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STRUCTURED MAPPING PROBLEMS FOR

MATRICES ASSOCIATED WITH SCALAR PRODUCTS

PART I: LIE AND JORDAN ALGEBRAS∗

D. STEVEN MACKEY† , NILOUFER MACKEY‡ , AND FRANÇOISE TISSEUR∗

Abstract. Given a class of structured matrices S, we identify pairs of vectors x, b for which
there exists a matrix A ∈ S such that Ax = b, and also characterize the set of all matrices A ∈ S

mapping x to b. The structured classes we consider are the Lie and Jordan algebras associated
with orthosymmetric scalar products. These include (skew-)symmetric, (skew-)Hamiltonian, pseudo
(skew-)Hermitian, persymmetric and perskew-symmetric matrices. Structured mappings with ex-
tremal properties are also investigated. In particular, structured mappings of minimal rank are
identified and shown to be unique when rank-1 is achieved. The structured mapping of minimal
Frobenius norm is always unique and explicit formulas for it and its norm are obtained. Finally the
set of all structured mappings of minimal 2-norm is characterized. Our results generalize and unify
existing work, answer a number of open questions, and provide useful tools for structured backward
error investigations.

Key words. Lie algebra, Jordan algebra, scalar product, bilinear form, sesquilinear form,
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mitian, complex symmetric, skew-symmetric, persymmetric, perskew-symmetric, minimal rank, min-
imal Frobenius norm, minimal 2-norm.
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1. Introduction. The problem of finding all matrices A that map a given
nonzero vector x ∈ Kn to a given vector b ∈ Km, where K is a fixed field, can
be solved using elementary means [10]. Trenkler [20] recently revisited this problem,
giving a solution using generalized inverses:

A = bx† + Z(In − xx†)(1.1)

where In is the n × n identity matrix, Z ∈ Km×n is arbitrary and x† is any gen-
eralized inverse of x. In this work we restrict the permissible transformations to a
class of structured matrices S ⊂ Kn×n and consider the following structured mapping

problems:

Existence: For which vectors x, b does there exist some A ∈ S such that Ax = b?

Characterization: Determine the set S = {A ∈ S : Ax = b } of all structured
mappings taking x to b.

We present a complete, unified solution for these two problems when S is the Lie or
Jordan algebra associated with an orthosymmetric scalar product. These include, for
example, symmetric and skew-symmetric, Hermitian, pseudo Hermitian and skew-
Hermitian, Hamiltonian, persymmetric and perskew-symmetric matrices. We will
assume that x 6= 0 throughout, since both problems have trivial solutions if x = 0.

Answers to some particular instances of these structured mapping problems can
be found in the literature. Liu and Leaker [9, Lem. 1] show that for x, b ∈ Rn, x can be
mapped to b by a real skew-symmetric matrix if and only if x and b are orthogonal.
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Khatri and Mitra [8] and later Sun [16] address the existence and characterization
problems for the matrix equation AX = B, where X, B are matrices and the unknown
A is Hermitian; the skew-Hermitian and complex symmetric cases are covered in [18].
Restricting the results of [8], [16] and [18] to the case when X and B are vectors
yields one among the many representations of the set S identified in this paper.
Structured mapping problems for double structures, for structures that do not arise
in the context of a scalar product, and for some specific nonlinear structures have also
been investigated (see [5], [6], [14], [17] and [21] for examples).

One of our motivations for studying these problems stems from the analysis of
structured backward errors in the solutions to structured linear systems and structured
eigenproblems [7], [18], [19]. Recall that a backward error of an approximate solution
y to a linear system Ax = b is a measure of the smallest perturbation E such that
(A + E)y = b. When A is in some linearly structured class S one may want to require
E to have the same structure; the structured backward error is then a measure of the
smallest structured perturbation E such that Ey = r := b − Ay. Hence solving the
structured mapping problem is the first step towards obtaining explicit expressions
for structured backward errors.

For any linear matrix structure S it is possible to obtain a characterization of the
structured mapping set S using the Kronecker product approach described in [4]. The
equation Ax = b is rewritten as (xT ⊗ In) vec(A) = b, where ⊗ denotes the Kronecker
product and vec is the operator that stacks the columns of a matrix into one long
vector. The linear nature of the matrix structure is then encoded by vec(A) = ΠSp,
where ΠS is an n2 × m pattern matrix giving (in essence) a basis for the structured
class S, and p is an m-dimensional vector of parameters (m = dim S ≤ n2). Hence

S = {A ∈ K
n×n : (xT ⊗ In)ΠSp = b, vec(A) = ΠSp }.

Note that there may be no solution to the system (xT ⊗ In)ΠSp = b if (xT ⊗ In)ΠS is
rank deficient or if the system is overdetermined (n < m). When they exist, solutions
can be obtained from the singular value decomposition of (xT ⊗In)ΠS. In particular, if
the system is underdetermined and consistent, and if the pattern matrix ΠS is chosen
so that ‖p‖2 = ‖A‖F for all A ∈ S (i.e., ΠS contains an orthonormal basis for S in the
Frobenius inner product), then the solution A ∈ S with minimal Frobenius norm is

given in terms of the pseudo-inverse by p =
(
(xT ⊗ In)ΠS

)+
b. As a result we obtain

a computable expression for the structured backward error:

ηF (y) = min{ ‖E‖F : (A + E)y = b, E ∈ S } = ‖
(
(yT ⊗ In)ΠS

)+
(b − Ay)‖2.(1.2)

There are several disadvantages associated with the Kronecker product approach.
The existence of structured solutions to Ax = b may not be easy to check. In addi-
tion, the set S of all structured mappings is given only implicitly. Also, amongst all
solutions in S, it is difficult to distinguish ones with special properties, other than the
one of minimal Frobenius norm. The structured backward error expression in (1.2)
is expensive to evaluate and difficult to compare with its unstructured counterpart
‖b − Ay‖2.

By contrast, the work presented here gives easy-to-check conditions for the exis-
tence problem and an explicit solution for the characterization problem when S is the
Lie or Jordan algebra of a scalar product. The set S is rewritten as

S = B + {A ∈ S : Ax = 0 },(1.3)
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where B is any particular solution of the nonhomogeneous mapping problem. We
provide a set of possible particular solutions B for a given class S and given vectors
x and b, thus giving multiple ways of representing S. This enables one to more easily
identify structured mappings with minimal rank or minimal Frobenius norm and to
readily derive bounds for the ratio between the structured and unstructured backward
errors [19]. A multiplicative approach, as opposed to the additive approach in (1.3),
is used to characterize the set of all minimal 2-norm structured mappings in S. From
this characterization, minimal 2-norm mappings of minimal rank and minimal 2-norm
mappings of minimal Frobenius norm can be identified.

Here is an illustration of what is obtained by applying our general results to
a particular structure S, in this case the Lie algebra of complex skew-symmetric
matrices. For given x, b ∈ Cn our results imply that

S := {A ∈ C
n×n : Ax = b, AT = −A } is nonempty ⇐⇒ xT b = 0 ,

and that

S = bwT − wT b + { (I − vxT )L(I − xvT ) : L ∈ C
n×n, LT = −L } ,(1.4)

where w, v ∈ Cn are any fixed but arbitrary vectors chosen such that wT x = vT x = 1.
All solutions in S of the form bwT − wT b (corresponding to setting L = 0 in (1.4))
have minimal rank, and the choice w = x̄/‖x‖2

2, L = 0 gives the unique solution Aopt

of minimal Frobenius norm:

Aopt = (bx̄T − x̄bT )/‖x‖2
2 , ‖Aopt‖F = min

A∈S
‖A‖F =

√
2‖b‖2/‖x‖2 .(1.5)

The set M = { A ∈ S : ‖A‖2 = minB∈S ‖B‖2 } of all minimal 2-norm mappings can
be characterized by

M =
‖b‖2

‖x‖2

{
UT diag

([
0
1
−1
0

]
, S
)
U : S ∈ C

(n−2)×(n−2), ST = −S, ‖S‖2 ≤ 1
}

,

where U∗[x b̄] = [‖x‖2e1 ‖b‖2e2], i.e., U∗ is the unitary factor of the QR factorization
of [x b̄] with R forced to have positive entries. For this structure S it turns out
that Aopt ∈ M, so Aopt is a solution of minimal rank, minimal Frobenius norm and
minimal 2-norm. As a consequence of (1.5) an explicit formula for the structured
backward error in (1.2) for this class S is given for the Frobenius norm by

ηF (y) =
√

2
‖Ay − b‖2

‖y‖2
,

which is immediately seen to differ from its unstructured counterpart by a factor of
only

√
2. For the 2-norm the structured and unstructured backward errors are equal.

In summary, the results here generalize and unify existing work, answer a number
of open questions, and provide useful tools for the investigation of structured backward
errors. After some preliminaries in section 2, a complete solution to the existence and
characterization problems is presented in sections 3 and 4. In section 5 we identify
structured solutions of minimal rank, minimal Frobenius norm and minimal 2-norm,
and investigate their uniqueness.

2. Preliminaries.

3



2.1. Scalar products. A bilinear form on Kn (K = R, C) is a map (x, y) 7→
〈x, y〉 from Kn × Kn to K, which is linear in each argument. If K = C, the map
(x, y) 7→ 〈x, y〉 is a sesquilinear form if it is conjugate linear in the first argument and
linear in the second. To a bilinear form on Kn is associated a unique M ∈ Kn×n such
that 〈x, y〉 = xT My for all x, y ∈ Kn; if the form is sesquilinear, 〈x, y〉 = x∗My for
all x, y ∈ Cn, where the superscript ∗ denotes the conjugate transpose. The form is
said to be nondegenerate when M is nonsingular.

A bilinear form is symmetric if 〈x, y〉 = 〈y, x〉 or, equivalently, if MT = M , and
skew-symmetric if 〈x, y〉 = −〈y, x〉 or, equivalently, if MT = −M . A sesquilinear form
is Hermitian if 〈x, y〉 = 〈y, x〉 and skew-Hermitian if 〈x, y〉 = −〈y, x〉. The matrices
associated with such forms are Hermitian and skew-Hermitian, respectively.

We will use the term scalar product to mean a nondegenerate bilinear or sesquilin-
ear form on Kn. When we have more than one scalar product under consideration,
we will denote 〈x, y〉 by 〈x, y〉

M
, using the matrix M defining the form as a subscript

to distinguish the forms under discussion.

2.2. Adjoints. The adjoint of A with respect to the scalar product 〈·, ·〉
M

, de-
noted by A⋆, is uniquely defined by the property 〈Ax, y〉

M
= 〈x,A⋆y〉

M
for all x,

y ∈ Kn. It can be shown that the adjoint is given explicitly by

A⋆ =

{
M−1AT M for bilinear forms,
M−1A∗M for sesquilinear forms.

The following properties of adjoint, all analogous to properties of transpose (or con-
jugate transpose) follow easily, and hold for all scalar products.

Lemma 2.1. (A + B)⋆ = A⋆ + B⋆, (AB)⋆ = B⋆A⋆, (A−1)⋆ = (A⋆)−1 and

(αA)⋆ =

{
αA⋆ for bilinear forms,

αA⋆ for sesquilinear forms.

The involutory property (A⋆)⋆ = A does not hold for all scalar products; this
issue is discussed in section 2.4. Adjoints of rank-one matrices will often be needed,

(yzT M)⋆ =

{
zyT M for symmetric bilinear forms,
−zyT M for skew-symmetric bilinear forms.

(2.1)

Replacing T by ∗ on both sides of (2.1) gives the corresponding results for Hermitian
and skew-Hermitian sesquilinear forms respectively.

2.3. Lie and Jordan algebras. Associated with 〈·, ·〉
M

is a Lie algebra L and
a Jordan algebra J, defined by

L :=
{
A ∈ K

n×n : 〈Ax, y〉
M

= −〈x,Ay〉
M

∀x, y ∈ K
n
}

=
{
A ∈ K

n×n : A⋆ = −A
}

,

J :=
{
A ∈ K

n×n : 〈Ax, y〉
M

= 〈x,Ay〉
M

∀x, y ∈ K
n
}

=
{
A ∈ K

n×n : A⋆ = A
}

.

All the structured matrices considered in this paper belong to one of these two classes.
Note that L and J are linear subspaces of Kn×n. Table 2.1 shows a sample of well-
known structured matrices in some L or J associated with a scalar product.

2.4. Orthosymmetric and unitary scalar products. Scalar products for
which vector orthogonality is a symmetric relation, i.e.,

〈x, y〉
M

= 0 ⇔ 〈y, x〉
M

= 0, ∀x, y ∈ K
n,
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Table 2.1
Structured matrices associated with some orthosymmetric scalar products.

R =

"

1
. .

.

1

#

, J =

»

0 In

−In 0

–

, Σp,q =

»

Ip 0
0 −Iq

–

∈ Rn×n with p + q = n.

Space M Adjoint Jordan Algebra Lie Algebra

A⋆ J = {A : A⋆ = A} L = {A : A⋆ = −A}

Symmetric bilinear forms

Rn I AT Symmetrics Skew-symmetrics

Cn I AT Complex symmetrics Cplx skew-symmetrics

Rn Σp,q Σp,qAT Σp,q Pseudo symmetrics Pseudo skew-symmetrics

Cn Σp,q Σp,qAT Σp,q Cplx pseudo-symm. Cplx pseudo-skew-symm.

Rn R RAT R Persymmetrics Perskew-symmetrics

Skew-symmetric bilinear forms

R2n J −JAT J Skew-Hamiltonians Hamiltonians

C2n J −JAT J Cplx J-skew-symm. Complex J-symmetrics

Hermitian sesquilinear forms

Cn I A∗ Hermitian Skew-Hermitian

Cn Σp,q Σp,qA∗Σp,q Pseudo Hermitian Pseudo skew-Hermitian

Skew-Hermitian sesquilinear forms

C2n J −JA∗J J-skew-Hermitian J-Hermitian

will be referred to as orthosymmetric scalar products [13]. One can show that 〈·, ·〉
M

is orthosymmetric if and only if it satisfies any one (and hence all) of the following
equivalent properties:

1. Kn×n = L ⊕ J .
2. The adjoint with respect to 〈·, ·〉

M
is involutory, i.e., (A⋆)⋆ = A,∀A ∈ Kn×n.

3. M = αMT with α = ±1 for bilinear forms; M = αM∗ with α ∈ C, |α| = 1
for sesquilinear forms.

See [13, Thm. A.4] for a proof of this equivalence along with a list of additional
equivalent properties. The third property says that orthosymmetric bilinear forms are
always either symmetric or skew-symmetric. On the other hand, an orthosymmetric
sesquilinear form 〈x, y〉

M
= x∗My, where M = αM∗, |α| = 1, α ∈ C is always

closely tied to a Hermitian form: defining the Hermitian matrix H = ᾱ1/2 M gives
〈x, y〉

H
= ᾱ1/2 〈x, y〉

M
, for all x, y ∈ Cn. Consequently, the Jordan algebra of 〈·, ·〉

H
is

identical to the Jordan algebra of 〈·, ·〉
M

:

〈Ax, y〉
H

= 〈x,Ay〉
H

⇔ ᾱ1/2 〈Ax, y〉
M

= ᾱ1/2 〈x,Ay〉
M

⇔ 〈Ax, y〉
M

= 〈x,Ay〉
M

.

Similarly, the Lie algebra of 〈·, ·〉
H

and 〈·, ·〉
M

are also identical. Thus a result estab-
lished for Hermitian sesquilinear forms immediately translates into a corresponding
result for orthosymmetric sesquilinear forms. Up to a scalar multiple, then, there are
really only three distinct types of orthosymmetric scalar products: symmetric and
skew-symmetric bilinear, and Hermitian sesquilinear. We will, however, continue to
include separately stated results (without separate proofs) for skew-Hermitian forms
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for convenience, as this is a commonly occurring special case.
The results in this paper hold only for orthosymmetric scalar products, which as

we have just seen are those for which the useful and simplifying property (A⋆)⋆ = A
holds for all matrices [13].

Some of our results will require the extra property that the scalar product 〈·, ·〉
M

is also unitary, that is, βM is unitary for some β > 0 [13]. One can show that in
unitary scalar products, “the stars commute”, i.e, (A∗)⋆ = (A⋆)∗ for all A ∈ Kn×n

[13, Thm. A.7.]. Finally, note that important classes of structured matrices arise in
the context of scalar products that are both orthosymmetric and unitary, as witnessed
by the entries in Table 2.1 (all of which with α = ±1 and β = 1). The results in this
paper are not confined to just the examples in the table, however.

2.5. Projections. Projections that map x to the zero vector form a key part in
our solution to the structured mapping problems.

Since the matrix M of the scalar product is nonsingular, given a nonzero x ∈ Kn

one can always construct many w ∈ Kn such that 〈w, x〉
M

= 1. For example, when
x is nonisotropic (i.e 〈x, x〉

M
6= 0), w = x/〈x, x〉

M
will work for bilinear forms, and

w = x/〈x, x〉
M

can be used for sesquilinear forms. If x is isotropic (i.e 〈x, x〉
M

= 0),

choose k so that xk 6= 0; then w = M−T ek/xk will have the desired property for
bilinear forms, and w = M−∗ek/xk will work for sesquilinear forms.

With w chosen so that 〈w, x〉
M

= 1, it is easy to show that for bilinear forms,
xwT M is idempotent and hence a projection with range span{x}. Replacing T by
∗ gives a similar result for sesquilinear forms. The complementary projections Pw

defined by

Pw :=

{
I − xwT M, 〈w, x〉

M
= 1 for bilinear forms,

I − xw∗M, 〈w, x〉
M

= 1 for sesquilinear forms,
(2.2)

have kernel span{x}, and in particular map x to the zero vector. Expressions for the
adjoint of Pw will be useful in the calculations ahead:

P⋆
w =





I − wxT M for symmetric bilinear forms,
I + wxT M for skew-symmetric bilinear forms,
I − wx∗M for Hermitian sesquilinear forms,
I + wx∗M for skew-Hermitian sesquilinear forms.

(2.3)

3. The existence problem. Throughout the rest of the paper we assume that
x, b ∈ Kn with x 6= 0, but that any b is allowed unless otherwise stated. As a
preliminary step towards solving the existence problem, we show that the projections
given in (2.2) can be used to construct maps that send x to b.

Lemma 3.1. Let x 6= 0, and let w ∈ Kn be chosen so that 〈w, x〉
M

= 1. Then
±Bwx = b, where ±Bwx is defined by

±Bw :=

{
bwT M ± (bwT M)⋆Pw for bilinear forms,

bw∗M ± (bw∗M)⋆Pw for sesquilinear forms.
(3.1)

Note that +Bw and −Bw have rank at most two.

Proof. Since Pwx = 0 and 〈w, x〉
M

= 1, we immediately conclude ±Bwx = b.
Next, by (2.1) we see that in the bilinear case, (bwT M)⋆Pw = ±wbT MPw which is a
rank one matrix, and hence +Bw, −Bw are the sum of two matrices of rank one. The
proof in the sesquilinear case is similar.
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Thus, since +Bw, −Bw are always solutions to the unstructured mapping problem,
they should be consistent with (1.1), which captures all solutions. Now 〈w, x〉

M
= 1

implies wT Mx = 1 in the bilinear case. Since any row vector uT with the property
uT x = 1 is a generalized inverse x† for the map x : R → Rn, we can take x† to be
wT M . Rewriting (3.1) for the bilinear case we get

±Bw = bx† ± M−1MT wbT (I − xx†).(3.2)

Letting Z = ±M−1MT wbT , we see that (3.2) is indeed of the form given by Trenkler
in (1.1). The argument for the sesquilinear case is similar, with the role of x† being
played by w∗M . It is worth observing that once the parameter wT is chosen, both x†

and Z in (3.2) are determined, and thus we are confining our attention to a constrained
subset of the maps given by (1.1).

We have still to determine when a structured solution exists, and the role +Bw,
−Bw play in such a solution. The next theorem characterizes pairs of vectors x, b for
which there exists A ∈ L or J such that Ax = b. Observe that sometimes a condition
on 〈b, x〉

M
is needed, while in other cases a solution exists with no conditions at all.

When a structured solution exists, we show that either −Bw or +Bw will be in the Lie
or Jordan algebra, thus yielding a constructive proof of existence.

Theorem 3.2 (Existence for L, J). Let 〈·, ·〉
M

be an orthosymmetric scalar

product, and let S denote the corresponding Lie or Jordan algebra. Then for any

given pair of vectors x, b ∈ Kn with x 6= 0, there exists A ∈ S such that Ax = b if and

only if the conditions given in the following table hold:

Bilinear Form J L

symmetric always 〈b, x〉
M

= 0

skew-symmetric 〈b, x〉
M

= 0 always

Sesquilinear Form J L

Hermitian 〈b, x〉
M

∈ R 〈b, x〉
M

∈ iR

skew-Hermitian 〈b, x〉
M

∈ iR 〈b, x〉
M

∈ R

Proof. (⇒) Since Ax = b, in all cases we have

A ∈ J ⇒ 〈b, x〉
M

= 〈Ax, x〉
M

= 〈x,Ax〉
M

= 〈x, b〉
M

.

A ∈ L ⇒ 〈b, x〉
M

= 〈Ax, x〉
M

= 〈x,−Ax〉
M

= −〈x, b〉
M

.

For symmetric bilinear forms, 〈b, x〉
M

= 〈x, b〉
M

for all x, b ∈ Kn. Hence A ∈ L implies
that 〈b, x〉

M
= −〈x, b〉

M
so that 〈b, x〉

M
= 0.

For skew-symmetric bilinear forms, 〈b, x〉
M

= −〈x, b〉
M

for all x, b ∈ Kn. Hence
A ∈ J implies that 〈b, x〉

M
= −〈x, b〉

M
and therefore 〈b, x〉

M
= 0.

For Hermitian sesquilinear forms, 〈b, x〉
M

= 〈x, b〉
M

for all x, b ∈ Cn. Hence A ∈ J

implies that 〈b, x〉
M

= 〈x, b〉 = 〈b, x〉
M

so that 〈b, x〉
M

∈ R. Also, A ∈ L implies that

〈b, x〉
M

= −〈x, b〉
M

= −〈b, x〉
M

and therefore 〈b, x〉
M

∈ iR. The skew-Hermitian case
follows from the Hermitian sesquilinear case.

(⇐) For each of the eight cases we can give a concrete example of a matrix in L or J

that maps x to b. By Lemma 3.1 we know that +Bw, −Bw as defined in (3.1) map x
to b. It suffices to prove that when the conditions stated in the table hold, +Bw ∈ J,
and −Bw ∈ L. We first consider the symmetric bilinear case. Using Lemma 2.1, the
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expressions for the adjoints given in (2.1) and (2.3), and the symmetry of the scalar
product (M = MT , 〈u, v〉

M
= 〈v, u〉

M
for all u, v), we have

+B⋆
w = (bwT M)⋆ + P⋆

w(bwT M)

= (bwT M)⋆ + (I − wxT M)bwT M

= (bwT M)⋆ − w(xT Mb)wT M + bwT M

= (bwT M)⋆ − (wbT M)(xwT M) + bwT M

= (bwT M)⋆ − (bwT M)⋆(xwT M) + bwT M

= (bwT M)⋆(I − xwT M) + bwT M = +Bw

so that +Bw ∈ J for all x, b ∈ Kn with x 6= 0. To see why −Bw ∈ L, we need to
expand −Bw:

−Bw = (bwT M) − (bwT M)⋆Pw

= (bwT M) − (bwT M)⋆ + (bwT M)⋆xwT M

= (bwT M) − (bwT M)⋆ + 〈b, x〉
M

wwT M

= (bwT M) − (bwT M)⋆

since 〈b, x〉
M

= 0 by hypothesis. Now (bwT M) − (bwT M)⋆ ∈ L, since the adjoint is
involutory for orthosymmetric scalar products. Thus −Bw ∈ L.

The proof for the skew-symmetric bilinear case is similar. In the Hermitian
sesquilinear case, we have

+B⋆
w = (bw∗M)⋆ + P⋆

w(bw∗M)

= (bw∗M)⋆ + bw∗M − 〈x, b〉
M

ww∗M.

On the other hand,

+Bw = bw∗M + (bw∗M)⋆Pw

= bw∗M + (bw∗M)⋆ − 〈b, x〉
M

ww∗M.

For a Hermitian form, 〈x, b〉
M

= 〈b, x〉
M

for all x, b. It follows that +B⋆
w = +Bw ⇐⇒

〈x, b〉
M

= 〈b, x〉
M

⇐⇒ 〈b, x〉
M
∈ R. The proof for skew-Hermitian sesquilinear forms

follows with minor adaptations.
Theorem 3.2 unifies and generalizes existence results in [9] for real skew-symmetric

matrices, in [8] and [16] for symmetric and Hermitian matrices, in [18] for complex
symmetric and skew-Hermitian structures, and in [15, Lem. 5.1] for real persymmetric
matrices, which are particular instances of Lie and Jordan algebras associated with
different bilinear and sesquilinear forms on Rn and Cn (see Table 2.1).

4. The characterization problem. We turn now to the task of determining
the set of all matrices that map x to b and belong to a Lie or Jordan algebra.

Lemma 4.1. Let S denote the Lie or Jordan algebra of any orthosymmetric scalar

product. Then

(a) A ∈ S =⇒ Q⋆AQ ∈ S for all Q; that is, ⋆-congruence preserves L and J

structures.

(b) {P⋆
wSPw : S ∈ S} ⊆ {A ∈ S : Ax = 0}, where Pw is any particular one of the

projection matrices defined in (2.2).
(c) For any w ∈ Kn such that 〈w, x〉

M
= 1, A ∈ S, Ax = 0 =⇒ A = P⋆

wAPw.
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Proof. (a)This is a direct consequence of adjoint being involutory in orthosym-
metric scalar products.

(b) Follows immediately from the fact that Pw = 0, together with (a).

(c) For any bilinear form, A ∈ S =⇒ A = ±A⋆ = ±M−1AT M =⇒ MA =
±AT M =⇒ xT MA = ±xT AT M . But Ax = 0. Hence xT MA = 0. From (2.2), we
have Pw = I − xwT M . Hence APw = A − AxwT M = A, since Ax = 0. Combining
this with the expression for P⋆

w from (2.3), we obtain

P⋆
wAPw = P⋆

wA = (I ± wxT M)A = A

since xT MA = 0. The proof for sesquilinear forms follows along the same lines.
The complete solution to the homogeneous mapping problem can now be described.

Theorem 4.2 (Characterization for J and L: homogeneous case). Let S denote

the Lie or Jordan algebra of any orthosymmetric scalar product space. Given x ∈ Kn

with x 6= 0, and w ∈ Kn such that 〈w, x〉
M

= 1,

{A ∈ S : Ax = 0} = {P⋆
wSPw : S ∈ S}

where Pw is defined in (2.2).

Proof. Follows immediately by combining (b) and (c) of Lemma 4.1.

Corollary 4.3. If v, w ∈ Kn, with 〈v, x〉
M

= 〈w, x〉
M

= 1, then

{P⋆
v SPv : S ∈ S} = {P⋆

wSPw : S ∈ S}.

Thus we have several representations of the set of solutions to the homogeneous map-
ping problem. Now if A, B ∈ S are such that Ax = Bx = b, then (A − B)x = 0. By
Proposition 4.2, A − B = P⋆

wSPw, or equivalently, A = B + P⋆
wSPw for some S ∈ S.

This relationship between the solution sets of the homogeneous system Ax = 0 and
the non-homogeneous system Ax = b, when x is unknown and A, b are fixed is the
same as when the roles of A and x are interchanged as in the mapping problem:

{A ∈ S : Ax = b} = B + {A ∈ S : Ax = 0},(4.1)

where B is any particular solution of the non-homogeneous mapping problem. We
can now solve the characterization part of the mapping problem for L and J.

Theorem 4.4 (Characterization for J and L: non-homogeneous case). Let J and

L be the Jordan and Lie algebras of any orthosymmetric scalar product on Kn. Let

x, b ∈ Kn and x 6= 0. Choose any v, w ∈ Kn such that 〈v, x〉
M

= 〈w, x〉
M

= 1, and use

v and w to define Pv,
±Bw as in (2.2) and (3.1) respectively. Consider the following

sets:

J = {A ∈ J : Ax = b}, J+ = {+Bw + P⋆
v SPv : S ∈ J},

L = {A ∈ L : Ax = b}, L− = {−Bw + P⋆
v LPv : L ∈ L}.

Then J is either empty or J+, and L is either empty or L−, depending on the

conditions described in the following table:
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Bilinear Form J L

symmetric J+ always L− if 〈b, x〉
M

= 0

∅, otherwise

skew-symmetric J+ if 〈b, x〉
M

= 0 L− always

∅, otherwise

Sesquilinear Form J L

Hermitian J+ if 〈b, x〉
M

∈ R L− if 〈b, x〉
M

∈ iR

∅, otherwise ∅, otherwise

skew-Hermitian J+ if 〈b, x〉
M

∈ iR L− if 〈b, x〉
M

∈ R

∅, otherwise ∅, otherwise

Proof. Theorem 3.2 gives conditions under which a solution to the mapping
problem exists, and shows that +Bw and −Bw are particular solutions when these
conditions are satisfied. Combining these results with the observation that A − B is
a solution to the homogeneous problem whenever A and B are particular solutions
gives the desired result via Theorem 4.2.

A more general problem for Hermitian, and real symmetric matrices in particular,
was considered by Sun [16, Lem. 1.4]. For given matrices X,B ∈ Kn×ℓ, Sun gave a
characterization of the set

H = {A ∈ K
n×n : A∗ = A and AX = B}

in terms of the pseudo-inverse X+ of X, and the complementary orthogonal projec-
tions ΠX = XX+, and ΠX⊥ = I − ΠX . He proved that H 6= ∅ if and only if two
conditions are satisfied: BΠX∗ = B and ΠXBX+ is Hermitian. In this case H can
be expressed as

H = {BX+ + (BX+)∗ΠX⊥ + ΠX⊥SΠX⊥ : S∗ = S, S ∈ K
n×n}.(4.2)

When ℓ = 1, writing X, B as x, b respectively, we get Πx = xx∗/(x∗x), and x+ =
x∗/(x∗x). Since Πx∗ = 1, the conditions for H to be nonempty reduce to requiring that
Πxbx+ be Hermitian. A simple calculation shows that this happens if and only if x∗b is
real, which is in agreement with the condition in Theorem 4.4. Sun’s characterization
of H becomes

H =

{
bx∗

x∗x
+

x∗b

x∗x
Πx + ΠxSΠx, S∗ = S

}
,

which corresponds to J+ in Theorem 4.4 with M = I and the special choice v =
w = x/(x∗x). This choice of w corresponds to using an orthogonal projection in the
representation for J+, since Pv is now I − xx∗/(x∗x). Thus Sun’s characterization is
one among many given by Theorem 4.4.

A similar analysis of the real symmetric case shows that the results of Theorem 3.2
and Theorem 4.4 are compatible with Sun’s solution for the case ℓ = 1, and due to
the freedom in the choice of v and w, gives a more flexible description of the set of
real symmetric matrices mapping x to b.

5. Structured mappings with extremal properties. In Theorem 4.4 we
introduced the notation

J = {A ∈ J : Ax = b}, L = {A ∈ L : Ax = b},(5.1)
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for the sets of all structured solutions to the mapping problem. We now show how
to find matrices in J or L with the extremal properties of minimal rank, minimal
Frobenius norm, or minimal 2-norm and investigate their uniqueness.

5.1. Structured solutions of minimal rank. In what follows, we assume
b 6= 0.

Theorem 5.1 (Rank-one structured mappings). Let 〈·, ·〉
M

be an orthosymmetric

scalar product, and let S denote either J or L as in (5.1). Assume b 6= 0. A necessary

condition for the existence of a rank-one matrix in S is 〈b, x〉
M

6= 0. Whenever this

rank-one matrix exists, it is unique and given by

A =

{
bbT M/〈b, x〉

M
for bilinear forms,

bb∗M/〈b, x〉
M

for sesquilinear forms.

Proof. Consider any rank-one matrix A = uvT such that Ax = b with b 6= 0.
Since b ∈ range(A), u is a multiple of b, so without loss of generality we can take
u = b.

Now suppose the orthosymmetric scalar product is bilinear, so MT = ±M . Since
M is nonsingular, there exists z ∈ Kn such that vT = zT M , and so A = uvT = bzT M .
For A ∈ L or J we have A⋆ = ǫA with ǫ = ±1, so by (2.1) we have ±zbT M = ǫbzT M
and so zbT = ±bzT . Thus z = αb and A = αbbT M . But Ax = b ⇒ αb(bT Mx) =
b ⇒ α〈b, x〉

M
= 1, thus forcing 〈b, x〉

M
to be nonzero, and uniquely determining A by

A = bbT M/〈b, x〉
M

. Similar reasoning applies for the sesquilinear case, leading to the
formula A = bb∗M/〈b, x〉

M
.

Corollary 5.2. Let b 6= 0. If 〈b, x〉
M

6= 0, then either S is empty or there is a

unique A ∈ S with rank(A) = 1.
Proof. Follows immediately from Theorem 5.1 together with Theorem 4.4.
The particular cases of Corollary 5.2 are summarized in the following table. Sub-

stituting the choice of w indicated in Table 5.1 into the formulas for +Bw, −Bw given
in (3.1) yields the unique rank one mapping specified in Theorem 5.1. The extra
condition in the Hermitian sesquilinear case comes from the result in Theorem 4.4.
For brevity the skew-Hermitian sesquilinear case has been omitted.

Table 5.1
Rank-one structured mappings when 〈b, x〉M 6= 0, α = 1/〈b, x〉

M

Scalar Product J L

symmetric bilinear +Bw with w = αb L is empty

skew-symmetric bilinear J is empty −Bw with w = αb

Hermitian sesquilinear If 〈b, x〉
M

∈ R r {0}, If 〈b, x〉
M

∈ iR r {0},
+Bw with w = αb −Bw with w = α b

Otherwise no mapping Otherwise no mapping

For nonzero b we have seen that the condition 〈b, x〉
M
6= 0, while necessary for the

existence of structured rank-one mappings, is precisely the condition that precludes
the existence of any structured mappings in certain cases (see Theorem 4.4). On
the other hand, the table in Theorem 4.4 also shows that structured solution sets S
are never empty when the condition 〈b, x〉

M
= 0 is met. We turn to the question of

determining what the minimal achievable rank is in this case.
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Theorem 5.3 (Rank-two structured mappings). Let 〈·, ·〉
M

be an orthosymmetric

scalar product, and let S denote either J or L as in (5.1). Consider any nonzero x,

b ∈ Kn. If 〈b, x〉
M

= 0 then

min
A∈S

rank(A) = 2.

There are always infinitely many matrices in S attaining this minimal rank. Among

these are −Bw ∈ L and +Bw ∈ J , where −Bw, +Bw are given by (3.1), with any choice

of w ∈ Kn such that 〈w, x〉
M

= 1.
Proof. If 〈b, x〉

M
= 0, then by Theorem 5.1, the minimum possible rank for

matrices in S is 2. We know +Bw, −Bw map x to b for all w ∈ Kn such that 〈w, x〉
M

= 1,
and from Theorem 3.2 it follows that +Bw ∈ J and −Bw ∈ L for all such w. Since +Bw,
−Bw are at most rank two, and since they cannot be rank-one, they are solutions of
rank two.

5.2. Structured mappings of minimal Frobenius norm. Another impor-
tant special property is minimal norm, since this is directly related to structured
backward errors for linear systems and eigenvalue problems [18], [19] as well as the
derivation of quasi-Newton methods [3]. We first consider the minimal Frobenius
norm case, the minimal 2-norm case being treated in the next section. For symmet-
ric or Hermitian structures, it is well-known [2], [3] that minimal Frobenius norm is
achieved by

Aopt =
bx∗ + xb∗

x∗x
− (b∗x)

(x∗x)2
xx∗.

We show how to generalize this result to all Lie and Jordan algebras associated with
scalar products that are both orthosymmetric and unitary. We will need the next
two lemmas to prove that, whenever it exists, the structured mapping of minimal
Frobenius norm is unique.

Lemma 5.4. In any real or complex inner product space, the associated norm ‖ ·‖
is strictly convex on independent vectors, that is,

‖tu + (1 − t)v‖ < t‖u‖ + (1 − t)‖v‖, 0 < t < 1

for any linearly independent u and v.
Proof. The Cauchy-Schwarz inequality implies that 〈u, v〉 + 〈v, u〉 < 2‖u‖‖v‖ for

linearly independent u, v. A straightforward calculation then establishes the result.
Lemma 5.5. For b 6= 0, the Frobenius norm is strictly convex on S (S = J ,L).
Proof. Assuming b 6= 0, distinct A,B ∈ S are linearly independent. Since the

Frobenius norm arises from the inner product 〈A,B〉 = tr(A∗B), the result is imme-
diate from Lemma 5.4.

Theorem 5.6 (Minimal Frobenius norm structured mapping). Let 〈·, ·〉
M

be a

scalar product that is both orthosymmetric and unitary. Let S denote either J or L
as in (5.1). If S 6= ∅, the problem

min
A∈S

‖A‖F

has a unique solution given by

Aopt =
bx∗

x∗x
+ ǫ

(
bx∗

x∗x

)⋆(
I − xx∗

x∗x

)
, ǫ =

{
1 if S = J ,

−1 if S = L.
(5.2)
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Moreover,

‖Aopt‖2
F = 2

‖b‖2
2

‖x‖2
2

− β2 |〈b, x〉M |2
‖x‖4

2

,(5.3)

where β > 0 is such that βM is unitary.

Proof. Let

w =

{
M−T x/(x∗x) (bilinear forms)
M−∗x/(x∗x) (sesquilinear forms)

(5.4)

satisfying 〈w, x〉
M

= 1. With this particular choice of w, Pw in (2.2) and ±Bw in (3.1)
become

Pw = I − xx∗

x∗x
, ±Bw =

bx∗

x∗x
±
(

bx∗

x∗x

)⋆
Pw.

We know that +Bw and −Bw map x to b and that if x, b satisfy the conditions in
Theorem 3.2 then S 6= ∅ and +Bw ∈ J, −Bw ∈ L. Hence Aopt = ±Bw ∈ S.

Let {x/‖x‖2, u2, . . . , un} be an orthonormal basis with respect to the standard
inner product on Kn. To show that Aopt has minimal Frobenius norm we first observe
that

‖Ax‖F = ‖b‖F = ‖Aoptx‖F ∀A ∈ S.

The Characterization Theorem 4.4 with v = w tells us that any A ∈ S can be written
as A = Aopt + P⋆

wSPw for some S ∈ S. Premultiplying ui by A and taking norm
yields

‖Aui‖2
2 = ‖Aoptui‖2

2 + ‖P⋆
wSPwui‖2

2 + 2Re
(
(Aoptui)

∗P⋆
wSPwui

)
, 2 ≤ i ≤ n.(5.5)

When 〈·, ·〉
M

is unitary, we claim that the last term on the right hand side of (5.5)
always vanishes. To see that, we first consider the bilinear form case. Since the stars
commute in a unitary scalar product and x∗ui = 0, i = 1:n − 1, we have

(Aoptui)
∗ = ±u∗

i

((
bx∗

x∗x

)⋆
)∗

= ±u∗
i

(
xb∗

x∗x

)⋆
= ±

(
u∗

i M
−1b̄

x∗x

)
xT M =: αxT M

and,

(Aoptui)
∗P⋆

wSPwui = αxT M
(
M−1(I − x̄xT

x∗x
)M
)
Sui = α(xT − xT )MSui = 0.

Similarly, for sesquilinear forms, (Aoptui)
∗ = αx∗M with α = ±(u∗

i M
−1b)/(x∗x) and

(Aoptui)
∗P⋆

wSPwui = αx∗M
(
M−1(I − xx∗

x∗x
)M
)
Sui = α(x∗ − x∗)MSui = 0.

Therefore from (5.5), ‖Aui‖2 ≥ ‖Aoptui‖2, 2 ≤ i ≤ n, and since {x/‖x‖2, u2, . . . , un}
forms an orthonormal set on Kn, one has

‖A‖F =
‖Ax‖2

‖x‖2
+

n∑

i=2

‖Aui‖2 ≥ ‖Aoptx‖2

‖x‖2
+

n∑

i=2

‖Aoptui‖2 = ‖Aopt‖F , ∀A ∈ S,
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showing that Aopt has minimal Frobenius norm.
It is well-known that strictly convex functions have at most one minimizer [1, p.4].

Therefore Lemma 5.5 implies that Aopt is unique for b 6= 0. When b = 0, Aopt = 0 is
clearly unique.

Finally, for the Frobenius norm of Aopt we have

‖Aopt‖2
F =

∥∥∥∥
bx∗

x∗x

∥∥∥∥
2

F

+

∥∥∥∥∥

(
bx∗

x∗x

)⋆
Pw

∥∥∥∥∥

2

F

+ 2ǫRe

(
tr

[
xb∗

x∗x

(
bx∗

x∗x

)⋆
Pw

])
.

Note that

tr

[
xb∗

x∗x

(
bx∗

x∗x

)⋆
Pw

]
= tr

[(
I − xx∗

x∗x

)
xb∗

x∗x

(
bx∗

x∗x

)⋆
]

= tr(0) = 0

and that ‖(bx∗)/(x∗x)‖2
F = ‖b‖2

2/‖x‖2
2. Now using Lemma 2.1 and the fact that the

stars commute in a unitary scalar product, we obtain

∥∥∥∥∥

(
bx∗

x∗x

)⋆
Pw

∥∥∥∥∥

2

F

=
‖b‖2

2

‖x‖2
2

− 〈b, x〉
M

(x∗x)2
tr(ux∗),

where

u =

{
M−1b̄ for bilinear forms,
M−1b for sesquilinear forms.

〈·, ·〉
M

being a unitary scalar product means that βM is unitary for some β > 0.
Hence, M−1 = β2M∗ and therefore,

tr(ux∗) = x∗u = u∗x =

{
β2bT Mx (bilinear forms)
β2b∗Mx (sesquilinear forms)

}
= β2〈b, x〉

M

so that

∥∥∥∥∥

(
bx∗

x∗x

)⋆
Pw

∥∥∥∥∥

2

F

=
‖b‖2

2

‖x‖2
2

− β2 |〈b, x〉M |2
‖x‖4

2

which completes the proof.

5.3. Structured mappings of minimal 2-norm. From Ax = b it is clear
that ‖b‖2/‖x‖2 is always a lower bound for ‖A‖2. For a large class of scalar products
Theorem 5.6 also yields an upper bound:

‖b‖2

‖x‖2
≤ min

A∈S
‖A‖2 ≤ min

A∈S
‖A‖F ≤

√
2
‖b‖2

‖x‖2
,(5.6)

where S denotes either J or L as in (5.1). In this section we show that the lower
bound is actually attained in any Lie or Jordan algebra of a scalar product that is
both orthosymmetric and unitary.

Unlike the structured mapping of minimal Frobenius norm, mappings of minimal
2-norm in S are almost never unique. For example, consider the Jordan algebra of
n × n symmetric matrices with n ≥ 3, and take x = e1 and b = e2 to be the first
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and second column of the identity matrix, respectively. Then all matrices of the form
A = diag(

[
0
1

1
0

]
, S) with S symmetric and ‖S‖2 ≤ 1 satisfy AT = A, Ax = b, and

have ‖A‖2 = ‖b‖2/‖x‖2 = 1. Indeed, this formula captures all symmetric matrices
mapping e1 to e2 that have minimal 2-norm. We give similar characterizations of
the sets of minimal 2-norm structured mappings for large classes of Lie and Jordan
algebras.

5.3.1. Symmetric, skew-symmetric, and Hermitian mappings. We begin
by solving the minimal 2-norm structured mapping problem for the five key structures

Sym(n, K) = {A ∈ K
n×n : AT = A},

Skew(n, K) = {A ∈ K
n×n : AT = −A},(5.7)

Herm(n, C) = {A ∈ C
n×n : A∗ = A}

of real and complex symmetric, real and complex skew-symmetric, and Hermitian
matrices. We will use the simplified notation Sym(K), etc., when the size of the ma-
trices is clear from the context. Our goal here is not just to give a sample mapping for
each structure that realizes the minimal 2-norm, but to characterize the complete set
of all minimal 2-norm mappings for each structure. For example, for real symmetric
matrices it is already well known that A = (‖b‖2/‖x‖2)H, where H is a Householder
reflector mapping x/‖x‖2 to b/‖b‖2, provides a minimal 2-norm solution. However,
the set of all minimal 2-norm symmetric matrices taking x to b has not previously
been explicitly described.

First a preliminary lemma concerning the 2 × 2 case for a special type of (x, b)
vector pair.

Lemma 5.7. Let S be either Sym(2, K) or Herm(2, C) and

S =

{
A ∈ S : A

[
α
β

]
=

[
α
−β

]}
,

where α, β ∈ C with Re(α) 6= 0 and β 6= 0 when S = Sym(2, C), and α, β ∈ R \ {0}
otherwise. Then

min
A∈S

‖A‖2 = 1 ,

with A =
[
1
0

0
−1

]
being the unique matrix in S of minimal 2-norm.

Proof. Note that from (5.6) any A ∈ S satisfies ‖A‖2 ≥ 1, and since
[
1
0

0
−1

]
∈ S

has unit 2-norm we have minA∈S ‖A‖2 = 1. The rest of the proof consists of showing
that

[
1
0

0
−1

]
is the unique minimizer of the 2-norm for S.

We start by parameterizing S using (4.1):

S =

[
1 0
0 −1

]
+

{
A ∈ S : A

[
α
β

]
=

[
0
0

]}
,

where
[
1
0

0
−1

]
is a particular mapping in S. Any A ∈ Sym(2, K) has the form

[
a
z

z
c

]

with a, c, z ∈ K, so A
[

α
β

]
=
[
0
0

]
implies

[
a
z

z
c

]
= z

[
−β/α

1
1

−α/β

]
. Similarly any A ∈

Herm(2, C) has the form
[

a
z̄

z
c

]
with a, c ∈ R; then α, β ∈ R together with A

[
α
β

]
=
[
0
0

]

implies that z ∈ R, and so A can once again be expressed in the form z
[
−β/α

1
1

−α/β

]
.

Hence writing

P (z) =

[
1 0
0 −1

]
+ z

[−β
α 1

1 −α
β

]
=

[
1 − β

αz z
z −1 − α

β z

]
,
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we have S = {P (z) : z ∈ K} if S = Sym(2, K), and S = {P (z) : z ∈ R} when
S = Herm(2, C) and α, β ∈ R.

We can now calculate the 2-norm of P (z) by computing the largest eigenvalue of

P ∗P (z) =

[
1 −

(
β
ᾱ z̄ + β

αz
)

+
(
1 + β2

|α|2

)
|z|2 (z − z̄) − γ|z|2

(z̄ − z) − γ̄|z|2 1 +
(

ᾱ
β z̄ + α

β z
)

+
(
1 + |α|2

β2

)
|z|2

]
,

where γ := (α/β) + (β/α). Much calculation and simplification yields

tr P ∗P (z) = 2 + 2q(z), det PP ∗(z) = 1 + 2q(z) − 2
(
1 + Re

α2

|α|2
)
|z|2,

where q(z) := Re
[
(α

β − β
α )z
]
+ |γ|2|z|2/2 ∈ R. Since the characteristic polynomial of

P ∗P (z) is λ2 − trP ∗P (z)λ + detP ∗P (z), we get

λ±(z) =
1

2

(
trP ∗P (z) ±

√(
trP ∗P (z)

)2 − 4 det P ∗P (z)

)

= 1 + q(z) ±
√

q(z)2 + 2
(
1 + Re

α2

|α|2
)
|z|2 .

Since q(z) ∈ R, clearly the largest eigenvalue of P ∗P (z) is λ+(z). But the hypothesis

Re(α) 6= 0 means that Re α2

|α|2 > −1, so the second term under the square root

is strictly bigger than 0 for all nonzero z. Hence λ+(z) satisfies λ+(0) = 1 and
λ+(z) > 1 for all nonzero z. Thus z = 0 is the unique minimizer of λ+(z), and hence
P (0) =

[
1
0

0
−1

]
is the unique minimizer of the 2-norm for S.

We are now in a position to give a complete description of the set of all minimal
2-norm structured mappings for symmetric, skew-symmetric and Hermitian matrices.
Recall that for nonzero µ ∈ K,

sign(µ) := µ/|µ|.

Theorem 5.8 (Minimal 2-norm structured mappings: special cases). Let Sn be

either Sym(n, K), Skew(n, K), or Herm(n, C), and let x, b ∈ Kn be vectors such that

S = {A ∈ Sn : Ax = b} is nonempty. Then

min
A∈S

‖A‖2 =
‖b‖2

‖x‖2
=: ρ .

Furthermore there exists an n × n unitary matrix U such that

M :=
{
A ∈ S : ‖A‖2 = ρ

}
=
{

ρU⋆ diag(R,S)U : S ∈ Sn−r, ‖S‖2 ≤ 1
}

,

where the adjoint ⋆, the number r, and R ∈ Sr are given by:

(i) Sn = Sym(n, K) : ⋆ = T and r = 1 (r = 2) if x and b are linearly dependent

(independent), with

R =

{
sign(µ) if b = µx for some µ ∈ K,[
1
0

0
−1

]
otherwise,

(ii) Sn = Skew(n, K) : ⋆ = T and r = 2, with R =
[
0
1
−1
0

]
,
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(iii) Sn = Herm(n, C) : ⋆ = ∗ and r = 1 (r = 2) if x and b are linearly dependent

(independent), with

R =

{
sign(µ) if b = µx for some µ ∈ R,[
1
0

0
−1

]
otherwise.

The matrix U can be taken as the product of at most two unitary1 Householder reflec-

tors; when K = R, U is real orthogonal.

Proof. For any A ∈ Sn such that Ax = b, observe that the matrix B = ρ−1A
is also in Sn and maps x

‖x‖2

to b
‖b‖2

; also note that b = µx (resp., b = µx) in the

theorem is equivalent to b
‖b‖2

= sign(µ) x
‖x‖2

(
resp., b

‖b‖2

= sign(µ) x
‖x‖2

)
. Thus it

suffices to prove the theorem for x, b ∈ Kn with ‖x‖2 = ‖b‖2 = 1 and the condition
b = µx (resp., b = µx) replaced by b = sign(µ)x

(
resp., b = sign(µ)x

)
; we make these

assumptions throughout the rest of the argument.
The proof proceeds by first developing a unitary U and accompanying R for each

of the five structures in (5.7). Then these U and R matrices are used to build explicit
families of matrices in the structured mapping set S that realize the lower bound in
(5.6), and thus are of minimal 2-norm. Finally we show that for each structure these
families account for all of M.

We begin by constructing for each case of the theorem a unitary matrix U such
that

Ux =

[
y
0

]
, (U⋆)−1b =

[
c
0

]
,(5.8)

with y, c ∈ Kr satisfying Ry = c, where R ∈ Sr is as defined in the theorem.
(i) First, suppose that Sn = Sym(n, K). If b = sign(µ)x for some µ ∈ K, then

let U be the unitary Householder reflector mapping x to e1, so that y = 1. Then
(U⋆)−1b = Ub = sign(µ)e1, so c = sign(µ). Clearly with R := sign(µ) ∈ S1 we have
Ry = c.

When x and b are linearly independent then U can be taken as the product of
two unitary Householder reflectors, U = H2H1. The first reflector H1 takes x + b
to ±‖x + b ‖2e1; with H1x =

[
α
v

]
and H1b =

[
γ
w

]
we see that w = −v with v 6= 0

because of the linear independence of x and b, and α+γ = ±‖x+b ‖2 ∈ R\{0}. Then
‖x‖2 = ‖b‖2 ⇒ ‖H1x‖2 = ‖H1b ‖2 ⇒ |α| = |γ|, which together with α+γ ∈ R implies

that γ = α, and hence H1b =
[

α
−v

]
. Note also that 2Re α = α + α = ±‖x + b̄ ‖2 6= 0.

For the second reflector pick H2 =
[
1
0

0
eH2

]
so that H̃2v = βe1 with β = ±‖v‖2 6= 0.

Hence

U
[
x b

]
=




α α
β −β
0 0
...

...
0 0




, Re α 6= 0, 0 6= β ∈ R ,(5.9)

and therefore y =
[

α
β

]
and c =

[
α

−β

]
satisfy Ry = c with R =

[
1
0

0
−1

]
∈ S2. Note that

U can be taken to be real orthogonal when K = R.

1but not necessarily Hermitian, see [12].
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(ii) For Sn = Skew(n, K), Theorem 3.2 says that S is nonempty if and only if
bT x = 0. In this situation U can be taken as the product of two unitary House-
holder reflectors, U = H2H1. The first reflector H1 is defined to take x to e1 ;
then H1b =

[
α
v

]
for some v ∈ Kn−1. The fact that bT x = 0 implies α = 0, since

bT x = [α v∗ ]H1H
∗
1 e1 = α. For the second reflector pick H2 =

[
1
0

0
eH2

]
so that

H̃2v = e1 ∈ Kn−1. Then U [x b ] = [ e1 e2 ] ∈ Kn×2, giving y =
[
1
0

]
and c =

[
0
1

]
in

K2 satisfying Ry = c for R =
[
0
1
−1
0

]
∈ S2. Note once again that U can be taken to

be real orthogonal when K = R.
(iii) Finally suppose that Sn = Herm(n, C). Theorem 3.2 says that S is nonempty

if and only if b∗x ∈ R. If x and b are linearly dependent, then b = sign(µ)x for some
µ ∈ C, and b∗x ∈ R implies that µ ∈ R. In this case U can be taken as the unitary
Householder reflector mapping x to e1 so that (U⋆)−1b = Ub = sign(µ)e1 since µ is
real. Hence [ y c ] = [ 1 sign(µ) ] and Ry = c with R = sign(µ) ∈ S1.

On the other hand if x and b are linearly independent, then U can be taken as
the product of two unitary Householder reflectors U = H2H1 in a manner analogous
to that described above in (i) for Sym(n, K); the only difference is that H1 now
takes x + b to ±‖x + b‖2e1. In this case (5.9) holds with b̄ replaced by b. Also
b∗x = (H1b)

∗(H1x) = α2 − v∗v ∈ R so that α2 ∈ R. This together with Reα 6= 0
implies that α ∈ R. Hence we have y =

[
α
β

]
and c =

[
α

−β

]
with α, β ∈ R \ {0},

satisfying Ry = c with R =
[
1
0

0
−1

]
∈ S2.

Using the unitary U and R ∈ Sr constructed above for each Sn, we can now
show that the lower bound 1 = ‖b‖2/‖x‖2 ≤ minA∈S ‖A‖2 from (5.6) is actually
attained by a whole family of A ∈ S. For any S ∈ Sn−r with ‖S‖2 ≤ 1, consider
A = U⋆ diag(R,S)U . Then A ∈ Sn, since Sn is preserved by any ⋆-congruence (see
Lemma 4.1(a)) and diag(R,S) ∈ Sn. Also Ax = b because of the properties of U in
(5.8), and ‖A‖2 = ‖diag(R,S)‖2 = ‖R‖2 = 1. Thus

{
U⋆ diag(R,S)U : S ∈ Sn−r , ‖S‖2 ≤ 1

}
⊆ M .

Finally, we complete the characterization of M by showing that this contain-
ment is actually an equality. Consider an arbitrary A ∈ M. Then Ax = b ⇒
((U⋆)−1AU−1)(Ux) = (U⋆)−1b, so the matrix B := (U⋆)−1AU−1 = (U−1)⋆AU−1 is
in Sn and maps the vector Ux =

[
y
0

]
to (U⋆)−1b =

[
c
0

]
. Let B11 ∈ Sr be the leading

principal r × r submatrix of B, so ‖B11‖2 ≤ ‖B‖2 = ‖A‖2 = 1. The form of the two
vectors

[
y
0

]
and

[
c
0

]
implies that B11 maps y to c ; since ‖y‖2 = ‖c‖2 = 1 we have

‖B11‖2 ≥ 1, and hence ‖B11‖2 = 1. Using Lemma 5.7 we can now show that B11 = R
in all cases.

(i) Suppose Sn = Sym(n, K) and B11 ∈ Sr. Then b = sign(µ)x for some µ ∈ K

implies [ y c ] = [ 1 sign(µ) ], so B11y = c implies B11 = sign(µ) = R. On the other
hand if b and x are linearly independent, then [ y c ] =

[
α
β

α
−β

]
with Re(α) 6= 0 and

0 6= β ∈ R. Since B11y = c with ‖B11‖2 = 1, Lemma 5.7 implies that B11 =
[
1
0

0
−1

]
=

R.
(ii) B11 ∈ Skew(2, K) must have the form

[
0
σ

−σ
0

]
for some σ ∈ K. So B11y = c

with y = e1 and c = e2 implies σ = 1, and hence B11 =
[
0
1
−1
0

]
= R.

(iii) Finally consider Sn = Herm(n, C) and B11 ∈ Sr. If b = sign(µ)x for some
µ ∈ R then [ y c ] = [ 1 sign(µ) ], so B11y = c implies B11 = sign(µ) = R. If b and x
are linearly independent, then [ y c ] =

[
α
β

α
−β

]
with α, β both real and nonzero. Since

B11y = c with ‖B11‖2 = 1, Lemma 5.7 implies that B11 =
[
1
0

0
−1

]
= R.
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The condition ‖B‖2 = 1 now forces the rest of the first r columns of B to be
all zeroes; since B ∈ Sn, the rest of the first r rows of B must also be all zeroes.
Thus B has the form B = diag(R,S), with S ∈ Sn−r. Finally, ‖B‖2 = 1 and
‖R‖2 = 1 implies that ‖S‖2 ≤ 1. Thus we have B := (U⋆)−1AU−1 = diag(R,S), so
A = U⋆ diag(R,S)U and hence M ⊆

{
U⋆ diag(R,S)U : S ∈ Sn−r , ‖S‖2 ≤ 1

}
.

5.3.2. More general L and J. For Lie algebras L and Jordan algebras J of
scalar products 〈·, ·〉

M
that are both unitary and orthosymmetric, the minimal 2-

norm structured mapping problem can be reduced to one of the five cases treated in
section 5.3.1. To this end we first show that for orthosymmetric 〈·, ·〉

M
, left multi-

plication by the matrix M defining the scalar product is a bijection from Kn×n to
Kn×n that maps L and J to Skew(K) and Sym(K) for bilinear forms, and to scalar
multiples of Herm(C) for sesquilinear forms. This result appeared in [13, Thm. 8.4],
but we repeat the proof here for the convenience of the reader. The reduction to the
five special cases Sym(K), Skew(K), and Herm(C) is then achieved by the 2-norm-

preserving bijection A 7→ Ã := βMA, where β > 0 is a real constant such that βM is
unitary.

Lemma 5.9. Let S be the Lie or Jordan algebra of an orthosymmetric scalar

product 〈·, ·〉
M
. Suppose A ∈ S, so that A⋆ = δA where δ = ±1.

• For bilinear forms on Kn write, by orthosymmetry, M = αMT with α = ±1.
Then

M · S =

{
Sym(K) if δ = α,
Skew(K) if δ 6= α.

(5.10)

• For sesquilinear forms on Cn write, by orthosymmetry, M = αM∗ with

|α| = 1. Then

M · S =

{
α1/2Herm(C) if δ = +1,
α1/2 iHerm(C) if δ = −1.

(5.11)

Proof. For orthosymmetric bilinear forms

A ∈ S =⇒ δA = A⋆ = M−1AT M =⇒ δMA = AT M = α(MA)T ,

which shows that MA is (complex) symmetric if δ = α and (complex) skew-symmetric
if δ 6= α. Combining this with the property Kn×n = L ⊕ J for orthosymmetric scalar
products (see sec. 2.4) completes the proof of (5.10).

Similarly, for orthosymmetric sesquilinear forms we have

A ∈ S ⇔ δA = A⋆ = M−1A∗M ⇔ δMA = A∗M ⇔ δᾱ1/2MA = (ᾱ1/2MA)∗.

Hence ᾱ1/2MA is either Hermitian or skew-Hermitian. Together with Cn×n = L ⊕ J

this proves (5.11).
We are now in a position to prove the main result of section 5.3.
Theorem 5.10 (Minimal 2-norm structured mappings: general case). Let Sn

be the Lie algebra L or Jordan algebra J of a scalar product 〈·, ·〉
M

on Kn that is

both orthosymmetric and unitary, so that M · Sn is either Sym(n, K), Skew(n, K), or

γHerm(n, C) for some |γ| = 1. Also let x, b ∈ Kn be vectors such that S = {A ∈ Sn :
Ax = b} is nonempty. Then

min
A∈S

‖A‖2 =
‖b‖2

‖x‖2
:= ρ.
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Furthermore there exists a unitary matrix U such that

(5.12)

M :=
{
A ∈ S : ‖A‖2 = ρ

}
=
{
ρU⋆(βM)−1 diag(R,S)U : S ∈ S̃n−r, ‖S‖2 ≤ 1

}
,

where β > 0 is a real constant such that βM is unitary, ⋆ denotes the adjoint of the

scalar product 〈·, ·〉
M
, and the number r, the structured class S̃n−r, and R ∈ Kr×r are

given in each case by:

(i) M · Sn = Sym(n, K): r = 1 (r = 2) if x and Mb are linearly dependent (in-

dependent), S̃n−r = Sym(n − r, K), and

R =

{
sign(µ) if βMb = µx for some µ ∈ K,[
1
0

0
−1

]
otherwise,

(ii) M · Sn = Skew(n, K) : r = 2, S̃n−r = Skew(n − 2, K), and R =
[
0
1
−1
0

]
,

(iii) M · Sn = γHerm(n, C) for some |γ| = 1: r = 1 (r = 2) if x and Mb are

linearly dependent (independent), S̃n−r = γHerm(n − r, C), and

R =

{
γ sign(µ) if γ−1βMb = µx for some µ ∈ R,

γ
[
1
0

0
−1

]
otherwise.

The matrix U can be taken as the product of at most two unitary Householder reflec-

tors; when K = R, U is real orthogonal.

Proof. Lemma 5.9 together with βM being unitary implies that left multiplica-
tion by βM is a 2-norm-preserving bijection from Kn×n to Kn×n that maps Sn to
Skew(n, K) or Sym(n, K) for bilinear forms, and Sn to γHerm(n, C) for sesquilinear
forms. For bilinear forms, the equivalence of the equations Ax = b and

Ãx := (βMA)x = (βMb) =: b̃

thus reduces the structured mapping problem for S = {A ∈ Sn : Ax = b} in a 2-

norm-preserving way to the structured mapping problem for finding Ã in Skew(n, K)

or Sym(n, K) such that Ãx = b̃. Similarly for sesquilinear forms, the equivalence

of Ax = b and Ãx := (γ−1βMA)x = (γ−1βMb) =: b̃ gives a 2-norm-preserving

reduction of the structured mapping problem for S to that of finding Ã in Herm(n, C)

such that Ãx = b̃.
The value of minA∈S ‖A‖2 and the formula for M now follow by applying Theorem

5.8 to the minimal 2-norm structured mapping problem for Ãx = b̃, and then using
the correspondence between Ã and A.

5.4. Comparison of the various “minimal” structured mappings. We
conclude section 5 by exploring the relationships between the three types of extremal
mappings—minimal rank, Frobenius norm, and 2-norm—under the assumption that
the scalar product 〈·, ·〉

M
is both unitary and orthosymmetric.

In general the minimal Frobenius norm solution Aopt differs from the minimal
rank solution. The latter is usually rank one whereas Aopt is generally rank-two.
From (5.2) we see that Aopt is rank-one if and only if M−1x̄ ∈ span{b} for bilinear
forms or M−1x ∈ span{b} for sesquilinear forms.

For structured mappings of minimal 2-norm, the following corollary of Theo-
rem 5.10 singles out the unique matrix of minimal rank as well as the one of minimal
Frobenius norm.
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Corollary 5.11. Under the hypotheses of Theorem 5.10, let M denote the set

of all minimal 2-norm mappings in S = {A ∈ S : Ax = b}. Assume further that x, b
are vectors such that S is nonempty. Consider the particular mapping

A2 :=
‖b‖2

‖x‖2
U⋆(βM)−1

[
R 0
0 0

]
U ∈ M ,(5.13)

obtained by setting S equal to 0 in (5.12). Then A2 is the unique solution of both

the minimal rank problem min
A∈M

rank(A) and the minimal Frobenius norm problem

min
A∈M

‖A‖F . Moreover, either

(1) A2 has rank 1 and ‖A2‖F = ‖b‖2/‖x‖2 , or

(2) A2 has rank 2 and ‖A2‖F =
√

2‖b‖2/‖x‖2 .

Case (1) occurs when x and Mb (x and Mb) are linearly dependent and the scalar

product is bilinear (sesquilinear). (Note that if M · S = Skew(n, K), then this linear

dependence implies that S is empty.) Otherwise case (2) holds.

Are there any conditions under which there is a structured mapping in S that
simultaneously has all three extremal properties? The next result provides a complete
answer to this question.

Theorem 5.12. Let S be the Lie or Jordan algebra of a scalar product 〈·, ·〉
M

that

is both unitary and orthosymmetric. Assume that x, b ∈ Kn \ {0} are vectors such

that S = {A ∈ S : Ax = b} is nonempty. Then the unique minimal Frobenius norm

mapping Aopt ∈ S has both minimal 2-norm and minimal rank in S if and only if the

pair of vectors (x, b) satisfies either property (a) or property (b) below.

(a) M−1x̄ ∈ span{b} for bilinear forms or M−1x ∈ span{b} for sesquilinear

forms. In this case

Aopt = A2 =

{
bbT M/〈b, x〉

M
for bilinear forms,

bb∗M/〈b, x〉
M

for sesquilinear forms

is the unique rank-one mapping in S.

(b) 〈b, x〉
M

= 0. In this case

Aopt = A2 =
bx∗

x∗x
+ ǫ

(
bx∗

x∗x

)⋆
, ǫ =

{
1 if S = J,

−1 if S = L

is the unique rank-two mapping in M = {A ∈ S : ‖A‖2 = minB∈S ‖B‖2}.
Proof. (⇒) Aopt having minimal 2-norm in S means that Aopt ∈ M, with minimal

Frobenius norm in M; thus Aopt = A2 by Corollary 5.11. But A2 is either rank 1
or rank 2. A2 with rank 1 means Aopt has rank 1, and therefore property (a) holds
by the remarks preceding the corollary. On the other hand A2 with rank 2 implies
‖Aopt‖F = ‖A2‖F =

√
2 ‖b‖2/‖x‖2, which by (5.3) implies that property (b) holds.

(⇐) Property (a) implies that Aopt is rank 1 by the remarks preceding the corol-
lary. But property (a) is equivalent to the linear dependence of x and Mb (x and Mb)
for bilinear (sesquilinear) forms, which are precisely the conditions in Corollary 5.11
which guarantee that A2 is rank 1. The uniqueness of rank-one mappings in S from
Theorem 5.1 now implies that Aopt = A2 has all three minimality properties.

Property (b) implies that ‖Aopt‖F =
√

2 ‖b‖2/‖x‖2 by (5.3), and that the min-
imal rank in S is 2 by Theorem 5.3. By Corollary 5.11 we know that ‖A2‖F ≤√

2 ‖b‖2/‖x‖2, so the uniqueness of minimal Frobenius norm mappings implies that
Aopt = A2. This map has minimal rank 2 by case (2) of Corollary 5.11.
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6. Concluding remarks. A complete, unified solution for the existence and
characterization part of the structured mapping problems for Lie and Jordan alge-
bras of orthosymmetric scalar products has been presented. Amongst all structured
mappings, solutions of minimal rank were identified and a condition on x and b for
uniqueness was given. The minimal Frobenius norm structured solution was shown to
be unique and an expression for it obtained when the scalar product is both orthosym-
metric and unitary. A characterization of the set of all minimal 2-norm structured
mappings was also presented.

It will be interesting to extend our results to the case of multiple right-hand sides.
Associated with a scalar product 〈·, ·〉

M
is a third class of structured matrices: the

automorphism group G defined by

G =
{
A ∈ K

n×n : 〈Ax,Ay〉
M

= 〈x, y〉
M

∀x, y ∈ K
n
}

=
{
A ∈ K

n×n : A⋆ = A−1
}

.

Unlike the corresponding Jordan and Lie algebras, G is not a linear subspace of Kn×n:
it is a multiplicative group and the structure is nonlinear. Examples of automorphism
groups include the orthogonal, symplectic, and pseudo-unitary groups. The existence
and characterization problems for automorphism groups are addressed in part II of
this paper [11]. There it is shown that for any orthosymmetric scalar product 〈·, ·〉

M

there exists A ∈ G such that Ax = b if and only if 〈x, x〉
M

= 〈b, b〉
M

. Two character-
izations of the set {A ∈ G : Ax = b} of all structured mappings are proposed: one
multiplicative, the other additive. We expect both to be useful for backward error
investigations.
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