0(t)(tij− t)+(1/2)q

′′
0 (t)(tij− t)2 is applied. Furthermore, noting that

z′ijλ(t) = λ0(t) + (tij − t) λ1(t) and using the principle of a counting process we have

n−1
n∑

i=1

E0 [−2 log ` (yi; Ziλ(t))]

.= n−1
n∑

i=1

mi∑

j=1

[
λ0(t) + (tij − t) λ1(t)

+ exp
{(

λ0
0(t)− λ0(t)

)
+ (tij − t)(λ1

0(t)− λ1(t)) +
1
2
(tij − t)2q

′′
0 (t)

}]
Kh3(tij − t)

= n−1
n∑

i=1

∫ ∞

0

[
λ0(t) + (s− t)λ1(t)

+ exp
{ (

λ0
0(t)− λ0(t)

)
+ (s− t)(λ1

0(t)− λ1(t)) +
1
2
(s− t)2q

′′
0 (t)

}]
Kh3(s− t)dNi(s)

Let u = (s− t)/h3 and denote G(uh3) = uh3(λ1
0(t)− λ1(t)) + 1

2u2h2
3q
′′
0 (t). The last equality

above can be further expressed as

n−1
n∑

i=1

∫ +∞

−t/h3

[
λ0(t) + h3uλ1(t) + exp

{(
λ0

0(t)− λ0(t)
)

+ G(uh3)
}]K(u)

h3
dNi(t + uh3)

=
∫ +∞

−∞

[
q(t) + h3uλ1(t) + exp

{
(q0(t)− q(t)) + G(uh3)

}]
K(u)(ϕ(t) + op(1))du

as long as n is large enough and h3 is sufficiently small. Applying Taylor expansion to the

function exp{G(uh3)} and noting G(uh3) = uh3{(λ1
0(t)− λ1(t)) + uh3q

′′
0(t)/2}, we can show

that, under the regularity conditions,
∫ +∞

−∞
exp{G(uh3)}K(u)du → 1 as h3 → 0.

Therefore, we have showed that

C0(q(t)) = lim
n→∞

1
n

n∑

i=1

E0

[−2 log `
(
yi; Z ′iλ(t)

)]
= (q(t) + exp {q0(t)− q(t)}) ϕ(t) (C.2)
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as long as the bandwidth h3 is small enough. Clearly, the finite limit function C0(q(t))

achieves its minimum at q(t) = q0(t), that is, C0(q(t)) > C0(q0(t)) for any q(t) 6= q0(t).

We then consider V0 [−2 log `(yi; Z ′iλ(t))], the variance of −2 log ` (yi; Z ′iλ(t)) at λ(t) =

λ0(t). Note that Var{(rij − r̂ij)2} = 2σ4
ij = 2 exp{2q(tij)}. Based on (C.1) and using

the regularity condition assumptions, it is easy to show that there exists a constant κ0

independent of i such that V0 [−2 log `(yi; Z ′iλ(t))] < κ0. Therefore, we have

∞∑

i=1

V0 [−2 log `(yi;Z ′iλ(t))]
i2

< +∞

By Kolmogorov’s strong law of large numbers we obtain

1
n

n∑

i=1

[−2 log `(yi; Z ′iλ(t))
]− 1

n

n∑

i=1

E0

[−2 log `(yi;Z ′iλ(t))
] a.s→ 0 (C.3)

as n →∞. Combining (C.2) and (C.3), we obtain

1
n

n∑

i=1

[−2 log `(yi; Z ′iλ(t))
] a.s→ C0(q(t)) (as n →∞) (C.4)

We are now ready to show q̂n(t) a.s→ q0(t) (n → ∞). In fact, if it does not hold there

must exist a subsequence {m} ⊂ {n} such that q̂m(t) a.s→ q̃(t) 6= q0(t) as m → ∞. Let

λ̂m(t) = (q̂m(t), q̂′m(t))′ and λ̃(t) = (q̃(t), q̃′(t))′. According to the definition of λ̂m(t) we know

1
m

m∑

i=1

[
−2 log `(yi;Z ′iλ̂m(t))

]
≤ 1

m

m∑

i=1

[−2 log `(yi; Z ′iλ0(t))
]

(C.5)

where λ0(t) is the true value of λ(t) at t. Based on (C.4) and (C.5), we obtain

C0(q̃(t)) ≤ C0(q0(t)) (C.6)

due to the fact that the convergence is in uniform. It is clear that (C.6) contradicts the con-

clusion drawn from (C.2). Therefore we have q̂n(t) a.s.→ q0(t) as n →∞, implying q̂n(t) P→ q0(t)

as n → ∞. Similarly, it can be shown that ĝn(t∗) P→ g0(t∗) as n → ∞ but the details are

omitted here. The proof is complete.
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Figure 1: Nonparametric smooth curves for modelling the mean, generalized autoregressive
parameters and log-innovation variances for Cattle data in the treatment A, using the local
kernel weighted likelihood estimation method.

Table 1: Cattle data in the treatment A. The estimated correlation matrix by Wu and
Pourahmadi (2003) are given above the main diagonal. The fitted correlations, below the
main diagonal, are obtained by smoothing the lower triangular entries of T̂ and the diagonals
of D̂ using the local polynomial method.
Time
point 1 2 3 4 5 6 7 8 9 10 11

1 1.00 0.81 0.75 0.70 0.66 0.63 0.60 0.58 0.57 0.55 0.55
2 0.74 1.00 0.91 0.85 0.81 0.77 0.73 0.71 0.70 0.67 0.66
3 0.76 0.86 1.00 0.92 0.88 0.84 0.79 0.77 0.76 0.73 0.72
4 0.72 0.85 0.91 1.00 0.93 0.89 0.84 0.82 0.81 0.77 0.77
5 0.67 0.81 0.89 0.93 1.00 0.93 0.88 0.86 0.85 0.81 0.81
6 0.62 0.76 0.84 0.90 0.94 1.00 0.92 0.90 0.89 0.85 0.84
7 0.56 0.70 0.78 0.85 0.89 0.93 1.00 0.94 0.93 0.90 0.89
8 0.53 0.65 0.73 0.79 0.84 0.89 0.93 1.00 0.96 0.93 0.92
9 0.51 0.61 0.68 0.74 0.79 0.85 0.90 0.94 1.00 0.95 0.94
10 0.49 0.59 0.65 0.71 0.75 0.81 0.86 0.91 0.94 1.00 0.98
11 0.45 0.57 0.63 0.68 0.73 0.78 0.84 0.90 0.95 0.98 1.00
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Figure 2: Nonparametric smooth curves for modelling the mean, generalized autoregressive
parameters and log-innovation variances for CD4+ cell data, using the local kernel weighted
likelihood estimation method.

32



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−3

−2

−1

0

1

2

3

 Time

  M
ea

n 
C

ur
ve

 true curve and simulation

 true curve
n=250
n=500
n=1000

−2 −1 0 1 2
0.5

1

1.5

2

 Time

 L
og

−i
nn

ov
. v

ar
.

 true curve and simulation

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

 Lag

  A
ut

or
eg

re
ss

io
n 

co
ef

.

 true curve and simulation

Figure 3: Local kernel weighted likelihood based estimators of the mean, generalized au-
toregressive parameters and log-innovation variances for simulated data with three sample
sizes(· · · · · · , n = 250; · − ·−, n = 500; - - - -, n = 1000). The solid curves represents the true
curves.
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Figure 4: The smoothest, the most wiggly replicates and the replicate close to the median of
the smoothing parameter estimators for simulated data with sample size n = 250. The solid
curves represents the true curves.
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