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Abstract

In this work cylindrical Wiener processes on Banach spaces are defined by means
of cylindrical stochastic processes, which are a well considered mathematical ob-
ject. This approach allows a definition which is a simple straightforward extension
of the real-valued situation. We apply this definition to introduce a stochastic
integral with respect to cylindrical Wiener processes. Again, this definition is a
straightforward extension of the real-valued situation which results now in simple
conditions on the integrand. In particular, we do not have to put any geomet-
ric constraints on the Banach space under consideration. Finally, we relate this
integral to well-known stochastic integrals in literature.
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1 Introduction

Cylindrical Wiener processes appear in a huge variety of models in infinite dimensional
spaces as a source of random noise or random perturbation. Almost in the same
amount as models with cylindrical Wiener processes one can find different definitions
of cylindrical Wiener processes in literature. Most of these definitions suffer from the
fact that they do not generalise comprehensibly the real-valued definition to the infinite
dimensional situation.
In this note cylindrical Wiener processes on a Banach space are introduced by virtue
of the core mathematical object which underlies all these definitions but which is most
often not mentioned: a cylindrical stochastic process. A cylindrical stochastic process is
a generalised stochastic process whose distribution at a fixed time defines only a finite
countably additive set function on the Banach space. These finite countably additive
set functions are called cylindrical measures. We give a very transparent definition of a
weakly cylindrical Wiener process as a cylindrical stochastic process which is Wiener.
Our approach has the side-effect that the appearance of the word cylindrical is given a
reason.
This definition of a weakly cylindrical Wiener process is a straightforward extension
of the real-valued situation but it is immediately seen to be too general in order to
be analytically tractable. An obvious request is that the covariance operator of the
associated Gaussian cylindrical measures exists and has the analogue properties as in
the case of ordinary Gaussian measures on infinite-dimensional spaces. This leads to a
second definition of a strongly cylindrical Wiener process.
For strongly cylindrical Wiener processes we derive a representation by a series with
independent real-valued Wiener processes. On the other hand, we see, that by such a
series a strongly cylindrical Wiener process can be constructed.
The obvious question when is a cylindrical Wiener process actually a Wiener process in
the ordinary sense can be answered easily thanks to our approach by the self-suggesting
answer: if and only if the underlying cylindrical measure extends to an infinite countably
additive set function, i.e. a measure.
Utilising furthermore the approach by cylindrical measures we define a stochastic inte-
gral with respect to cylindrical Wiener processes. Again, this definition is a straight-
forward extension of the real-valued situation which results now in simple conditions
on the integrand. In particular, we do not have to put any geometric constraints on
the Banach space under consideration. The cylindrical approach yields that the dis-
tribution of the integral is a cylindrical measure. We finish with two corollaries giving
conditions such that the cylindrical distribution of the stochastic integral extends to a
probability measure. These results relate our integral to other well-known integrals in
literature.
To summarise, this article introduces two major ideas:

• A cylindrical Wiener process is defined by a straightforward extension of the real-
valued situation and the requirement of having a nice covariance operator. It can
be seen that most of the existing definitions in literature have the same purpose of
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guaranteeing the existence of an analytically tractable covariance operator. Thus,
our definition unifies the existing definitions and respects the core mathematical
object underlying the idea of a cylindrical Wiener process.

• Describing a random dynamic in an infinite dimensional space by an ordinary
stochastic process requires the knowledge that it is a real infinite dimensional
phenomena, i.e. that there exits a probability measure on the state space. Whilst
describing the dynamic by a cylindrical stochastic process it is sufficient to know
only the finite dimensional dynamic under the application of all linear bounded
functionals. Our introduced stochastic integral allows the development of such a
theory of cylindrical stochastic dynamical systems and has the advantage that no
constraints are put on the underlying space.

We do not claim that we accomplish very new mathematics in this work. But the
innovation might be seen by relating several mathematical objects which results in a
straightforward definition of a cylindrical Wiener process and its integral. Even these
relations might be well known to some mathematicians but they do not seem to be
accessible in a written form.
Our work relies on several ingredients from the theory of cylindrical and ordinary
measures on infinite dimensional spaces. Based on the monographs Bogachev [2] and
Vakhaniya et al [8] we give an introduction to this subject. The section on γ-radonifying
operators is based on the notes by Jan van Neerven [9]. Cylindrical Wiener processes in
Banach or Hilbert spaces and their integral are treated for example in the monographs
Da Prato and Zabcyzk [3], Kallianpur [5] and Metivier and Pellaumail [6]. In van
Gaans [4] the series representation of the cylindrical Wiener process is used to define a
stochastic integral in Hilbert spaces and in Berman and Root [1] an approach similar to
ours is introduced. The fundamental observation in this work that not every Gaussian
cylindrical measure has a nice covariance operator was pointed out to me the first time
by Dave Applebaum.

2 Preliminaries

Throughout this notes let U be a separable Banach space with dual U∗. The dual
pairing is denoted by 〈u, u∗〉 for u ∈ U and u∗ ∈ U∗. If V is another Banach space then
L(U, V ) is the space of all linear, bounded operators from U to V equipped with the
operator norm ‖·‖U→V .
The Borel σ-algebra is denoted by B(U). Let Γ be a subset of U∗. Sets of the form

Z(u∗1, . . . , u
∗
n, B) := {u ∈ U : (〈u, u∗1〉, · · · , 〈u, u∗n〉) ∈ B},

where u∗1, . . . , u
∗
n ∈ Γ and B ∈ B(Rn) are called cylindrical sets or cylinder with respect

to (U,Γ). The set of all cylindrical sets is denoted by Z(U,Γ), which turns out to be
an algebra. The generated σ-algebra is denoted by C(U,Γ) and it is called cylindrical
σ-algebra with respect to (U,Γ). If Γ = U∗ we write C(U) := C(U,Γ). If U is separable
then both the Borel B(U) and the cylindrical σ-algebra C(U) coincide.
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A function µ : C(U) → [0,∞] is called cylindrical measure on C(U), if for each finite
subset Γ ⊆ U∗ the restriction of µ on the σ-algebra C(U,Γ) is a measure. A cylindrical
measure is called finite if µ(U) < ∞.
For every function f : U → R which is measurable with respect to C(U,Γ) for a
finite subset Γ ⊆ U∗ the integral

∫
f(u) µ(du) is well defined as a real-valued Lebesgue

integral if it exists. In particular, the characteristic function ϕµ : U∗ → C of a finite
cylindrical measure µ is defined by

ϕµ(u∗) :=
∫

ei〈u,u∗〉 µ(du) for all u∗ ∈ U∗.

In contrast to measures on infinite dimensional spaces there is an analogue of Bochner’s
Theorem for cylindrical measures:

Theorem 2.1. A function ϕ : U∗ → C is a characteristic function of a cylindrical
measure on U if and only if

(a) ϕ(0) = 0;

(b) ϕ is positive definite;

(c) the restriction of ϕ to every finite dimensional subset Γ ⊆ U∗ is continuous with
respect to the norm topology.

For a finite set {u∗1, . . . , u∗n} ⊆ U∗ a cylindrical measure µ defines by

µu∗1,...,u∗n : B(Rn) → [0,∞], µu∗1,...,u∗n(B) := µ
(
{u ∈ U : (〈u, u∗1〉, . . . , 〈u, u∗n〉) ∈ B}

)
a measure on B(Rn). We call µu∗1,...,u∗n the image of the measure µ under the map-
ping u 7→ (〈u, u∗1〉, . . . , 〈u, u∗n〉). Consequently, we have for the characteristic function
ϕµu∗1,...,u∗n

of µu∗1,...,u∗n that

ϕµu∗1,...,u∗n
(β1, . . . , βn) = ϕµ(β1u

∗
1 + · · ·+ βnu∗n)

for all β1, . . . , βn ∈ R.
Cylindrical measures are described uniquely by their characteristic functions and there-
fore by their one-dimensional distributions µu∗ for u∗ ∈ U∗.

3 Gaussian cylindrical measures

A measure µ on B(R) is called Gaussian with mean m ∈ R and variance σ2 > 0 if
either µ = δm and σ2 = 0 or it has the density

f : R→ R+, f(s) = 1√
2πσ2

exp
(
− 1

2σ2 (s−m)2
)
.

In case of a multidimensional or an infinite dimensional space U a measure µ on B(U)
is called Gaussian if the image measures µu∗ are Gaussian for all u∗ ∈ U∗. Gaussian
cylindrical measures are defined analogously but due to some reasons explained below
we have to distinguish between two cases: weakly and strongly Gaussian.
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Definition 3.1. A cylindrical measure µ on C(U) is called weakly Gaussian if µu∗ is
Gaussian on B(R) for every u∗ ∈ U∗.

Because of well-known properties of Gaussian measures in finite dimensional Euclidean
spaces a cylindrical measure µ is weakly Gaussian if and only if µu∗1,...,u∗n is a Gaussian
measure on B(Rn) for all u∗1, . . . , u

∗
n ∈ U∗ and all n ∈ N.

Theorem 3.2. Let µ be a weakly Gaussian cylindrical measure on C(U). Then its
characteristic function ϕµ is of the form

ϕµ : U∗ → C, ϕµ(u∗) = exp
(
im(u∗)− 1

2s(u∗)
)
, (3.1)

where the functions m : U∗ → R and s : U∗ → R+ are given by

m(u∗) =
∫

U
〈u, u∗〉µ(du), s(u∗) =

∫
U
〈u, u∗〉2µ(du)− (m(u∗))2.

Conversely, if µ is a cylindrical measure with characteristic function of the form

ϕµ : U∗ → C, ϕµ(u∗) = exp
(
im(u∗)− 1

2s(u∗)
)
,

for a linear functional m : U∗ → R and a quadratic form s : U∗ → R+, then µ is a
weakly Gaussian cylindrical measure.

Proof. Follows from [8, Prop.IV.2.7], see also [8, p.393].

Example 3.3. Let H be a separable Hilbert space. Then the function

ϕ : H → C, ϕ(u) = exp(−1
2 ‖u‖

2
H)

satisfies the condition of Theorem 3.2 and therefore there exists a weakly Gaussian
cylindrical measure γ with characteristic function ϕ. We call this cylindrical measure
standard Gaussian cylindrical measure on H. If H is infinite dimensional the cylindrical
measure γ is not a measure, see [2, Cor.2.3.2].
Note, that this example might be not applicable for a Banach space U because then
x 7→ ‖x‖2

U need not to be a quadratic form.

For a weakly Gaussian cylindrical measure µ one defines for u∗, v∗ ∈ U∗:

r(u∗, v∗) :=
∫

U
〈u, u∗〉〈u, v∗〉µ(du)−

∫
U
〈u, u∗〉µ(du)

∫
U
〈u, v∗〉µ(du).

These integrals exist as µ is a Gaussian measure on the cylindrical σ-algebra generated
by u∗ and v∗. One defines the covariance operator Q of µ by

Q : U∗ → (U∗)′, (Qu∗)v∗ := r(u∗, v∗) for all v∗ ∈ U∗,

where (U∗)′ denotes the algebraic dual of U∗, i.e. all linear but not necessarily con-
tinuous functionals on U∗. Hence, the characteristic function ϕµ of µ can be written
as

ϕµ : U∗ → C, ϕµ(u∗) = exp (im(u∗)− (Qu∗)u∗) .
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The cylindrical measure µ is called centered if m(u∗) = 0 for all u∗ ∈ U∗.
If µ is a Gaussian measure or more general, a measure of weak order 2, i.e.∫

U
|〈u, u∗〉|2 µ(du) < ∞ for all u∗ ∈ U∗,

then the covariance operator Q is defined in the same way as above. However, in
this case it turns out that Qu∗ is not only continuous and thus in U∗∗ but even in U
considered as a subspace of U∗∗, see [8, Thm.III.2.1]. This is basically due to properties
of the Pettis integral in Banach spaces. For cylindrical measures we have to distinguish
this property and define:

Definition 3.4. A centred weakly Gaussian cylindrical measure µ on C(U) is called
strongly Gaussian if the covariance operator Q : U∗ → (U∗)′ is U -valued.

Below Example 3.6 gives an example of a weakly Gaussian cylindrical measure which
is not strongly. This example can be constructed in every infinite dimensional space in
particular in every Hilbert space.
Strongly Gaussian cylindrical measures exhibit an other very important property:

Theorem 3.5. For a cylindrical measure µ on C(U) the following are equivalent:

(a) µ is a continuous linear image of the standard Gaussian cylindrical measure on
a Hilbert space;

(b) there exists a symmetric positive operator Q : U∗ → U such that

ϕµ(u∗) = exp
(
−1

2〈Qu∗, u∗〉
)

for all u∗ ∈ U∗.

Proof. See [8, Prop.VI.3.3].

Theorem 3.5 provides an example of a weakly Gaussian cylindrical measure which is
not strongly Gaussian:

Example 3.6. For a discontinuous linear functional f : U∗ → R define

ϕ : U∗ → C, ϕ(u∗) = exp
(
−1

2
(f(u∗))2

)
.

Then ϕ is the characteristic function of a weakly Gaussian cylindrical measure due to
Theorem 3.2 but this measure can not be strongly Gaussian by Theorem 3.5 because
every symmetric positive operator Q : U∗ → U is continuous.
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4 Reproducing kernel Hilbert space

According to Theorem 3.5 a centred strongly Gaussian cylindrical measure is the image
of the standard Gaussian cylindrical measure on a Hilbert space H under an operator
F ∈ L(H,U). In this section we introduce a possible construction of this Hilbert space
H and the operator F .
For this purpose we start with a bounded linear operator Q : U∗ → U , which is positive,

〈Qu∗, u∗〉 > 0 for all u∗ ∈ U∗,

and symmetric,

〈Qu∗, v∗〉 = 〈Qv∗, u∗〉 for all u∗, v∗ ∈ U∗.

On the range of Q we define a bilinear form by

[Qu∗, Qv∗]HQ
:= 〈Qu∗, v∗〉.

It can be seen easily that this defines an inner product [·, ·]HQ
. Thus, the range of

Q is a pre-Hilbert space and we denote by HQ the real Hilbert space obtained by its
completion with respect to [·, ·]HQ

. This space will be called the reproducing kernel
Hilbert space associated with Q.
In the following we collect some properties of the reproducing kernel Hilbert space and
its embedding:

(a) The inclusion mapping from the range of Q into U is continuous with respect to
the inner product [·, ·]HQ

. For, we have

‖Qu∗‖2
HQ

= |〈Qu∗, u∗〉| 6 ‖Q‖U∗→U ‖u
∗‖2 ,

which allows us to conclude

|〈Qu∗, v∗〉| =
∣∣[Qu∗, Qv∗]HQ

∣∣ 6 ‖Qu∗‖HQ
‖Qv∗‖HQ

6 ‖Qu∗‖HQ
‖Q‖U∗→HQ

‖v∗‖ .

Therefore, we end up with

‖Qu∗‖ = sup
‖v∗‖61

|〈Qu∗, v∗〉| 6 ‖Q‖U∗→HQ
‖Qu∗‖HQ

.

Thus the inclusion mapping is continuous on the range of Q and it extends to a
bounded linear operator iQ from HQ into U .

(b) The operator Q enjoys the decomposition

Q = iQi∗Q.

For the proof we define hu∗ := Qu∗ for all u∗ ∈ U∗. Then we have iQ(hu∗) = Qu∗

and

[hu∗ , hv∗ ]HQ
= 〈Qu∗, v∗〉 = 〈iQ(hu∗), v∗〉 = [hu∗ , i

∗
Qv∗]HQ

.
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Because the range of Q is dense in HQ we arrive at

hv∗ = i∗Qv∗ for all v∗ ∈ U∗ (4.2)

which finally leads to

Qv∗ = iQ(hv∗) = iQ(i∗Qv∗) for all v∗ ∈ U∗.

(c) By (4.2) it follows immediately that the range of i∗Q is dense in HQ.

(d) the inclusion mapping iQ is injective. For, if iQh = 0 for some h ∈ HQ it follows
that

[h, i∗Qu∗]HQ
= 〈iQh, u∗〉 = 0 for all u∗ ∈ U∗,

which results in h = 0 because of (c).

(e) If U is separable then HQ is also separable.

Remark 4.1. Let µ be a centred strongly Gaussian cylindrical measure with covariance
operator Q : U∗ → U . Because Q is positive and symmetric we can associate with Q
the reproducing kernel Hilbert space HQ with the inclusion mapping iQ as constructed
above. For the image γ ◦ i−1

Q of the standard cylindrical measure γ on HQ we calculate

ϕγ◦i−1
Q

(u∗) =
∫

U
ei〈u,u∗〉 (γ ◦ i−1

Q )(du)

=
∫

HQ

ei〈h,i∗Qu∗〉 γ(dh)

= exp
(
−1

2

∥∥i∗Qu∗
∥∥2

HQ

)
= exp

(
−1

2〈Qu∗, u∗〉
)
.

Thus, µ = γ ◦ i−1
Q and we have found one possible Hilbert space and operator satisfying

the condition in Theorem 3.5.
But note, that there might exist other Hilbert spaces exhibiting this feature. But the
reproducing kernel Hilbert space is characterised among them by a certain “minimal
property”, see [2].

5 γ-radonifying operators

This section follows the notes [9].
Let Q : U∗ → U be a positive symmetric operator and H the reproducing kernel
Hilbert space with the inclusion mapping iQ : H → U . If U is a Hilbert space then it
is a well known result by Mourier ([8, Thm. IV.2.4]) that Q is the covariance operator
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of a Gaussian measure on U if and only if Q is nuclear or equivalently if iQ is Hilbert-
Schmidt. By Remark 4.1 it follows that the cylindrical measure γ ◦ i−1

Q extends to a
Gaussian measure on B(U) and Q is the covariance operator of this Gaussian measure.
The following definition generalises this property of iQ : H → U to define by Q := iQi∗Q
a covariance operator to the case when U is a Banach space:

Definition 5.1. Let γ be the standard Gaussian cylindrical measure on a separable
Hilbert space H. A linear bounded operator F : H → U is called γ-radonifying if the
cylindrical measure γ ◦ F−1 extends to a Gaussian measure on B(U).

Theorem 5.2. Let γ be the standard Gaussian cylindrical measure on a separable
Hilbert space H with orthonormal basis (en)n∈N and let (Gn)n∈N be a sequence of
independent standard real normal random variables. For F ∈ L(H,U) the following
are equivalent:

(a) F is γ-radonifying;

(b) the operator FF ∗ : U∗ → U is the covariance operator of a Gaussian measure µ
on B(U);

(c) the series
∞∑

k=1

GkFek converges a.s. in U .

(d) the series
∞∑

k=1

GkFek converges in Lp(Ω; U) for some p ∈ [1,∞).

(e) the series
∞∑

k=1

GkFek converges in Lp(Ω; U) for all p ∈ [1,∞).

In this situation we have for every p ∈ [1,∞):∫
U
‖u‖p µ(du) = E

∥∥∥∥∥
∞∑

k=1

GkFek

∥∥∥∥∥
p

.

Proof. As in Remark 4.1 we obtain for the characteristic function of ν := γ ◦ F−1:

ϕν(u∗) = exp
(
−1

2〈FF ∗u∗, u∗〉
)

for all u∗ ∈ U∗.

This establishes the first equivalence between (a) and (b). The proofs of the remaining
part can be found in [9, Prop.4.2].

To show that γ-radonifying generalise Hilbert-Schmidt operators to Banach spaces we
prove the result by Mourier mentioned already above. Other proofs only relying on
Hilbert theory can be found in the literature.

Corollary 5.3. If H and U are separable Hilbert spaces then the following are equiva-
lent for F ∈ L(H,U):
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(a) F is γ-radonifying;

(b) F is Hilbert-Schmidt.

Proof. Let (ek)k∈N be an orthonormal basis of H. The equivalence follows immediately
from

E

∥∥∥∥∥
n∑

k=m

GkFek

∥∥∥∥∥
2

=
n∑

k=m

‖Fek‖2

for every family (Gk)k∈N of independent standard normal random variables.

In general, the property of being γ-radonifying is not so easily accessible as Hilbert-
Schmidt operators in case of Hilbert spaces. However, for some specific Banach spaces,
as Lp or lp spaces, the set of all covariance operators of Gaussian measures can be also
described more precisely, see [8, Thm.V.5.5 and Thm.V.5.6].
It turns out that the set of all γ-radonifying operators can be equipped with a norm
such that it is a Banach space, see [9, Thm. 4.14].

6 Cylindrical stochastic processes

Let (Ω,A, P ) be a probability space with a filtration {F t}t>0.
Similarly to the correspondence between measures and random variables there is an
analogue random object associated to cylindrical measures:

Definition 6.1. A cylindrical random variable X in U is a linear map

X : U∗ → L0(Ω).

A cylindrical process X in U is a family (X(t) : t > 0) of cylindrical random variables
in U .

The characteristic function of a cylindrical random variable X is defined by

ϕX : U∗ → C, ϕX(u∗) = E[exp(iXu∗)].

The concepts of cylindrical measures and cylindrical random variables match perfectly.
Because the characteristic function of a cylindrical random variable is positive-definite
and continuous on finite subspaces there exists a cylindrical measure µ with the same
characteristic function. We call µ the cylindrical distribution of X. Vice versa, for
every cylindrical measure µ on C(U) there exists a probability space (Ω,A, P ) and a
cylindrical random variable X : U∗ → L0(Ω) such that µ is the cylindrical distribution
of X, see [8, VI.3.2].

Example 6.2. A cylindrical random variable X : U∗ → L0(Ω) is called weakly Gaus-
sian, if Xu∗ is Gaussian for all u∗ ∈ U∗. Thus, X defines a weakly Gaussian cylindrical

10



measure µ on C(U). The characteristic function of X coincide with the one of µ and is
of the form

ϕX(u∗) = exp(im(u∗)− 1
2s(u∗))

with m : U∗ → R linear and s : U∗ → R+ a quadratic form. If X is strongly Gaussian
there exists a covariance operator Q : U∗ → U such that

ϕX(u∗) = exp(im(u∗)− 1
2〈Qu∗, u∗〉).

Because ϕX(u∗) = ϕXu∗(1) it follows

E[Xu∗] = m(u∗) and Var[Xu∗] = 〈Qu∗, u∗〉.

In the same way by comparing the characteristic function

ϕXu∗,Xv∗(β1, β2) = E [exp (i(β1Xu∗ + β2Xv∗))] = E [exp (i(X(β1u
∗ + β2v

∗)))]

for β1, β2 ∈ R with the characteristic function of the two-dimensional Gaussian vector
(Xu∗, Xv∗) we may conclude

Cov[Xu∗, Xv∗] = 〈Qu∗, v∗〉.

Let HQ denote the reproducing kernel Hilbert space of the covariance operator Q. Then
we obtain

E |Xu∗ −m(u∗)|2 = Var[Xu∗] = 〈Qu∗, u∗〉 =
∥∥i∗Qu∗

∥∥2

HQ
.

The cylindrical process X = (X(t) : t > 0) is called adapted to a given filtration
{F t}t>0, if X(t)u∗ is F t-measurable for all t > 0 and all u∗ ∈ U∗. The cylindrical
process X has weakly independent increments if for all 0 6 t0 < t1 < · · · < tn and all
u∗1, . . . , u

∗
n ∈ U∗ the random variables

(X(t1)−X(t0))u∗1, . . . , (X(tn)−X(tn−1))u∗n

are independent.

Remark 6.3. Our definition of cylindrical processes is based on the definitions in [1]
and [8]. In [6] and [7] cylindrical random variables are considered which have values
in Lp(Ω) for p > 0. They assume in addition that a cylindrical random variable is
continuous. The continuity of a cylindrical variable is reflected by continuity properties
of its characteristic function, see [8, Prop.IV. 3.4]. The notion of weakly independent
increments origins from [1].
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Example 6.4. Let Y = (Y (t) : t > 0) be a stochastic process with values in a
separable Banach space U . Then Ŷ (t)u∗ := 〈Y (t), u∗〉 for u∗ ∈ U∗ defines a cylindrical
process Ŷ = (Ŷ (t) : t > 0). The cylindrical process Ŷ is adapted if and only if Y
is also adapted and Ŷ has weakly independent increments if and only if Y has also
independent increments. Both statements are due to the fact that the Borel and the
cylindrical σ-algebras coincide for separable Banach spaces due to Pettis’ measurability
theorem.

An Rn-valued Wiener process B = (B(t) : t > 0) is an adapted stochastic process with
independent, stationary increments B(t) − B(s) which are normally distributed with
expectation E[B(t)−B(s)] = 0 and covariance Cov[B(t)−B(s), B(t)−B(s)] = |t− s|C
for a non-negative definite symmetric matrix C. If C = Id we call B a standard Wiener
process.

Definition 6.5. An adapted cylindrical process W = (W (t) : t > 0) in U is a weakly
cylindrical Wiener process, if

(a) for all u∗1, . . . , u
∗
n ∈ U∗ and n ∈ N the Rn-valued stochastic process(

(W (t)u∗1, . . . ,W (t)u∗n) : t > 0
)

is a Wiener process.

Our definition of a weakly cylindrical Wiener process is an obvious extension of the
definition of a finite-dimensional Wiener processes and is exactly in the spirit of cylin-
drical processes. The multidimensional formulation in Definition 6.5 would be already
necessary to define a finite-dimensional Wiener process by this approach and it allows
to conclude that a weakly cylindrical Wiener process has weakly independent incre-
ments. The latter property is exactly what is needed in addition to an one-dimensional
formulation:

Lemma 6.6. For an adapted cylindrical process W = (W (t) : t > 0) the following are
equivalent:

(a) W is a weakly cylindrical Wiener process;

(b) W satisfies

(i) W has weakly independent increments;

(ii) (W (t)u∗ : t > 0) is a Wiener process for all u∗ ∈ U∗.

Proof. We have only to show that (b) implies (a). By linearity we have

β1(W (t)−W (s))u∗1 + · · ·+ βn(W (t)−W (s))u∗n = (W (t)−W (s))

(
n∑

i=1

βiu
∗
i

)
,

for all βi ∈ R and u∗i ∈ U∗ which shows that the increments of ((W (t)u∗1, . . . ,W (t)u∗n)) :
t > 0) are normally distributed and stationary. The independence of the increments
follows by (i).
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Because W (1) is a centred weakly Gaussian cylindrical random variable there exists a
weakly Gaussian cylindrical measure µ such that

ϕW (1)(u
∗) = E[exp(iW (1)u∗)] = ϕµ(u∗) = exp

(
−1

2s(u∗)
)

for a quadratic form s : U∗ → R+. Therefore, one obtains

ϕW (t)(u
∗) = E[exp(iW (t)u∗)] = E[exp (iW (1)(tu∗))] = exp

(
−1

2 t2s(u∗)
)

for all t > 0. Thus, the cylindrical distributions of W (t) for all t > 0 are only determined
by the cylindrical distribution of W (1).

Definition 6.7. A weakly cylindrical Wiener process (W (t) : t > 0) is called strongly
cylindrical Wiener process, if

(b) the cylindrical distribution µ of W (1) is strongly Gaussian.

The additional condition on a weakly cylindrical Wiener process to be strongly requests
the existence of an U -valued covariance operator for the Gaussian cylindrical measure.
To our knowledge weakly cylindrical Wiener processes are not defined in the literature
and (strongly) cylindrical Wiener processes are defined by means of other conditions.
Often, these definition are formulated by assuming the existence of the reproducing
kernel Hilbert space. But this implies the existence of the covariance operator. Another
popular way for defining cylindrical Wiener processes is by means of a series. We will
see in the next chapter that this is also equivalent to our definition.
Later, we will compare a strongly cylindrical Wiener process with an U -valued Wiener
process. Also the latter is defined as a direct generalisation of a real-valued Wiener
process:

Definition 6.8. An adapted U -valued stochastic process (W (t) : t > 0) is called a
Wiener process if

(a) W (0) = 0 P -a.s.;

(b) W has independent, stationary increments;

(c) there exists a Gaussian covariance operator Q : U∗ → U such that

W (t)−W (s) d= N(0, (t− s)Q) for all 0 6 s 6 t.

If U is finite dimensional then Q can be any symmetric, positive semi-definite matrix.
In case that U is a Hilbert space we know already that Q has to be nuclear. For the
general case of a Banach space U we can describe the possible Gaussian covariance
operator by Theorem 5.2.
It is obvious that every U -valued Wiener process W defines a strongly cylindrical
Wiener process (Ŵ (s) : t > 0) in U by Ŵ (s)u∗ := 〈W (s), u∗〉. For the converse
question, if a cylindrical Wiener process can be represented in such a way by an U -
valued Wiener process we will derive later necessary and sufficient conditions.
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7 Representations of cylindrical Wiener processes

In this section we derive representations of cylindrical Wiener processes and U -valued
Wiener processes in terms of some series. In addition, these representations can also
serve as a construction of these processes, see Remark 7.5.

Theorem 7.1. For an adapted cylindrical process W := (W (t) : t > 0) the following
are equivalent:

(a) W is a strongly cylindrical Wiener process;

(b) there exist a Hilbert space H with an orthonormal basis (en)n∈N, F ∈ L(H,U)
and independent real-valued standard Wiener processes (Bn)n∈N such that

W (t)u∗ =
∞∑

k=1

〈Fek, u
∗〉Bk(t) in L2(Ω) for all u∗ ∈ U∗.

Proof. (b) ⇒ (a) By Doob’s inequality we obtain for any m, n ∈ N

E

 sup
t∈[0,T ]

∣∣∣∣∣
n+m∑
k=n

〈Fek, u
∗〉Bk(t)

∣∣∣∣∣
2
 6 4E

∣∣∣∣∣
n+m∑
k=n

〈Fek, u
∗〉Bk(T )

∣∣∣∣∣
2

= 4T
n+m∑
k=n

〈ek, F
∗u∗〉2

→ 0 for m,n →∞.

Thus, for every u∗ ∈ U∗ the random variables W (t)u∗ are well defined and form a
cylindrical process (W (t) : t > 0). For any 0 = t0 < t1 < · · · < tm and βk ∈ R we
calculate

E

[
exp

(
i

m−1∑
k=0

βk(W (tk+1)u∗ −W (tk)u∗)

)]

= lim
n→∞

E

[
exp

(
i

m−1∑
k=0

βk

n∑
l=1

〈Fel, u
∗〉(Bl(tk+1)−Bl(tk))

)]

= lim
n→∞

m−1∏
k=0

n∏
l=1

E
[
exp (iβk〈Fel, u

∗〉(Bl(tk+1)−Bl(tk)))
]

= lim
n→∞

m−1∏
k=0

n∏
l=1

exp
(
− 1

2β2
k〈Fel, u

∗〉2(tk+1 − tk)
)

=
m−1∏
k=0

exp
(
−1

2β2
k ‖F ∗u∗‖2

H (tk+1 − tk)
)

,
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which shows that (W (t)u∗ : t > 0) has independent, stationary Gaussian incre-
ments. Because the partial sums converge uniformly on every finite interval the process
(W (t)u∗ : t > 0) has a.s. continuous paths and is therefore established as a real-valued
Wiener process.
The calculation above of the characteristic function yields

E [exp(iW (1)u∗)] = exp
(
−1

2 ‖F
∗u∗‖2

H

)
= exp

(
−1

2〈FF ∗u∗, u∗〉2
)
.

Hence, the process W is a strongly cylindrical Wiener process with covariance operator
Q := FF ∗.
(a) ⇒ (b): Let Q : U∗ → U be the covariance operator of W (1) and H its reproducing
kernel Hilbert space with the inclusion mapping iQ : H → U . Because the range of i∗Q is
dense in H and H is separable there exists an orthonormal basis (en)n∈N ⊆range(i∗Q) of
H. We choose u∗n ∈ U∗ such that i∗Qu∗n = en for all n ∈ N and define Bn(t) := W (t)u∗n.
Then we obtain

E

∣∣∣∣∣
n∑

k=1

〈iQek, u
∗〉Bk(t)−W (t)u∗

∣∣∣∣∣
2

= E

[
W (t)

(
n∑

k=1

〈iQek, u
∗〉u∗k − u∗

)]2

= t

∥∥∥∥∥i∗Q
(

n∑
k=1

〈iQek, u
∗〉u∗k − u∗

)∥∥∥∥∥
2

H

= t

∥∥∥∥∥
n∑

k=1

[ek, i
∗
Qu∗]HQ

ek − i∗Qu∗

∥∥∥∥∥
2

H

→ 0 for n →∞.

Thus, W has the required representation and it remains to establish that the Wiener
processes Bn := (Bn(t) : t > 0) are independent. Because of the Gaussian distribution
it is sufficient to establish that Bn(s) and Bm(t) for any s 6 t and m,n ∈ N are
independent:

E[Bn(s)Bm(t)] = E[W (s)u∗nW (t)u∗m]
= E[W (s)u∗n(W (t)u∗m −W (s)u∗m)] + E[W (s)u∗nW (s)u∗m].

The first term is zero by Theorem 6.6 and for the second term we obtain

E[W (s)u∗nW (s)u∗m] = s〈Qu∗n, u∗m〉 = s[i∗Qu∗n, i∗Qu∗m]HQ
= s[en, em]HQ

= sδn,m.

Hence, Bn(s) and Bm(t) are uncorrelated and therefore independent.

Remark 7.2. The proof has shown that the Hilbert space H in part (b) can be
chosen as the reproducing kernel Hilbert space associated to the Gaussian cylindrical
distribution of W (1). In this case the function F : H → U is the inclusion mapping iQ.
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Remark 7.3. Let H be a separable Hilbert space with orthonormal basis (ek)k∈N and
(Bk(t) : t > 0) be independent real-valued Wiener processes. By setting U = H and
F = Id Theorem 7.1 yields that a strongly cylindrical Wiener process (WH(t) : t > 0)
is defined by

WH(t)h =
∞∑

k=1

〈ek, h〉Bk(t) for all h ∈ H.

The covariance operator of WH is Id : H → H. This is the approach how a cylindrical
Wiener process is defined for example in [2] and [10].
If in addition U is a separable Banach space and F ∈ L(H,U) we obtain by defining

W (t)u∗ := WH(t)(F ∗u∗) for all u∗ ∈ U∗,

a strongly cylindrical Wiener process (W (t) : t > 0) with covariance operator Q := FF ∗

according to our Definition 6.7.

Theorem 7.4. For an adapted U -valued process W := (W (t) : t > 0) the following
are equivalent:

(a) W is an U -valued Wiener process;

(b) there exist a Hilbert space H with an orthonormal basis (en)n∈N, a γ-radonifying
operator F ∈ L(H,U) and independent real-valued standard Wiener processes
(Bn)n∈N such that

W (t) =
∞∑

k=1

FekBk(t) in L2(Ω; U).

Proof. (b) ⇒ (a): As in the proof of Theorem 7.1 we obtain by Doob’s Theorem (but
here for infinite-dimensional spaces) for any m,n ∈ N

E

 sup
t∈[0,T ]

∥∥∥∥∥
n+m∑
k=n

FekBk(t)

∥∥∥∥∥
2
 6 4E

∥∥∥∥∥
n+m∑
k=n

FekBk(T )

∥∥∥∥∥
2

→ 0 for m,n →∞,

where the convergence follows by Theorem 5.2 because F is γ-radonifying. Thus,
the random variables W (t) are well defined and form an U -valued stochastic process
W := (W (t) : t > 0). As in the proof of Theorem 7.1 we can proceed to establish that
W is an U -valued Wiener process.
(a) ⇒ (b): By Theorem 7.1 there exist a Hilbert space H with an orthonormal basis
(en)n∈N, F ∈ L(H,U) and independent real-valued standard Wiener processes (Bn)n∈N
such that

〈W (t), u∗〉 =
∞∑

k=1

〈Fek, u
∗〉Bk(t) in L2(Ω) for all u∗ ∈ U∗.
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The Itô-Nisio Theorem [8, Thm.V.2.4] implies

W (t) =
∞∑

k=1

FekBk(t) P -a.s. for all u∗ ∈ U∗

and a result by Hoffmann-Jorgensen [8, Cor.2 in V.3.3] yields the convergence in
L2(Ω; U). Theorem 5.2 verifies F as γ-radonifying.

Remark 7.5. In the proofs of the implication from (b) to (a) we established in both
Theorems 7.1 and 7.4 even more than required: we established the convergence of
the series in the specified sense without assuming the existence of the limit process,
respectively. This means, that we can read these results also as a construction principle
of cylindrical or U -valued Wiener processes without assuming the existence of the
considered process a priori.
The construction of these random objects differs significantly in the required conditions
on the involved operator F . For a cylindrical Wiener process no conditions are required,
however, for an U -valued Wiener process we have to guarantee Q = FF ∗ to be a
covariance operator of a Gaussian measure by assuming F to be γ-radonifying.

8 When is a cylindrical Wiener process U-valued ?

In this section we give equivalent conditions for a strongly cylindrical Wiener process
to be an U -valued Wiener process. To be more precise a cylindrical random variable
X : U∗ → L0(Ω) is called induced by a random variable Z : Ω → U , if P -a.s.

Xu∗ = 〈Z, u∗〉 for all u∗ ∈ U∗.

This definition generalises in an obvious way to cylindrical processes.
Because of the correspondence to cylindrical measures the question whether a cylindri-
cal random variable is induced by an U -valued random variable is reduced to the ques-
tion whether the cylindrical measure extends to a Radon measure ([8, Thm. Vi.3.1]).
There is a classical answer by Prokhorov ([8, Thm. VI.3.2]) to this question in terms of
tightness. A cylindrical measure µ on C(U) is called tight if for each ε > 0 there exists
a compact subset K ⊆ U such that

µ(K) > 1− ε.

In case of non-separable Banach spaces U one has to be more careful because then
compact sets are not necessarily admissible arguments of a cylindrical measure.

Theorem 8.1. For a strongly cylindrical Wiener process W := (W (t) : t > 0) with
covariance operator Q = iQi∗Q the following are equivalent:

(a) W is induced by an U -valued Wiener process;

(b) iQ is γ-radonifying;

17



(c) the cylindrical distribution of W (1) is tight;

(d) the cylindrical distribution of W (1) extends to a measure.

Proof. (a) ⇒ (b) If there exists an U -valued Wiener process (W̃ (t) : t > 0) with
W (t)u∗ = 〈W̃ (t), u∗〉 for all u∗ ∈ U∗, then W̃ (1) has a Gaussian distribution with
covariance operator Q. Thus, iQ is γ-radonifying by Theorem 5.2.
(b)⇔ (c) ⇔ (d) This is Prokhorov’s Theorem on cylindrical measures.
(b)⇒(a) Due to Theorem 7.1 there exist an orthonormal basis (en)n∈N of the repro-
ducing kernel Hilbert space of Q and independent standard real-valued Wiener process
(Bk(t) : t > 0) such that

W (t)u∗ =
∞∑

k=1

〈iQek, u
∗〉Bk(t) for all u∗ ∈ U∗.

On the other hand, because iQ is γ-radonifying Theorem 7.4 yields that

W̃ (t) =
∞∑

k=1

iQekBk(t)

defines an U -valued Wiener process (W̃ (t) : t > 0). Obviously, we have W (t)u∗ =
〈W̃ (t), u∗〉 for all u∗.

If U is a separable Hilbert space we can replace the condition (b) by

(b′) iQ is Hilbert-Schmidt

because of Theorem 5.3.

9 Integration

In this section we introduce an integral with respect to a strongly cylindrical Wiener
process W = (W (t) : t > 0) in U . The integrand is a stochastic process with values in
L(U, V ), the set of bounded linear operators from U to V , where V denotes a separable
Banach space. For that purpose we assume for W the representation according to
Theorem 7.1:

W (t)u∗ =
∞∑

k=1

〈iQek, u
∗〉Bk(t) in L2(Ω) for all u∗ ∈ U∗,

where H is the reproducing kernel Hilbert space of the covariance operator Q with the
inclusion mapping iQ : H → U and an orthonormal basis (en)n∈N of H. The real-
valued standard Wiener processes (Bk(t) : t > 0) are defined by Bk(t) = W (t)u∗k for
some u∗k ∈ U∗ with i∗Qu∗k = ek.

Definition 9.1. The set MT (U, V ) contains all random variables Φ : [0, T ] × Ω →
L(U, V ) such that:
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(a) (t, ω) 7→ Φ∗(t, ω)v∗ is B[0, T ]⊗A measurable for all v∗ ∈ V ∗;

(b) ω 7→ Φ∗(t, ω)v∗ is F t-measurable for all v∗ ∈ V ∗ and t ∈ [0, T ];

(c)
∫ T

0
E ‖Φ∗(s, ·)v∗‖2

U∗ ds < ∞ for all v∗ ∈ V ∗.

As usual we neglect the dependence of Φ ∈ MT (U, V ) on ω and write Φ(s) for Φ(s, ·) as
well as for the dual operator Φ∗(s) := Φ∗(s, ·) where Φ∗(s, ω) denotes the dual operator
of Φ(s, ω) ∈ L(U, V ).
We define the candidate for a stochastic integral:

Definition 9.2. For Φ ∈ MT (U, V ) we define

It(Φ)v∗ :=
∞∑

k=1

∫ t

0
〈Φ(s)iQek, v

∗〉 dBk(s) in L2(Ω)

for all v∗ ∈ V ∗ and t ∈ [0, T ].

The stochastic integrals appearing in Definition 9.2 are the known real-valued Itô in-
tegrals and they are well defined thanks to our assumption on Φ. In the next Lemma
we establish that the asserted limit exists:

Lemma 9.3. It(Φ) : V ∗ → L2(Ω) is a well-defined cylindrical random variable in V
which is independent of the representation of W , i.e. of (en)n∈N and (u∗n)n∈N.

Proof. We begin to establish the convergence in L2(Ω). For that, let m, n ∈ N and we
define for simplicity h(s) := i∗QΦ∗(s)v∗. Doob’s theorem implies

E

∣∣∣∣∣ sup
06t6T

n∑
k=m+1

∫ t

0
〈Φ(s)iQek, v

∗〉 dBk(s)

∣∣∣∣∣
2

6 4
n∑

k=m+1

∫ T

0
E [ek, h(s)]2H ds

6 4
∞∑

k=m+1

∫ T

0
E [[ek, h(s)]H ek, h(s)]H ds

= 4
∞∑

k=m+1

∞∑
l=m+1

∫ T

0
E [[ek, h(s)]H ek, [el, h(s)]H el]H ds

= 4
∫ T

0
E ‖(Id−πm)h(s)‖2

H ds,

where πm : H → H denotes the projection onto the span of {e1, . . . , em}. Because
‖(Id−πm)h(s)‖2

H → 0 for m →∞ and∫ T

0
E ‖(Id−πm)h(s)‖2

H ds 6
∥∥i∗Q∥∥2

U∗→H

∫ T

0
E ‖Φ∗(s, ·)v∗‖2

U∗ ds < ∞
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we obtain by Lebesgue’s theorem the convergence in L2(Ω).
To prove the independence on the chosen representation of W let (fl)l∈N be an other or-
thonormal basis of H and w∗

l ∈ U∗ such that i∗Qw∗
l = fl and (Cl(t) : t > 0) independent

Wiener processes defined by Cl(t) = W (t)w∗
l . As before we define in L2(Ω):

Ĩt(Φ)v∗ :=
∞∑
l=1

∫ t

0
〈Φ(s)iQfl, v

∗〉 dCl(s) for all v∗ ∈ V ∗.

The relation Cov(Bk(t), Cl(t)) = t
[
i∗Qu∗k, i

∗
Qw∗

l

]
H

= t [ek, fl]H enables us to calculate

E
∣∣∣It(Φ)v∗ − Ĩt(Φ)v∗

∣∣∣2
= E |It(Φ)v∗|2 + E

∣∣∣Ĩt(Φ)v∗
∣∣∣2 − 2E

[(
It(Φ)v∗

)(
Ĩt(Φ)v∗

)]
=

∞∑
k=1

∫ t

0
E〈Φ(s)iQek, v

∗〉2 ds +
∞∑
l=1

∫ t

0
E〈Φ(s)iQfl, v

∗〉2 ds

− 2
∞∑

k=1

∞∑
l=1

∫ t

0
E
[
〈Φ(s)iQek, v

∗〉〈Φ(s)iQfl, v
∗〉
[
i∗Qu∗k, i

∗
Qw∗

l

]
H

]
ds

= 2
∫ t

0
E
∥∥i∗QΦ∗(s)v∗

∥∥2

H
ds− 2

∫ t

0
E
∥∥i∗QΦ∗(s)v∗

∥∥2

H
ds

= 0,

which proves the independence of It(Φ) on (ek)k∈N and (u∗k)k∈N.
The linearity of It(Φ) is obvious and hence the proof is complete.

Our next definition is not very surprising:

Definition 9.4. For Φ ∈ MT (U, V ) we call the cylindrical random variable∫ t

0
Φ(s) dW (s) := It(Φ)

cylindrical stochastic integral with respect to W .

Because the cylindrical stochastic integral is strongly based on the well-known real-
valued Itô integral many features can be derived easily. We collect the martingale
property and Itô’s isometry in the following theorem.

Theorem 9.5. Let Φ be in MT (U, V ). Then we have

(a) for every v∗ ∈ V ∗ the family((∫ t

0
Φ(s) dW (s)

)
v∗ : t ∈ [0, T ]

)
forms a continuous square-integrable martingale.
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(b) the Itô’s isometry:

E

∣∣∣∣( ∫ t

0
Φ(s) dW (s)

)
v∗
∣∣∣∣2 =

∫ t

0
E
∥∥i∗QΦ∗(s)v∗

∥∥2

H
ds.

Proof. (a) In Lemma 9.3 we have identified It(Φ)v∗ as the limit of

Mn(t) :=
n∑

k=1

∫ t

0
〈Φ(s)iQek, v

∗〉 dBk(s),

where the convergence takes place in L2(Ω) uniformly on the interval [0, T ]. As (Mn(t) :
t ∈ [0, T ]) are continuous martingales the assertion follows.
(b) Using Itô’s isometry for real-valued stochastic integrals we obtain

E

∣∣∣∣( ∫ t

0
Φ(s) dW (s)

)
v∗
∣∣∣∣2 =

∞∑
k=1

E

[∫ T

0
〈Φ(s)iQek, v

∗〉 dBk(s)
]2

=
∞∑

k=1

∫ T

0
E
[
ek, i

∗
QΦ∗(s)v∗

]2
H

ds

=
∫ T

0
E
∥∥i∗QΦ∗(s)v∗

∥∥2

H
ds.

An obvious question is under which conditions the cylindrical integral is induced by
a V -valued random variable. The answer to this question will also allow us to relate
the cylindrical integral with other known definitions of stochastic integrals in infinite
dimensional spaces.
From our point of view the following corollary is an obvious consequence. We call an
stochastic process Φ ∈ MT (U, V ) non-random if it does not depend on ω ∈ Ω.

Corollary 9.6. For non-random Φ ∈ MT (U, V ) the following are equivalent:

(a)
∫ T

0
Φ(s) dW (s) is induced by a V -valued random variable;

(b) there exists a Gaussian measure µ on V with covariance operator R such that:∫ T

0

∥∥i∗QΦ∗(s)v∗
∥∥2

H
ds = 〈Rv∗, v∗〉 for all v∗ ∈ V ∗.

Proof. (a) ⇒ (b): If the integral IT (Φ) is induced by a V -valued random variable then
the random variable is centred Gaussian, say with a covariance operator R. Then Itô’s
isometry yields

〈Rv∗, v∗〉 = E |IT (Φ)v∗|2 =
∫ T

0

∥∥i∗QΦ∗(s)v∗
∥∥2

H
ds.

(b)⇒(a): Again Itô’s isometry shows that the weakly Gausian cylindrical distribution
of IT (Φ) has covariance operator R and thus, extends to a Gaussian measure on V .
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The condition (b) of Corollary 9.6 is derived in van Neerven and Weis [10] as a sufficient
and necessary condition for the existence of the stochastic Pettis integral introduced in
this work. Consequently, it is easy to see that under the equivalent conditions (a) or (b)
the cylindrical integral coincides with this stochastic Pettis integral. Further relation
of condition (b) to γ-radonifying properties of the integrand Φ can also be found in
[10].
Our next result relates the cylindrical integral to the stochastic integral in Hilbert
spaces as introduced in Da Prato and Zabczyk [3]. For that purpose, we assume that
U and V are separable Hilbert spaces. Let W be a strongly cylindrical Wiener process
in U and let the inclusion mapping iQ : HQ → U be Hilbert-Schmidt. Then there exist
an orthonormal basis (fk)k∈N in U and real numbers λk > 0 such that Qfk = λkfk for
all k ∈ N. For the following we can assume that λk 6= 0 for all k ∈ N. By defining
ek :=

√
λk fk for all k ∈ N we obtain an orthonormal basis of HQ and W can be

represented as usual as a sum with respect to this orthonormal basis.
Our assumption on iQ to be Hilbert-Schmidt is not a restriction because in general
the integral with respect to a strongly cylindrical Wiener process is defined in [3] by
extending U such that iQ becomes Hilbert-Schmidt.

Corollary 9.7. Let W be a strongly cylindrical Wiener process in a separable Hilbert
space U with iQ : HQ → U Hilbert-Schmidt. If V is a separable Hilbert space and
Φ ∈ MT (U, V ) is such that

∞∑
k=1

λk

∫ T

0
E ‖Φ(s)iQek‖2

V ds < ∞,

then the cylindrical integral ∫ T

0
Φ(s) dW (s)

is induced by a V -valued random variable. This random variable is the standard stochas-
tic integral in Hilbert spaces of Φ with respect to W .

Proof. By Theorem 8.1 the cylindrical Wiener process W is induced by an U -valued
Wiener process Y . We define U -valued Wiener processes (YN (t) : t ∈ [0, T ]) by

YN (t) =
N∑

k=1

iQekBk(t).

Theorem 7.4 implies that YN (t) converges to Y in L2(Ω; U). By our assumption on Φ
the stochastic integrals Φ ◦ YN (T ) in the sense of Da Prate and Zabczyk [3] exist and
converge to the stochastic integral Φ ◦ Y (T ) in L2(Ω; V ), see [3, Ch.4.3.2].
On the other hand, by first considering simple functions Φ and then extending to the
general case we obtain

〈Φ ◦ YN (T ), v∗〉 =
N∑

k=1

∫ t

0
〈Φ(s)iQek, v

∗〉 dBk(s)
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for all v∗ ∈ V ∗. By Definition 9.2 the right hand side converges in L2(Ω) to(∫ T

0
Φ(s) dW (s)

)
v∗,

whereas at least a subsequence of (〈Φ ◦ YN (T ), v∗〉)N∈N converges to 〈Φ ◦ Y (T ), v∗〉
P -a.s..

Based on the cylindrical integral one can build up a whole theory of cylindrical stochastic
differential equations. Of course, a solution will be in general a cylindrical process but
there is no need to put geometric constrains on the state space under consideration.
If one is interested in classical stochastic processes as solutions for some reasons one
can tackle this problem as in our two last results by deriving sufficient conditions
guaranteeing that the cylindrical solution is induced by a V -valued random process.
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