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6.1 Introduction

In this chapter, the problem of constructing a reduced order system while
preserving the second-order structure of the original system is discussed. Af-
ter a brief introduction on second-order systems and a review of first order
model reduction techniques, two classes of second-order structure preserving
model reduction techniques – Krylov subspace-based and SVD-based – are
presented. For the Krylov techniques, conditions on the projectors that guar-
antee the reduced second-order system tangentially interpolates the original
system at given frequencies are derived and an algorithm is described. For
SVD-based techniques, a Second-Order Balanced Truncation method is de-
rived from second-order Gramians.

Second-order systems arise naturally in many areas of engineering (see, for
example, [Pre97, WJJ87]) and have the following form:{

Mq̈(t) +Dq̇(t) + Sq(t) = F in u(t),
y(t) = F out q(t).

(6.1)

We assume that u(t) ∈ R
m, y(t) ∈ R

p, q(t) ∈ R
N , F in ∈ R

N×m, F out ∈
R

p×N , and M,D,S ∈ R
N×N with M invertible. For mechanical systems the

matrices M , D and S represent, respectively, the mass (or inertia), damping
and stiffness matrices, u(t) corresponds to the vector of external forces, F in to
the input distribution matrix, y(t) to the output measurement vector, F out to
the output measurement matrix, and q(t) to the vector of internal generalized
coordinates.

The transfer function associated with the system (6.1) links the outputs
to the inputs in the Laplace domain and is given by

R(s) := F outP (s)−1F in, (6.2)

where
P (s) := Ms2 +Ds+ S (6.3)
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is the characteristic polynomial matrix. The zeros of det(P (s)) are also known
as the characteristic frequencies of the system and play an important role in
model reduction, e.g., the system is stable if these zeros lie in the open left
half plane.

Often, the original system is too large to allow the efficient solution of var-
ious control or simulation tasks. In order to address this problem, techniques
that produce a reduced system of size n � N that possesses the essential
properties of the full order model have been developed. Such a reduced model
can then be used effectively, e.g., in real-time, for controlling or simulating the
phenomena described by the original system under various types of external
forces u(t). We therefore need to build a reduced model,{

M̂ ¨̂q(t) + D̂ ˙̂q(t) + Ŝq̂(t) = F̂ inu(t)

ŷ(t) = F̂ outq̂(t)
(6.4)

where q̂(t) ∈ R
n, M̂ , D̂, Ŝ ∈ R

n×n, F̂ in ∈ R
n×m, F̂ out ∈ R

p×n, such that its
transfer function is “close” to the original transfer function.

In contrast with second-order systems, first order systems can be repre-
sented as follows: {

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(6.5)

where again u(t) ∈ R
m, y(t) ∈ R

p, x(t) ∈ R
N , C ∈ R

p×N , A ∈ R
N×N and

B ∈ R
N×m.

The transfer function associated with the system (6.5) is given by

R(s) := C(sIN −A)−1B. (6.6)

Second-order systems can be seen as a particular class of linear systems. In-
deed, since the mass matrix M is assumed to be invertible, we can rewrite the
system (6.1) as follows⎧⎪⎪⎨⎪⎪⎩

ẋ(t) =

[
0 IN

−SM −DM

]
x(t) +

[
0
F in

M

]
u(t)

y(t) =
[
F out

M 0
]
x(t)

(6.7)

where the state x(t) is
[
q(t)T q̇(t)T

]T
, and where SM = M−1S, DM =

M−1D, F in
M = M−1F in, F out

M = F out, which is of the form (6.5). We can
thus rewrite the transfer function defined in (6.2) as

R(s) = C(sI2N −A)−1B (6.8)

with

A :=

[
0 IN

−SM −DM

]
, B :=

[
0
F in

M

]
, C :=

[
F out

M 0
]
. (6.9)
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Note that if the dimension of the state q(t) of the original second-order sys-
tem (6.1) is equal to N , the order of its corresponding linearized state space
realization (6.9) (also called the McMillan degree of R(s) if the state space
realization (C,A,B) is minimal) is equal to 2N .

A reduced model for the second-order system (6.1) could be produced by
applying standard linear model reduction techniques to (C,A,B) in (6.9) to
yield a small linear system (Ĉ, Â, B̂). Unfortunately, there is no guarantee
that the matrices defining the reduced system (Ĉ, Â, B̂) have the block struc-
ture necessary to preserve the second-order form of the original system. Such
a guarantee requires the development of second-order structure-preserving
model reduction techniques.

This chapter is organized as follows. In Section 6.2, general results con-
cerning model reduction of first order systems are summarized. In Section
6.3, a simple sufficient condition for constructing reduced order systems that
preserve the second-order structure is developed. Generalizations of Balanced
Truncation and Krylov subspace-based methods that enforce this sufficient
condition for second-order systems are presented in Sections 6.4 and 6.5, re-
spectively. After some numerical experiments in Section 6.6, concluding re-
marks are given in Section 6.7.

6.2 Model Reduction of Linear Systems

Most popular model reduction techniques for linear systems can be put in one
of two categories [Ant05]: SVD-based and Krylov subspace-based techniques.
Perhaps the most popular model reduction technique for linear systems is the
Balanced Truncation method. This SVD-based technique has many advan-
tages: the stability of the original system is preserved and there exists an a
priori global bound on the error between the original and the reduced system.
The main drawback is that this technique cannot be applied to large-scale
systems of order N , i.e., those systems where O(N3) computations is an un-
acceptably large cost. On the other hand, Krylov subspace-based techniques
that are based on imposing moment matching conditions between the original
and the reduced transfer function, such as rational/tangential interpolation
methods, can be applied to large-scale systems but do not provide global error
bounds and depend significantly on the choice of certain parameters.

In this section, we present an overview of examples of each category applied
to a linear system described by (6.5). The corresponding transfer functions is
then strictly proper, i.e. lims→∞R(s) = 0. Since M is invertible, the transfer
function considered in (6.2) is also strictly proper.

6.2.1 Balanced Truncation

If A is stable, then the system (6.5) is also a linear (convolution) operator
mapping square integrable inputs u(t) ∈ L2[−∞,+∞] to square integrable
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outputs y(t) ∈ L2[−∞,+∞]. Following the development in [CLVV05], we re-
call the concept of a dual operator to discuss the Balanced Truncation method.

Definition 6.2.1. Let L be a linear operator acting from a Hilbert space U to
a Hilbert space Y equipped respectively with the inner products < , >U and
< , >Y . The dual of L, denoted by L∗, is defined as the linear operator acting
from Y to U such that < Lu, y >Y = < u,L∗y >U for all y ∈ Y and all
u ∈ U . ��
It is easily verified that the transfer function associated with the dual operator
of (6.6) is BT (sIN −AT )−1CT , (see [ZDG95]).

Now consider the input/output behavior of the system (6.5). If we apply
an input u(t) ∈ L2[−∞, 0] to the system for t < 0, the position of the state
at time t = 0, assuming the zero initial condition x(−∞) = 0, is equal to

x(0) =

∫ 0

−∞
e−AtBu(t)dt := Cou(t).

If a zero input is applied to the system for t > 0, then for all t ≥ 0, the output
y(t) ∈ L2[0,+∞] of the system (6.5) is equal to

y(t) = CeAtx(0) := Obx(0).

So the mapping of past inputs to future outputs is characterized by two
operators – the so-called controllability operator Co : L2[−∞, 0] �→ R

n

(mapping past inputs u(t) to the present state) and observability operator
Ob : R

n �→ L2[0,+∞] (mapping the present state to future outputs y(t)).
Both Co and Ob have dual operators, C∗o and O∗

b , respectively. The opera-
tors and their duals are related by two fundamental matrices associated with
the linear system (6.5). These are the “controllability Gramian” P and the
“observability Gramian” Q. If A is stable, they are the unique solutions of
the Lyapunov equations:

AP + PAT +BBT = 0 , ATQ+QA+ CTC = 0. (6.10)

It follows that Co and Ob are related to their dual operators by the identities
P = C∗oCo and Q = ObO∗

b [ZDG95].
Another physical interpretation of the Gramians results from two opti-

mization problems. Let

J(v(t), a, b) :=

∫ b

a

v(t)T v(t)dt

be the energy of the vector function v(t) in the interval [a, b]. It can be shown
that (see [ZDG95])

min
Cou(t)=x0

J(u(t),−∞, 0) = xT
0 P−1x0, (6.11)
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and, symmetrically, we have the dual property

min
O∗

b
y(t)=x0

J(y(t),−∞, 0) = xT
0Q−1x0. (6.12)

Two algebraic properties of Gramians P and Q are essential to the devel-
opment of Balanced Truncation. First, under a coordinate transformation
x(t) = T x̄(t), the new Gramians P̄ and Q̄ corresponding to the state-space
realization (C̄, Ā, B̄) := (CT, T−1AT, T−1B) undergo the following (so-called
contragradient) transformation:

P̄ = T−1PT−T , Q̄ = TTQT. (6.13)

This implies that the eigenvalues of the product P̄Q̄ = T−1PQT depend
only on the transfer function R(s) and not on a particular choice of state-
space realization. It implies also that there exists a state-space realization
(Cbal, Abal, Bbal) of R(s) such that the corresponding Gramians are equal and
diagonal P̄ = Q̄ = Σ [ZDG95].

Second, because the Gramians appear in the solutions of the optimization
problems (6.11) and (6.12), they give information about the energy that goes
through the system, more specifically, about the distribution of this energy
among the state variables. The smaller xT

0 P−1x0 is, the more “controllable”
the state x0 is, since it can be reached with a input of small energy. By
duality, the smaller xT

0Q−1x0 is, the more “observable” the state x0 is. Thus
when both Gramians are equal and diagonal, the order of magnitude of a
diagonal value of the product PQ is a good measure for the influence of the
corresponding state variable on the mapping y(t) = ObCou(t) that maps past
inputs u(t) ∈ L2[−∞, 0] to future outputs y(t) ∈ L2[0,+∞] passing via that
particular state at time t = 0.

Given a transfer function R(s), the Balanced Truncation model reduction
method consists of finding a state-space realization (Cbal, Abal, Bbal) of R(s)
such that the Gramians are equal and diagonal (this is the balanced realization
of the system) and then constructing the reduced model by keeping the states
corresponding to the largest eigenvalues of the product PQ and discarding
the others. In other words, the balanced truncation technique chooses Z and
V such that ZTV = I, and {PQV = V Λ+

QPZ = ZΛ+
(6.14)

where Λ+ is a square diagonal matrix containing the largest eigenvalues of
PQ. A state-space realization of the reduced transfer function is given by
(CV,ZTAV,ZTB). The idea of the balanced truncation technique thus con-
sists in keeping those states that are most controllable and observable accord-
ing to the Gramians defined in (6.10).

Finally, we note that Balanced Truncation can be related to the Hankel
operator that maps the past inputs to the future outputs and is defined as
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H := ObCo. Since PQ = CoC∗oO∗
bOb and QP = O∗

bObCoC∗o , the dominant
eigenspaces V of PQ and Z of QP are linked with the dominant eigenspaces
X ofHH∗ and Y ofH∗H via the equalities X = ObV and Y = C∗oZ. Therefore,
projecting onto the spaces V and Z also approximates the Hankel map H well.
We refer the reader to [ZDG95], for a more detailed study and discussion of
the Balanced Truncation method.

Unfortunately, the Balanced Truncation method cannot be applied di-
rectly to the state-space realization (C,A,B) (6.7) of the second-order sys-
tem without destroying its second-order structure in the reduced realization.
An approach that solves this problem is discussed in Section 6.4. Also note
that, due to its dependence on transformations with O(N3) complexity, the
Balanced Truncation method cannot be applied, as described, to large-scale
systems. Recent work by Antoulas and Sorensen considers this problem and
describes an Approximate Balanced Truncation approach for large-scale linear
systems [SA02].

6.2.2 Krylov Subspace-Based Model Reduction

The Krylov subspace-based model reduction methods have been developed in
order to produce reduced order models of large-scale linear systems efficiently
and stably via projection onto subspaces that satisfy specific conditions. These
conditions are based on requiring the reduced order transfer function to match
selected moments of the transfer function R(s) of the original system.

A rational matrix function R(s) is said to be O(λ− s)k in s with k ∈ Z if
its Taylor expansion about the point λ can be written as

R(s) = O(λ− s)k ⇐⇒ R(s) =

+∞∑
i=k

Ri(λ− s)i, (6.15)

where the coefficients Ri are constant matrices. If Rk �= 0, then we say that
R(s) = Θ(λ − s)k. As a consequence, if R(s) = Θ(λ − s)k and k is strictly
negative, then λ is a pole of R(s) and if k is strictly positive, then λ is a zero
of R(s). Analogously, we say that R(s) is O(s−1)k if the following condition
is satisfied:

R(s) = O(s−1)k ⇐⇒ R(s) =

+∞∑
i=k

Ris
−i, (6.16)

where the coefficients Ri are constant matrices. It should be stressed that, in
general, R(s) being O(s)−k is not equivalent to R(s) being O(s−1)k.

Rational Interpolation

Krylov subspaces play an important role in the development of these methods
and are defined as follows:
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Definition 6.2.2. Let M ∈ C
n×n and X ∈ C

n×m. A Krylov subspace
Kk(M,X) of order k of the pair (M,X) is the image of the matrix[
M MX . . . Mk−1X

]
.

If A is stable, R(s) expanded about infinity gives

R(s) = C(sIN −A)−1B =

∞∑
i=0

CAiBs−i−1 :=

∞∑
i=0

R
(∞)
i s−i−1,

where the coefficients R∞
i are called the Markov parameters of the system.

One intuitive way to approximate R(s) is to construct a transfer function R̂(s)
of McMillan degree n� N ,

R̂(s) := Ĉ(sIn − Â)−1B̂ :=

∞∑
i=1

R̂
(∞)
i s−i (6.17)

such that R̂
(∞)
i = R

(∞)
i for 1 ≤ i ≤ r, where r is as large as possible and is

generically equal to 2n. The resulting reduced transfer function R̂(s) generally
approximates quite well the original transfer function for large values of s.

If a good approximation for low frequencies is desired, one can construct
a transfer function

R̂(s) = Ĉ(sIn − Â)−1B̂ =

∞∑
k=0

R̂
(λ)
k (λ− s)k,

such that
R̂

(λ)
k = R

(λ)
k for 1 ≤ k ≤ K, (6.18)

with
R

(λ)
k := C(λIN −A)−kB, R̂

(λ)
k := Ĉ(λIn − Â)−kB̂.

In short, (6.18) can be rewritten as follows:

R(s)− R̂(s) = O(λ− s)K .

More generally, one can choose a transfer function R̂(s) that interpolates
R(s) at several points in the complex plane, up to several orders. The main
results concerning this problem for MIMO standard state space systems are
summarized in the following theorem.

Theorem 6.2.3. Let the original system be

R(s) := C(sIN −A)−1B, (6.19)

and the reduced system be

R̂(s) := CV
(
ZT (sIN −A)V

)−1
ZTB, (6.20)
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with ZTV = In. If

K⋃
k=1

Kbk
((λkI −A)−1, (λkI −A)−1B) ⊆ Im(V ) (6.21)

and
K⋃

k=1

Kck
((λkI −A)−T , (λkI −A)−TCT ) ⊆ Im(Z) (6.22)

where the interpolation points λk are chosen such that the matrices λkIN −A
are invertible ∀k ∈ {1, . . . ,K} then the moments of the systems (6.19) and
(6.20) at the points λk satisfy

R(s)− R̂(s) = O(s− λk)bk+ck , (6.23)

provided these moments exist, i.e. provided the matrices λkIn − Â are invert-
ible.

For a proof, see [dVS87] and [Gri97]. A proof for MIMO generalized state
space systems is given in [GVV04b]. ��

Matching Markov parameters, i.e., λ =∞, is known as partial realization.
When λ = 0, the corresponding problem is known as Padé approximation. If
λ takes a finite number of points λi, it is called a multi-point Padé approxi-
mation. In the general case, the problem is known as rational interpolation.
Rational interpolation generally results in a good approximation of the orig-
inal transfer function in a region near the expansion points (and increasing
the order at a point tends to expand the region), but may not be accurate at
other frequencies (see for instance [Ant05]).

The advantage of these moment matching methods is that they can be
implemented in a numerically stable and efficient way for large-scale systems
with sparse coefficient matrices (see for example [GVV04b] and [Gri97]). Also,
the local approximation property means that good approximations can be
achieved in specific regions over a wide dynamic range, typically at the cost of
a larger global error. This requires however, that the interpolation points and
their corresponding order of approximation must be specified. For some appli-
cations, the user may have such information but for blackbox library software
a heuristic automatic selection strategy is needed (see [Gri97]) and the design
of such a strategy is still an open question. The other main drawback is the
lack of an error bound on the global quality of the approximation, e.g., the
H∞-norm of the difference between original and reduced transfer functions.
Recent research has begun to address the evaluation of the H∞-norm given a
reduced order model that may help in selecting points [CGV04].

One could apply these methods to the state space realization (6.9) of a
second-order transfer function. Unfortunately, if the methods are used in the
forms described, the resulting reduced order transfer function will generically
not be in second-order form. An approach to maintain second-order form is
discussed in Section 6.5.
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Tangential Interpolation

The Krylov subspace-based methods that produce reduced order models based
on rational interpolation can be applied to MIMO systems efficiently as long
as the number of inputs and outputs, m and p, stay suitably moderate in size.
For MIMO systems where m and p are too large, a more general tangential
interpolation problem has recently been considered (see [GVV04a]). Instead
of imposing interpolation condition of the form R(λi) = R̂(λi), one could
be interested, for example, in only imposing interpolation conditions of the
following form:

R̂(λi)xi = R(λi)xi , yiR̂(λi+n) = yiR(λi+n), 1 ≤ i ≤ n, (6.24)

where the n column vectors xi are called the right interpolation directions
and the n row vectors yi are called the left interpolation directions. As with
rational interpolation, higher order tangential interpolation conditions can be
imposed at each point to improve the approximation.

Stable and efficient methods for tangential interpolation of MIMO systems
can be developed using theorems and techniques similar to those used for
Krylov subspace-based rational interpolation. However, the problem of con-
structing a reduced transfer function that satisfies a set of tangential interpo-
lation conditions and that preserves the second-order structure of the original
transfer function requires additional consideration as discussed in Section 6.5.

6.3 Second-Order Structure Preserving Model Reduction

In this section, a simple sufficient condition for obtaining a second-order re-
duced system from a second-order system is presented. The following result
can be found in a slightly different form in [CLVV05].

Lemma 6.3.1. Let (C,A,B) be the state space realization defined in (6.9). If
one projects such a state space realization with 2N×2n bloc diagonal matrices

Z̄ :=

[
Z1 0
0 Z2

]
, V̄ :=

[
V1 0
0 V2

]
, Z̄T V̄ = I2n,

where Z1, V1, Z2, V2 ∈ C
N×n, then the reduced transfer function

R̂(s) := CV̄
(
Z̄T (sI2N −A)V̄

)−1
Z̄TB

is a second-order transfer function, provided the matrix ZT
1 V2 is invertible.

Proof. First, notice that the transfer function does not change under any
similarity transformation of the system matrices. Let us consider the similarity
transformation M ∈ C

2n×2n such that
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M :=

[
X
Y

]
,

with X,Y ∈ C
n×n verifying

X−1(ZT
1 V2)Y = In.

From the preceding results,

R̂(s) := CV̄ M
(
M−1Z̄T (sI2N −A)V̄ M

)−1
M−1Z̄TB

= F out
M V1X

(
s2In + sY −1ZT

2 DMV2Y + Y −1ZT
2 SMV1X

)−1
Y −1ZT

2 F
in
M .

This is clearly a second-order transfer function. ��

6.4 Second-Order Balanced Truncation

The earliest balanced truncation technique for second-order systems known
to the authors is described in [MS96]. Based on this work, an alternative
technique was developed in [CLVV05]. In this section an overview of the latter
method, called SOBT (Second-Order Balanced Truncation), is given.

The first step in the development of SOBT, based on a balance and trun-
cate process similar to that discussed in Section 6.2.1, involves the definition
of two pairs of N ×N Gramians (“second-order Gramians”) that change ac-
cording to contragradient transformations, and that have some energetic in-
terpretation. The first pair (Ppos,Qpos) corresponds to an energy optimization
problem depending only on the positions q(t) and not on the velocities q̇(t).
Reciprocally, the second pair (Pvel,Qvel) correspond to an optimization prob-
lem depending only on the velocities q̇(t) and not the on the positions q(t).
By analogy to the first order case, the Gramians Qpos and Qvel are defined
from the dual systems. Given the Gramians, a balancing step in the method
is defined by transforming to a coordinate system in which the second-order
Gramians are equal and diagonal: P̄pos = Q̄pos = Σpos, P̄vel = Q̄vel = Σvel.
Their diagonal values enable us to identify the important positions and the
important velocities, i.e. those with (hopefully) large effect on the I/O map.
Once identified, the reduced second-order model follows by truncation of all
variables not identified as important.

In order to define a pair of second-order Gramians measuring the contribu-
tion of the position coordinates (independently of the velocities) with respect
to the I/O map, consider an optimization problem naturally associated with
the second-order system (see [MS96]) of the form

min
q̇0∈Rn

min
u(t)

J(u(t),−∞, 0), (6.25)

subject to
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q̈(t) +DM q̇(t) + SMq(t) = F in
M u(t), q(0) = q0.

One easily sees that the optimum is qT
0 P11

−1q0, where P11 is the N ×N left
upper block of the controllability Gramian P satisfying equation (6.10) with
(C,A,B) given in (6.9). Starting with (6.11) we must solve

min
q̇0∈Rn

Jq0
(q̇0) =

[
qT
0 q̇T

0

]P−1

[
q0
q̇0

]
.

Partitioning P−1 as follows

P−1 =

[
R1 R2

RT
2 R3

]
and annihilating the gradient of Jq0

(q̇0) gives the relation q̇0 = −R−1
3 RT

2 q0.
The value of Jq0

at this point is qT
0 (R1 − R2R

−1
3 RT

2 )q0. This is simply the
Schur complement of R3 which is P11

−1. Similarly, the solution of the dual
problem corresponds to qT

0 Q11
−1q0 , where Q11 is the N ×N left upper block

of the observability Gramian Q (6.10).
Note that the transfer function is seen as a linear operator acting between

two Hilbert spaces. The dual of such an operator is defined in Definition
6.2.1. It follows that the dual of a second-order transfer function might not
be a second-order transfer function. This has no consequences here since only
the energy transfer interpretation between the inputs, the outputs, the initial
positions and velocities is important. Under the change of coordinates q(t) =
T q̄(t), it is easy to verify that this pair of Gramians undergoes a contragradient
transformation:

(P̄11, Q̄11) = (T−1P11T
−T , TTQ11T ).

This implies that there exists a new coordinate system such that both P11

and Q11 are equal and diagonal. Their energetic interpretation is seen by con-
sidering the underlying optimization problem. In (6.25), the energy necessary
to reach the given position q0 over all past inputs and initial velocities is min-
imized. Hence, these Gramians describe the distribution of the I/O energy
among the positions.

A pair of second-order Gramians that gives the contribution of the veloc-
ities with respect to the I/O map can be defined analogously. The associated
optimization problem is

min
q0∈Rn

min
u(t)

J(u(t),−∞, 0) (6.26)

subject to

q̈(t) +DM q̇(t) + SMq(t) = F in
M u(t), q̇(0) = q̇0.

Following the same reasoning as before for the optimization problem (6.25),
one can show that the solution of (6.26) is q̇T

0 P22
−1q̇0, where P22 is the N×N
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right lower block of P. The solution of the dual problem is q̇T
0 Q22

−1q̇0 , where
Q22 is the N × N right lower block of Q. As before, under the change of
coordinates q(t) = T q̄(t) one can check that this pair of Gramians undergoes
a contragradient transformation and that the energetic interpretation is given
by considering the underlying optimization problem. In (6.26), the energy
necessary to reach the given velocity q̇0 over all past inputs and initial positions
is minimized. Hence, these Gramians describe the distribution of the I/O
energy among the velocities.

Given the interpretation above these second-order Gramians are good can-
didates for balancing and truncating. Therefore, we choose:

(Ppos, Qpos) = (P11, Q11) and (Pvel, Qvel) = (P22, Q22) . (6.27)

It is not possible to balance both pairs of second-order Gramians at the
same time with a single change of coordinates of the type q(t) = T q̄(t). A
change of coordinates is required for both positions and velocities (unlike the
approach in [MS96]). Therefore, we work in a state-space context, starting
with the system (6.9). The SOBT method, therefore, first computes both
pairs of second-order Gramians, (Ppos, Qpos) and (Pvel, Qvel). Given the
Gramians, the contragradient transformations that make Ppos = Qpos = Λpos

and Pvel = Qvel = Λvel, where Λpos and Λvel are positive definite diagonal
matrices, are computed. Finally, truncate the positions corresponding to the
smallest eigenvalues of Λpos and the velocities corresponding to the smallest
eigenvalues of Λvel.

At present, there exists no a priori global error bound for SOBT and the
stability of the reduced system is not guaranteed. Nevertheless, SOBT yields
good numerical results, providing reduced transfer functions with approxima-
tion error comparable with the traditional Balanced Truncation technique.

6.5 Second-Order Structure Preserving Krylov
Techniques

The Krylov subspace-based methods discussed in Section 6.2.2 do not preserve
second-order structure when applied to the linear system (6.9). It is possible
to modify them to satisfy the constraint presented in Section 6.3 and thereby
produce a second-order reduced system. Section 6.5.1 summarizes the earliest
Krylov subspace-based method for second-order systems [SC91]. The simple
technique constructs, via projection, a second-order reduced transfer function
that matches the Markov parameters (λ = ∞) of the original transfer function.
The limitation of the technique when applied to a complex interpolation point
is also discussed. Section 6.5.2, addresses this limitation using a generalization
that allows multipoint rational interpolation. Finally, the problem of second-
order structure preserving tangential interpolation is solved in 6.5.3.
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6.5.1 A Particular Case: Matching the Markov Parameters

Su and Craig proposed a Krylov subspace-based projection method that pre-
serves second-order structure while matching the Markov parameters of the
original transfer function [SC91]. The method is based on the observation that
the right Krylov subspace corresponding to interpolation at λ = ∞ for the
system (6.9) has the form[

B AB A2B . . .
]

=

[
0 F in

M −DMF in
M . . .

F in
M −DMF in

M −SMF in
M +D2

MF in
M . . .

]
(6.28)

=

[
0 Qv,0 Qv,1 . . .

Qv,0 Qv,1 Qv,2 . . .

]
. (6.29)

and that if we write

Kk(A,B) =

[
V1

V2

]
,

it follows that
Im(V1) ⊆ Im(V2).

So by projecting the state space realization (6.9) with

V̄ :=

[
V2 0
0 V2

]
, Z̄ :=

[
Z 0
0 Z

]
such that ZTV2 = In, we obtain an interpolating second-order transfer func-
tion of the form

R̂(s) = F out
M V2

(
ZT (s2IN + sDM + SM )−1V2

)
ZTF in

M . (6.30)

Hence, a second-order system with the same n first Markov parameters
as the original second-order system can be constructed by projecting with
Z, V ∈ C

N×n such that ZTV = In and the image of V contains the image of
Qv,0, . . . , Qv,n−1. Since Kn(A,B) ⊆ V̄ , it follows from Theorem 6.2.3 that the

first n Markov parameters of R(s) and R̂(s) are equal.
If we apply the construction for any interpolation point λ ∈ C, the corre-

sponding right Krylov space is such that

Kk((λI −A)−1, (λI −A)−1B) = Im

[
V1

V2

]
,

with A and B defined in (6.9) and

Im(V1) ⊆ Im(V2).

Unfortunately, a similar statement can not be made for the left Krylov sub-
spaces Kk((λI − A)−T , (λI − A)−TCT ). This implies that when the second-
order Krylov technique is extended to interpolation at arbitrary points in the
complex plane by projecting as in (6.30), only n interpolation conditions can
be imposed for a reduced second-order system of McMillan degree 2n.
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6.5.2 Second-Order Rational Interpolation

The projection technique of Su and Craig has been generalized independently
by several authors (see [VV04, BS04] and also Chapter 7 and Chapter 8) to
solve the rational interpolation problem that produces a second-order transfer
function of order n, i.e., of McMillan degree 2n, R̂(s), that interpolates R(s) at
2n points in the complex plane. After some preliminary discussion of notation,
the conditions that determine the projections are given in Theorem 6.5.1 and
the associated algorithm is presented.

By combining the results of Sections 6.2 and 6.3, the following theorem
can be proven.

Theorem 6.5.1. Let R(s) := F out
M (s2IN + DMs + SM )−1F in

M = C(sI2N −
A)−1B, with

A :=

[
0 IN

−SM −DM

]
, B :=

[
0
F in

M

]
, C :=

[
F out

M 0
]
,

be a second-order transfer function of McMillan degree 2N , i.e. SM , DM ∈
C

N×N ). Let Z, V ∈ C
2N×n be defined as

V :=

[
V1

V2

]
, Z :=

[
Z1

Z2

]
,

with V1, V2, Z1 and Z2 ∈ C
N×n such that

ZT
1 V1 = ZT

2 V2 = In.

Let us define the 2N × 2n projecting matrices

V̄ :=

[
V1 0
0 V2

]
, Z̄ :=

[
Z1 0
0 Z2

]
.

Define the second-order transfer function R̂(s) of order n (and of McMillan
degree 2n) by

R̂(s) := CV̄
(
Z̄T (sI2N −A)V̄

)−1
Z̄TB

:= Ĉ(sI2n − Â)−1B̂. (6.31)

If
K⋃

k=1

Kbk
((λkI2N −A)−1, (λkI2N −A)−1B) ⊆ Im(V ) (6.32)

and
K⋃

k=1

Kck
((λkI2N −A)−T , (λkI2N −A)−TCT ) ⊆ Im(Z) (6.33)
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where the interpolation points λk are chosen such that the matrices λkI2N −A
are invertible ∀k ∈ {1, . . . ,K} then, if the matrix ZT

1 V2 is invertible,

R(s)− R̂(s) = O(s− λk)bk+ck (6.34)

for the finite points λk, provided these moments exist, i.e. provided the matri-
ces λkI2n − Â are invertible and

R(s)− R̂(s) = O(s−1)bk+ck (6.35)

if λk =∞.

Proof. Clearly, Z̄T V̄ = I2n. The second-order structure of R̂(s) follows from
Lemma 6.3.1. It is clear that

Im(V ) ⊂ Im(V̄ ) , Im(Z) ⊂ Im(Z̄).

The interpolation conditions are then satisfied because of Theorem 6.2.3. ��
The form of the projectors allows the development of an algorithm similar

to the Rational Krylov family of algorithms for first order systems [Gri97].
The algorithm, shown below, finds a second-order transfer function of order
n, i.e. of McMillan degree 2n, R̂(s), that interpolates R(s) at 2n interpolation
points λ1 up to λ2n, i.e.,

R(s)− R̂(s) = O(λi − s) for 1 ≤ i ≤ 2n. (6.36)

We assume for simplicity that the interpolation points are finite, distinct and
not poles of R(s). The algorithm is easily modified to impose higher order
conditions at the interpolation points.

Algorithm 1 1. Construct Z and V such that

V =
[
(λ1I2N −A)−1B . . . (λnI2N −A)−1B

]
=

[
V1

V2

]

ZT =

⎡⎢⎣C(λn+1I2N −A)−1

...
C(λ2nI2N −A)−1

⎤⎥⎦ =
[
ZT

1 ZT
2

]
,

where V1, V2 ∈ C
N×n are the first N rows and the last N rows of V

respectively and Z1, Z2 ∈ C
N×n are the first N rows and the last N rows

of Z respectively. Choose the matrices M1,M2, N1, N2 ∈ C
n×n such that

NT
1 Z

T
1 V1M1 = NT

2 Z
T
2 V2M2 = In.

2. Construct

V̄ :=

[
V1M1

V2M2

]
, Z̄ :=

[
Z1N1

Z2N2

]
.
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3. Construct the matrices

Ĉ := CV̄ , Â := Z̄TAV̄ , B̂ := Z̄TB.

and define the reduced transfer function

R̂(s) := Ĉ(sI2n − Â)−1B̂.

From Theorem 6.5.1, R̂(s) is a second-order transfer function of order n
that satisfies the interpolation conditions (6.36). The algorithm above has all
of the freedom in the method of forming the bases and selecting interpolation
points and their associated orders found in the Rational Krylov family of al-
gorithms [Gri97]. As a result, the second-order rational interpolation problem
can be solved while exploiting the sparsity of the matrices and parallelism of
the computing platform in a similar fashion.

6.5.3 Second-order Structure Preserving Tangential Interpolation

It is possible to generalize the earlier results for MIMO systems to perform
tangential interpolation and preserve second-order structure. This is accom-
plished by replacing Krylov subspaces at each interpolation point, λi, with
generalized Krylov subspaces as done in [GVV04a]. The spaces are defined as
follows:

Definition 6.5.2. Let M ∈ C
n×n, X ∈ C

n×m, y[i] ∈ C
m, i = 0, . . . , k − 1

and define Y ∈ C
km×k as

Y =

⎡⎢⎣ y
[0] . . . y[k−1]

. . .
...
y[0]

⎤⎥⎦ .
A generalized Krylov subspace of order k, denoted Kk(M,X, Y ), is the image
of the matrix

[
X MX . . . Mk−1X

]
Y .

For example, by using Algorithm 2 below to compute bases for generalized
Krylov subspaces and forming the appropriate projections, one can construct
a second-order transfer function R̂(s) of order n that satisfies the following
interpolation conditions with respect to the second-order transfer function
R(s) of order N :

xi

(
R(s)− R̂(s)

)
= O(λi − s) ,

(
R(s)− R̂(s)

)
xi+n = O(λi+n − s),

(6.37)
where x1, . . . , xn ∈ C

1×p and xn+1, . . . , x2n ∈ C
m×1.

Algorithm 2 1. Construct Z and V such that
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V =
[
(λn+1I2N −A)−1Bxn+1 . . . (λ2nI2n −A)−1Bx2n

]
=

[
V1

V2

]

ZT =

⎡⎢⎣ x1C(λ1I2N −A)−1

...
xnC(λnI2N −A)−1

⎤⎥⎦ =
[
ZT

1 ZT
2

]
,

where Z1, Z2, V1, V2 ∈ C
N×n. Choose the matrices M1,M2, N1, N2 ∈

C
n×n such that NT

1 Z
T
1 V1M1 = NT

2 Z
T
2 V2M2 = In.

2. Construct

V̄ :=

[
V1M1

V2M2

]
, Z̄ :=

[
Z1N1

Z2N2

]
.

3. Construct the matrices

Ĉ := CV̄ , Â := Z̄TAV̄ , B̂ := Z̄TB.

and define the reduced transfer function

R̂(s) := Ĉ(sI2n − Â)−1B̂.

It can be shown that R̂(s) is a second-order transfer function of order n that
satisfies the interpolation conditions (6.37) (see [GVV04a]).

It is also possible to impose higher order conditions while preserving
the structure of the algorithm and the reduced order system. Consider,
for instance, right tangential interpolation conditions of higher order (sim-
ilar results hold for left tangential interpolation). Let the polynomial vector

x(s) :=
∑k−1

i=0 x
[i](s− λ)i. To impose the tangential interpolation condition(

R(s)− R̂(s)
)
x(s) = O(s− λ)k,

we construct R̂(s) as in Algorithm 2 using the generalized Krylov subspace
K((λI−A)−1, (λI−A)−1B,X) where X is formed from the x[i], i = 0, . . . , k−
1, i.e.,

Im

⎧⎪⎨⎪⎩[
(λI −A)−1B . . . (λI −A)−kB

] ⎡⎢⎣x
[0] . . . x[k−1]

. . .
...
x[0]

⎤⎥⎦
⎫⎪⎬⎪⎭ ⊆ Im

{[
V1

V2

]}
.

We refer to [GVV04a] for more details on this topic.

6.6 Numerical Experiments

In this section, model reduction techniques are applied to a large scale second-
order system representing the vibrating structure of a building. The objective
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is to compare the performance of second-order structure preserving model
reduction techniques, namely the SOBT technique introduced in Section 6.4
and the Second-Order Krylov technique introduced in Section 6.5, with respect
to the standard first order techniques, namely the Balanced Truncation and
the Multipoint Padé techniques.

The characteristics of the second-order system to be reduced are the fol-
lowing. The stiffness and mass matrix S and M are of dimension N = 26, 394.
(See Chapter 24, Section 4, this volume, for a description of the example.)
The mass matrix M is diagonal and the stiffness matrix S is symmetric and
sparse (S contains approximately 2×105 non zero elements). The input vector
is the transpose of the output vector:

C = BT =
[
1 . . . 1

]
.

The damping matrix is proportional, meaning it is a linear combination of the
mass matrix M and the stiffness matrix S:

D := αM + βS,

with α = 0.675 and β = 0.00315. The second-order transfer function of McMil-
lan degree 2N = 52788 to be reduced is

R(s) := BT (s2M + sD + S)−1B = BT (s2M + s(αM + βS) + S)−1B.

Given the structure of M we normalize the equation so that the mass matrix
is the identity as follows:

R(s) = BTM−1/2
(
s2I + s(αI + βM−1/2SM−1/2)+

M−1/2SM−1/2
)−1

M−1/2B

:= C̄
(
s2I + s(αI + βS̄) + S̄

)−1
B̄,

where S̄ := M−1/2SM−1/2 and B̄ := M−1/2B = C̄T .
One intermediate system and five reduced order systems will be con-

structed from R(s). Three reasons led us to construct an intermediate transfer
function. First, concerning the SVD techniques, it is not possible to apply the
Balanced Truncation or the Second-Order Balanced Truncation methods di-
rectly to the transfer function R(s) because its McMillan degree 2N is too
large for applying O(N3) algorithms. Second, the intermediate transfer func-
tion, assumed very close to R(s), will also be used to approximate of the error
bound between the different reduced transfer functions and the original trans-
fer function R(s). Finally, the intermediate transfer function will also be used
in order to choose interpolation points for the Krylov techniques.

For these reasons, an intermediate second-order transfer function of order
200 (i.e. of McMillan degree 400), called R200(s), is first constructed from R(s)
using Modal Approximation by projecting S̄ onto its eigenspace corresponding
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to its 200 eigenvalues of smallest magnitude. This corresponds to keeping the
400 eigenvalues of s2I+s(αI+βS̄)+ S̄ that are closest to the imaginary axis.
Let Vf200 ∈ R

26364×200 be the projection matrix corresponding to the 200
eigenvalues of S̄ the closest to the imaginary axis (with V T

f200Vf200 = I200)

(Vf200 is computed with the Matlab function eigs). The intermediate transfer
function is

R200(s) := C̄Vf200

“
s2I + s(αI + βV T

f200S̄Vf200) + V T
f200S̄Vf200

”−1

V T
f200B̄.

By checking the difference between R(s) and R200(s) at different points in the
complex plane, it has been verified that the transfer functions are very close
to each other. The Hankel singular values of R200(s) are shown in Figure 6.1.
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10

0

10
2

10
4

10
6

σ
1
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21
=2410

Fig. 6.1. Hankel singular values of R200(s)

From R200(s), we compute the first reduced transfer function of McMillan
degree 20 obtained by using balanced truncation (with the sysred Matlab
function of the Niconet library), called Rbt(s). Note that Rbt(s) is no longer
in second-order form. Another second order transfer function of order 20 (and
McMillan degree 40), called Rsobt(s), is constructed from R200(s) using the
SOBT algorithm [CLVV05].

For the Krylov techniques, the reduced order transfer functions are com-
puted directly from the original transfer function R(s). Three reduced order
systems are compared. The first one is constructed using the standard first
order Krylov procedure. The two other reduced systems (corresponding to
different choices of interpolation points) are constructed using a second-order
Krylov technique.

170 Y. Chahlaoui et al.

In order to apply Krylov techniques, a first important step consists in
choosing the interpolation points. Indeed, the quality of the reduced order
system is very sensitive to the choice of interpolation points.

An interesting fact is that there are 42 interpolation points between
R200(s) and Rbt(s) that have a positive real part (among the 420 zeros of
R200(s)−Rbt(s)). From several experiments, it has been observed that when
using the standard Balanced Truncation technique, the number of interpo-
lation points in the right-half plane between the original and the reduced
transfer function is roughly equal to twice the McMillan degree of the re-
duced transfer function. The interpolation points in the right-half plane have
the advantage that they are neither close to the poles of the system to be
reduced nor to the poles of the Balanced Truncation reduced system because
both transfer functions are stable. This implies that both transfer functions
do not vary too much there and this is preferable in order to avoid numerical
difficulties.

Because the McMillan degree of Rbt(s) is equal to 20, it is well known that
40 points are sufficient in order to describe Rbt(s). In other words, the only
transfer function of Mc Millan degree smaller than 20 that interpolates Rbt(s)
at 40 points in the complex plane is Rbt(s) itself [GVV03]. So, we take the 40
interpolation points (these are 20 complex conjugate pairs of points) between
R200(s) and Rbt(s) with largest real part as our choice for computing the
transfer function of McMillan degree 20, denoted RKryl(s), that interpolates
the original transfer function R(s) at these points. The poles and interpolation
points are shown in Figure 6.2. Because R200(s) is very close to R(s), RKryl(s)
should be close to Rbt(s).

Using the second-order Krylov technique, a reduced second-order transfer
function Rsokryl(s) of McMillan degree 28 is also constructed. Its McMillan
degree was first chosen to be 20 but the resulting reduced transfer function
was not stable. For this reason, additional interpolation conditions were added
until the reduced transfer function was stable, resulting in a McMillan degree
equal to 28. The transfer function Rsokryl(s) interpolates R(s) at the 28 right-
most interpolation points between R200(s) and Rbt(s).

For comparison purposes a set of interpolation points randomly generated
(with symmetry with respect to the real axis in order to obtain a real inter-
polating transfer function) in a rectangle delimited by the extreme zeros in
the left half plane of R200(s)−Rbt(s) is also used in the second-order Krylov
method to generate Rrandsokryl(s). These two sets of interpolation points are
shown in Figure 6.3.

The Bode magnitude diagrams R200(s), Rbt(s), Rsobt(s), Rrandsokryl(s),
Rkryl(s) and Rsokryl(s) are plotted in Figure 6.4. Recall, that R200(s) is used
here as computationally tractable approximation of R(s). More can be learned
by considering the the H∞-norm errors relative to ‖R200(s)‖∞ shown in Ta-
ble 6.1.

As a first observation, it looks as if the six transfer functions are close to
each other, especially for frequencies smaller than 10 rad/sec (where the bode
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Fig. 6.2. Poles and interpolation points for R200(s) and Rbt(s)

0 1 2 3
−40

−20

0

20

40
Interp. Pts. of B.T.
Random Interp. Pts.

Fig. 6.3. Interpolation points for Rbt(s), Rsokryl(s) and Rrandsokryl(s)

magnitude diagrams are undistinguishable, see Figure 6.4). This is a good
news because they should all approximate well the same transfer function
R(s).

One observes from Table 6.1 that the SVD techniques perform better than
the Krylov techniques. Two remarks are in order. First, it should be kept in
mind that only the Krylov reduced transfer functions are directly computed
from the original data of R(s). Second, concerning the Krylov techniques,
the quality of the approximation depends strongly on the choice of the inter-
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Table 6.1. Relative errors for reduced order models

Reduced Transfer Model Reduction McMillan ‖R200(s)−Rreduced(s)‖∞
‖R200(s)‖∞

function technique degree

Rbt(s) Balanced Truncation 20 4.3 10−4

Rsobt(s) Second-Order Bal. Trunc. 40 2.6 10−4

Rkryl(s) Krylov 20 8.3 10−4

Rsokryl(s) Second-Order Krylov 28 5.8 10−2

Rrandsokryl(s) Random Second-Order Krylov 20 7 10−2

polation points. Because for SISO systems, any transfer function can be con-
structed from Krylov subspaces from any transfer function of larger McMillan
degree, there should exist interpolation conditions that produce reduced order
transfer functions with smaller error bound than what can be obtained with
balanced techniques, but of course, it is not easy to find such interpolation
conditions.

A surprising fact concerning SVD techniques is that the best approxima-
tion is obtained with Rsobt(s) and not Rbt(s). Nevertheless, one should not
forget that the McMillan degree of Rsobt(s) is twice as large as the McMillan
degree of Rbt(s).

In contrast with SVD techniques, the error obtained with the first or-
der transfer function Rkryl(s) is 100 times smaller than for the second-order
transfer functions Rsokryl(s) and Rrandsokryl(s). This tends to indicate that
Second-Order Krylov techniques perform quite poorly compared to the first
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order techniques, perhaps indicating that a more sophisticated algorithm for
choosing the interpolation points for these methods is needed.

Finally, by choosing random interpolation points, the error remains roughly
the same than by taking the balanced truncation interpolation points: 0.058
for Rsokryl(s) and 0.07 for Rrandsokryl(s). This is probably due to the fact
that the area chosen to generate the interpolation points for Rrandsokryl(s)
contains good information about the original transfer function.

6.7 Concluding Remarks

Concerning the second-order Krylov technique, the following observation is
worth mentioning. For SISO systems of pair Mc Millan degree, it has been
shown in [BSGL04] and [MS96] that for every first order system (c, A, b) such
that cb = 0, there exists a state space transformation that puts it into a
second-order form. In other words, every SISO system (with first Markov
parameter equal to zero) can be rewritten as a second-order system. This
implies that in the SISO case, it is possible to impose 4n − 1 interpolation
conditions for a reduced second-order system of McMillan degree 2n by first
using the standard Multipoint Padé technique of Theorem 6.2.3 and then
reconstructing a second-order form with an appropriate state space coordinate
transformation. Currently, no proof is available for the MIMO case.

As for generalized state space realizations of first order systems, it is also
possible to apply Krylov techniques to second-order systems without requir-
ing the mass matrix M to be equal to the identity. Concerning the SOBT
technique, special care must taken in deriving the second-order Gramians.

For second-order balanced truncation, numerical results are very encour-
aging, but many important questions remain open. For instance, does there
exist an a priori global error bound with SOBT, as for Balanced Truncation?
Even simpler, is stability of the reduced system always guaranteed? If the
answer to the preceding questions is negative, does there exist a better choice
of second-order Gramians? Also, the development of an approximate version
applicable to large scale systems is needed.
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