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MATRIX INVERSE TRIGONOMETRIC AND INVERSE
HYPERBOLIC FUNCTIONS: THEORY AND ALGORITHMS∗
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Abstract. Theoretical and computational aspects of matrix inverse trigonometric and inverse
hyperbolic functions are studied. Conditions for existence are given, all possible values are charac-
terized, and the principal values acos, asin, acosh, and asinh are defined and shown to be unique
primary matrix functions. Various functional identities are derived, some of which are new even in
the scalar case, with care taken to specify precisely the choices of signs and branches. New results
include a “round trip” formula that relates acos(cosA) to A and similar formulas for the other inverse
functions. Key tools used in the derivations are the matrix unwinding function and the matrix sign
function. A new inverse scaling and squaring type algorithm employing a Schur decomposition and
variable-degree Padé approximation is derived for computing acos, and it is shown how it can also be
used to compute asin, acosh, and asinh. In numerical experiments the algorithm is found to behave
in a forward stable fashion and to be superior to computing these functions via logarithmic formulas.

Key words. matrix function, inverse trigonometric functions, inverse hyperbolic functions,
matrix inverse sine, matrix inverse cosine, matrix inverse hyperbolic sine, matrix inverse hyperbolic
cosine, matrix exponential, matrix logarithm, matrix sign function, rational approximation, Padé
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1. Introduction. Trigonometric functions of matrices play an important role
in the solution of second order differential equations; see, for example, [5], [37], and
the references therein. The inverses of such functions, and of their hyperbolic coun-
terparts, also have practical applications, but have been less well studied. An early
appearance of the matrix inverse cosine was in a 1954 paper on the energy equation
of a free-electron model [36]. The matrix inverse hyperbolic sine arises in a model of
the motion of rigid bodies, expressed via Moser–Veselov matrix equations [12]. The
matrix inverse sine and inverse cosine were used by Al-Mohy, Higham, and Relton [5]
to define the backward error in approximating the matrix sine and cosine. Matrix
inverse trigonometric and inverse hyperbolic functions are also useful for studying ar-
gument reduction in the computation of the matrix sine, cosine, and hyperbolic sine
and cosine [7].

This work has two aims. The first is to develop the theory of matrix inverse
trigonometric functions and inverse hyperbolic functions. Most importantly, we define
the principal values acos, asin, acosh, and asinh, prove their existence and uniqueness,
and develop various useful identities involving them. In particular, we determine the
precise relationship between acos(cosA) and A, and similarly for the other functions.
The second aim is to develop algorithms and software for computing acos, asin, acosh,
and asinh of a matrix, for which we employ variable-degree Padé approximation to-
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1454 MARY APRAHAMIAN AND NICHOLAS J. HIGHAM

gether with appropriate initial transformations. Very little has been published on
computation of these matrix functions, and the only publicly available software we
are aware of that is designed specifically for computing these functions is in GNU
Octave [18], [23].

Corless et al. [15] note that in the elementary function literature, definitions and
identities are often imprecise or inconsistent and need careful interpretation. While
it is arguably reasonable to ask a reader to determine the correct sign or choice of
branch in a scalar formula, in a formula in n×n matrices, whose information content
is at least n scalar identities involving the (unknown) eigenvalues, imprecision is a
recipe for confusion and controversy. We are therefore scrupulous in this work to give
precise definitions and derive formulas that are valid under clearly stated conditions.

In section 2 we give necessary and sufficient conditions for the existence of matrix
inverse cosine and sine functions and their hyperbolic counterparts and characterize
all their possible values. Then we define the branch points, branch cuts, and principal
values and prove the uniqueness of the principal values. In section 3 we develop a
variety of identities involving the matrix inverse functions, some of which are new even
in the scalar case. In section 4 we discuss the conditioning of the inverse functions.
An algorithm for computing acos that combines a Schur decomposition and Padé
approximation with a square root recurrence is given in section 5; the algorithm yields
algorithms for asin, acosh, and sinh. In section 6 we give numerical experiments that
compare the new algorithms with the use of formulas based on the matrix logarithm
and square root. Concluding remarks are given in section 7.

2. The inverse functions. We first define and characterize the matrix inverse
trigonometric and inverse hyperbolic functions and then treat their principal values.
We will repeatedly use the principal matrix logarithm, principal matrix square root,
and matrix sign function, with extensions on their respective branch cuts. These are
defined as follows.

A logarithm of a nonsingular A ∈ Cn×n, written X = LogA, is a solution of
eX = A. The principal logarithm of a nonsingular A ∈ Cn×n, denoted logA, is
the logarithm all of whose eigenvalues have imaginary parts in the interval (−π, π].
We take the branch cut to be the negative real axis R−. Note that the principal
matrix logarithm is usually not defined for matrices with eigenvalues on the negative
real axis [21, Chap. 11], but for the purposes of this work it is convenient to allow
the extension of the logarithm on the branch cut and to adopt the convention that
log(−y) = log y + πi for y > 0.

A square root of A ∈ Cn×n, written X =
√
A, is a solution of X2 = A. We

take the branch cut to be R− and define the principal square root to be the one
all of whose eigenvalues have nonnegative real parts and such that (−y)1/2 = y1/2i
for y > 0. Consistent with the principal logarithm defined above, we can write the
principal square root of any nonsingular complex matrix A as A1/2 = e

1
2 logA.

We also need the matrix sign function signA [21, Chap. 5], which maps each
eigenvalue of A to the sign (±1) of its real part. To include the case where A has
an eigenvalue on the imaginary axis, we define sign(0) = 1 and sign(y i) = sign(y) for
nonzero y ∈ R.

These particular choices for the values of the sign function and the logarithm
and square root on their branch cuts, which we previously used in [6], adhere to the
counterclockwise continuity principle introduced by Kahan [27, sect. 5].

We recall that for a multivalued function f a nonprimary matrix function f(A)
is obtained if, in the definition of matrix function via the Jordan canonical form,
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MATRIX INVERSE FUNCTIONS: THEORY AND ALGORITHMS 1455

some eigenvalue λ appears in more than one Jordan block and is assigned different
values f(λ) on at least two of the blocks [21, sect. 1.2]. This means that f(A) is not
expressible as a polynomial in A.

2.1. Existence and characterization. An inverse cosine of A ∈ Cn×n is any
solution of the equation cosX = A. Inverse sines, and inverse hyperbolic sines and
cosines, are defined in an analogous way.

Using Euler’s formula, for X ∈ Cn×n,

(2.1) eiX = cosX + i sinX,

we can write the matrix cosine and sine functions in their exponential forms

(2.2) cosX =
eiX + e−iX

2
, sinX =

eiX − e−iX

2i
.

To establish whether solutions to the equation A = cosX exist we use the exponential
form to write A = (eiX + e−iX)/2. This equation implies that A commutes with the
nonsingular matrix eiX , and after multiplying through by eiX the equation can be
written as

(eiX −A)2 = A2 − I.

Taking square roots gives

(2.3) eiX = A+
√
A2 − I,

provided that A2−I has a square root. The matrix A+
√
A2 − I is always nonsingular,

and so we can take logarithms to obtain X = −i Log(A +
√
A2 − I). Any inverse

matrix cosine must have this form. In order to reverse the steps of this argument we
need to show that eiX commutes with A, which can be guaranteed when

√
A2 − I can

be expressed as a polynomial in A, which in turn is true if the square root is a primary
matrix function [21, sect. 1.2], that is, if each occurrence of any repeated eigenvalue
is mapped to the same square root. If a nonprimary square root is taken it may or
may not yield an inverse cosine.

Similar analysis can be done for the matrix inverse sine. Results for the inverse
hyperbolic functions can be obtained using the relations

coshX = cos iX, sinhX = −i sin iX,(2.4)

which hold for any X ∈ Cn×n and can be taken as the definitions of cosh and sinh.

Theorem 2.1. Let A ∈ Cn×n.
(a) The equation cosX = A has a solution if and only if A2 − I has a square

root. Every solution has the form X = −i Log(A+
√
A2 − I) for some square

root and logarithm.
(b) The equation sinX = A has a solution if and only if I−A2 has a square root.

Every solution has the form X = −i Log(iA+
√
I −A2) for some square root

and logarithm.
(c) The equation coshX = A has a solution if and only if A2 − I has a square

root. Every solution has the form X = Log(A +
√
A2 − I) for some square

root and logarithm.
(d) The equation sinhX = A has a solution if and only if A2 + I has a square

root. Every solution has the form X = Log(A +
√
A2 + I) for some square

root and logarithm.
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1456 MARY APRAHAMIAN AND NICHOLAS J. HIGHAM

In (a)–(d) the given expression for X is guaranteed to be a solution when the square
root is a primary square root.

We emphasize that the square roots and logarithms in the statement of the theo-
rem need not be primary. Note also that the existence of a square root of a matrix is
in question only when the matrix is singular. Necessary and sufficient conditions for
the existence of a square root of a singular matrix are given in [16], [21, Thm. 1.22].

To illustrate the use of these results, we consider the existence of an inverse sine
of the 2 × 2 matrix A =

[
1 1996
0 1

]
[21, Prob. 1.50] (Putnam Problem 1996–B4). It

is easy to see that I − A2 =
[
0 −3992
0 0

]
does not have a square root, and hence the

equation A = sinX has no solutions. Two very similar 2 × 2 examples are given by
Pólya and Szegö [35, Prob. 210, p. 35].

2.2. Branch points, branch cuts, and principal values. The inverse cosine
and inverse sine functions, and their hyperbolic counterparts, are multivalued. We
now specify their branch points and branch cuts. The branch points of acos and
asin are at 1 and −1 and, in accordance with popular convention [32, sects. 4.23(ii),
4.23(vii)], we consider their branch cuts to be on the two segments of the real line

(2.5) Ω = Ω1 ∪Ω2 = (−∞,−1] ∪ [1,∞).

The branch points of asinh are at i and −i, and the branch cuts are the segments of
the imaginary line iΩ; the branch points of acosh are at 1 and −1, and the branch
cut is the segment of the real line [32, sect. 4.37(ii)]

(2.6) Ω̃ = Ω1 ∪Ω3 ≡ (−∞,−1] ∪ [−1, 1] = (−∞, 1].

In the following definition we specify the principal values of the functions, in a
way consistent with the scalar case [32, sects. 4.23(ii), 4.37(ii)] and with the counter-
clockwise continuity principle [27]. We refer the reader to Figure 2.1 for plots of the
domains and ranges of the principal branches of the scalar functions (the plots extend
ones in [34]). The figure also shows where the branch cuts are and what values the
principal functions take on these branch cuts. The hashes placed on the sides of the
branch cuts indicate that if a sequence {zk} tends to a point w on the branch cut
from the side with the hashes then limk→∞ f(zk) 6= f(w).

Definition 2.2 (principal values). Let A ∈ Cn×n.
(a) The principal inverse cosine of A, denoted acosA, is the inverse cosine for

which every eigenvalue
(i) has real part lying in (0, π), or
(ii) has zero real part and nonnegative imaginary part (corresponding to A

having an eigenvalue in Ω2), or
(iii) has real part π and nonpositive imaginary part (corresponding to A hav-

ing an eigenvalue in Ω1).
(b) The principal inverse sine of A, denoted asinA, is the inverse sine for which

every eigenvalue
(i) has real part lying in (−π/2, π/2), or
(ii) has real part −π/2 and nonnegative imaginary part (corresponding to A

having an eigenvalue in Ω1), or
(iii) has real part π/2 and nonpositive imaginary part (corresponding to A

having an eigenvalue in Ω2).
(c) The principal inverse hyperbolic cosine of A, denoted acoshA, is the inverse

hyperbolic cosine for which every eigenvalue

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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MATRIX INVERSE FUNCTIONS: THEORY AND ALGORITHMS 1457

acos

−1 1 0 π

Ω1 Ω2

acosΩ1

acosΩ2

(a)

asin

−1 1 −π/2 π/2

Ω1 Ω2

asinΩ2

asinΩ1

(b)

acosh

−1 1 0

iπ

Ω1 Ω3

acoshΩ1

acoshΩ3

−iπ

(c)

asinh

−i

i
iπ/2

−iπ/2
iΩ1

iΩ2

asinh iΩ1

asinh iΩ2

(d)

Fig. 2.1. Domains and ranges of the principal branches of the complex functions acos (a),
asin (b), acosh (c), and asinh (d).

(i) has imaginary part lying in (−π, π) and positive real part, or
(ii) has imaginary part in [0, π) and zero real part (corresponding to A having

an eigenvalue in Ω3), or
(iii) has imaginary part π and nonnegative real part (corresponding to A

having an eigenvalue in Ω1).
(d) The principal inverse hyperbolic sine of A, denoted asinhA, is the inverse

hyperbolic sine for which every eigenvalue
(i) has imaginary part lying in (−π/2, π/2), or
(ii) has imaginary part −π/2 and nonpositive real part (corresponding to A

having an eigenvalue in iΩ1), or
(iii) has imaginary part π/2 and nonnegative real part (corresponding to A

having an eigenvalue in iΩ2).

Note that if A has no eigenvalues on the respective branch cuts then part (i) of
each of (a)–(d) in Definition 2.2 is in operation. Moreover, under this condition the
principal inverse function exists, is unique, and is a primary matrix function of A, as
shown by the next result.

Theorem 2.3. Let A ∈ Cn×n.
(a) If A has no eigenvalues equal to 1 or −1 then there is a unique principal

inverse cosine acosA, a unique principal inverse sine asinA, and a unique
principal inverse hyperbolic cosine acoshA, and all are primary matrix func-
tions of A.

(b) If A has no eigenvalues equal to i or −i then there is a unique principal inverse
hyperbolic sine asinhA and it is a primary matrix function of A.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1458 MARY APRAHAMIAN AND NICHOLAS J. HIGHAM

Proof. Consider asin, which by Definition 2.2 must have eigenvalues with real
parts in the interval (−π/2, π/2), or real parts −π/2 and nonnegative imaginary parts,
or real parts π/2 and nonpositive imaginary parts. Note first that inverse sines exist
by Theorem 2.1 (b), since I−A2 is nonsingular under the assumptions on A. Observe
that a nonprimary inverse sine of A (if one exists) must have two eigenvalues µi and
µj with µj = (−1)kµi + kπ for some nonzero integer k. Since A has no eigenvalues
equal to 1 or −1 such an inverse sine cannot satisfy Definition 2.2 (b). Therefore no
nonprimary inverse sine can be a principal inverse sine. Finally, there exists a way,
and hence precisely one way, to map the eigenvalues with the inverse sine in such a
way that all eigenvalues have the characterization given in Definition 2.2, and that is
with asin.

The proofs for acos, acosh, and asinh are completely analogous.

3. Identities. Now we derive identities involving the principal matrix inverse
trigonometric and inverse hyperbolic functions. Some of the results generalize existing
scalar results, but others are new even in the scalar case.

The first result provides explicit formulas for the principal inverse functions in
terms of the principal logarithm and the principal square root. Note that the exclusion
of the branch points as eigenvalues of A in the next result, and in later results, is
necessary in order to ensure the existence of the inverse functions.

Theorem 3.1. For A ∈ Cn×n, assuming that A has no eigenvalues at the branch
points of the respective inverse functions,

acosA = −i log(A+ i(I −A2)1/2)(3.1)

= −2i log

((
I +A

2

)1/2

+ i

(
I −A

2

)1/2
)
,

asinA = −i log(iA+ (I −A2)1/2),(3.2)

acoshA = log(A+ (A− I)1/2(A+ I)1/2)(3.3)

= 2 log

((
A+ I

2

)1/2

+

(
A− I

2

)1/2
)
,

asinhA = log(A+ (A2 + I)1/2).(3.4)

Proof. These identities are known to hold for complex scalars [14], [27], [32, sects.
4.23(iv), 4.37(iv)], and the formula (3.4) is given in [10] under different assumptions
on A. If we were to exclude the eigenvalues of A from the branch cuts, which are
the only points of nondifferentiability of the inverse functions, it would follow from
[21, Thm. 1.20], [25, Thm. 6.2.27 (2)] that the identities hold in the matrix case.
In fact, they hold even if A has eigenvalues on the branch cuts. We show only
that the first equality in (3.1) holds, as the proofs of the remaining identities are
analogous. From the given conditions, the matrix −i log(A + i(I − A2)1/2) exists
and by Theorem 2.1 (a) it is an inverse cosine of A. It is readily verified that the
eigenvalues of −i log(A+ i(I−A2)1/2) satisfy the conditions of Definition 2.2 (a), and
therefore −i log(A+ i(I −A2)1/2) must be the principal inverse cosine of A.

The next result completely describes the relation between the acos and asin func-
tions. It is the matrix counterpart of [32, eq. (4.23.16)].

Lemma 3.2. If A ∈ Cn×nhas no eigenvalues ±1 then

(3.5) acosA+ asinA =
π

2
I.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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MATRIX INVERSE FUNCTIONS: THEORY AND ALGORITHMS 1459

Proof. Using the addition formula for the cosine we find that cos(π2 I−asinA) = A,
so π

2 I − asinA is some inverse cosine of A. That it is the principal inverse cosine is
easily seen from Definition 2.2 (a) and (b).

A known identity for scalars is acosh z = ±i acos z [1, eq. (4.6.15)]. The correct
choice of sign depends on the complex argument of 1 − z (see Corless et al. [15,
sect. 6.2]). In the next result we show that the ±1 term can be explicitly expressed in
terms of the sign function and generalize the identity to matrices. We also generalize
a corresponding identity for asinh.

Theorem 3.3. If A ∈ Cn×n has no eigenvalues ±1 then

acoshA = i sign(−iA) acosA if A has no eigenvalues in (0, 1],(3.6)

asinh(iA) = i asinA.(3.7)

Proof. From (2.4) along with the fact that cosh is an even function, we see that if
X is an inverse cosine of A then ±iX is an inverse hyperbolic cosine of A. By passing
to the Jordan canonical form and applying the argument to each Jordan block, it
follows that i sign(−iA) acosA is some hyperbolic inverse cosine of A, and we need
to show that it is the principal hyperbolic inverse cosine. We therefore need to show
that the eigenvalues of i sign(−iA) acosA satisfy the conditions in Definition 2.2 (c),
which is equivalent to showing that i sign(−iz) acos z satisfies these conditions for all
z ∈ C \ (0, 1].

Write acos z = x + iy, where z ∈ C and x, y ∈ R. We can also write z =
cos(x + iy), which, using the addition formula for cosine, we can expand to z =
cosx cos(iy)− sinx sin(iy). Assuming that y 6= 0 and x ∈ (0, π), we have sign(−iz) =
sign(i sinx sin(iy)), because cosx, sinx, and cos(iy) are all real, and sin(iy) is pure
imaginary. Since x ∈ (0, π), sinx > 0, and sin(iy) = i sinh y, we have sign(−iz) =
sign(− sinh y) = − sign y. Finally, i sign(−iz) acos z = −i sign(y)(x + iy), which has
real part y sign y > 0 and imaginary part −x sign y ∈ (−π, π), satisfying Defini-
tion 2.2 (c) (i). If y = 0 then z ∈ (−1, 1), and now we consider in turn z ∈ (−1, 0]
and z ∈ (0, 1). In the former case, x ∈ [π/2, π), and so i sign(−iz) acos z ∈ i[π/2, π).
In the other case, x ∈ (0, π/2), and so i sign(−iz) acos z ∈ i(−π/2, 0), which is not in
the range of the principal branch of acosh. This means that Definition 2.2 (c) (ii)
is satisfied for z ∈ (−1, 0], but it is not satisfied for z ∈ (0, 1). If x = 0, by Defini-
tion 2.2 (a) (ii) we have y > 0, and so z > 1 and i sign(−iz) acos z = y, which satisfies
Definition 2.2 (c) (i). Similarly, if x = π then y < 0 by Definition 2.2 (a) (iii), and so
z < −1 and i sign(−iz) acos z = −y + πi, which satisfies Definition 2.2 (c) (iii).

Turning to (3.7), from (2.4) we see that if X is an inverse sine of A then iX is
some inverse hyperbolic sine of iA. We therefore just need to check that i asinA is
the principal inverse hyperbolic sine of iA, and this reduces to the scalar case, which
is a known identity [1, eq. (4.6.14)].

For the next results we need to introduce the matrix unwinding function [6], which
is defined for any A ∈ Cn×n by

(3.8) U(A) =
A− log eA

2πi
,

where log is the principal matrix logarithm defined at the beginning of section 2. The
following characterization of when the matrix unwinding function is zero, from [6,
Thm. 3.1], will be used several times.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1460 MARY APRAHAMIAN AND NICHOLAS J. HIGHAM

Lemma 3.4. For A ∈ Cn×n, U(A) = 0 if and only if the imaginary parts of all
the eigenvalues of A lie in the interval (−π, π].

To prove the following identities we also need the next result, which generalizes
a result for scalars in [9, Lem. 2].

Lemma 3.5. For A ∈ Cn×n with no eigenvalues ±1,

(3.9) (I −A)1/2(I +A)1/2 = (I −A2)1/2.

Moreover, if all the eigenvalues of A have arguments in the interval (−π/2, π/2] then

(3.10) (A− I)1/2(A+ I)1/2 = (A2 − I)1/2.

Proof. Using the fact that log(I −A) and log(A+ I) commute, together with [6,
Lem. 3.12], we have

(I −A)1/2(I +A)1/2 = e
1
2 log(I−A)e1/2 log(I+A)

= e
1
2 (log(I−A)+log(I+A))

= e
1
2 (log(I−A

2)+2πiU(log(I−A)+log(I+A))).

It is easy to show, as in the proof of [9, Lem. 2], that Im[log(1−z)+log(1+z)] ∈ (−π, π]
for all z ∈ C, and in particular for all the eigenvalues of A, and by Lemma 3.4 it follows
that U(log(I −A) + log(I +A)) = 0. Therefore (I −A)1/2(I +A)1/2 = e

1
2 log(I−A2) =

(I −A)1/2. The proof of (3.10) is analogous.

We emphasize that, unlike (3.9), the identity (3.10) does not hold for all matrices
A for which ±1 is outside the spectrum.

The formulas in the next result will be useful in the construction of algorithms
for computing acos, asin, acosh, and asinh in section 5. These formulas do not follow
directly from the scalar addition formulas in [32, sects. 4.24(iii), 4.38(iii)] because the
latter formulas do not specify the branches of the constituent terms.

Theorem 3.6. For A ∈ Cn×n, assuming that A has no eigenvalues at the branch
points of the respective functions,

acosA = 2 acos

((
I +A

2

)1/2
)
,(3.11)

asinA = 2 asin

(
(I +A)1/2 − (I −A)1/2

2

)
,(3.12)

acoshA = 2 acosh

((
I +A

2

)1/2
)
,(3.13)

asinhA = 2 asinh

(
i(I − iA)1/2 − i(I + iA)1/2

2

)
.(3.14)

Proof. To prove (3.11) we use the first and second logarithmic representations
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MATRIX INVERSE FUNCTIONS: THEORY AND ALGORITHMS 1461

(3.1) of acos, in that order:

2 acos

((
I +A

2

)1/2
)

= −2i log

((
I +A

2

)1/2

+ i

(
I − I +A

2

)1/2
)

= −2i log

((
I +A

2

)1/2

+ i

(
I −A

2

)1/2
)

= acosA.

The proof of (3.13) is analogous to that of (3.11) but requires the use of((
I +A

2

)1/2

− I

)1/2((
I +A

2

)1/2

+ I

)1/2

=

(
I +A

2
− I
)1/2

.

The latter equality is valid by Lemma 3.5, since ((I + A)/2)1/2 has eigenvalues with
arguments in the interval (−π/2, π/2] by the definition of the principal square root.

For the proof of (3.12) we use the logarithmic representation (3.2) of asin. De-
noting B = ((I +A)1/2 − (I −A)1/2)/2, after some manipulations we have iA+ (I −
A2)1/2 = (iB + (I − B2)1/2)2. It is straightforward to show that for any z ∈ C,
Re(iz + (1 − z2)1/2) ≥ 0, from which we can conclude that (iA + (I − A2)1/2)1/2 =
iB + (I −B2)1/2. Taking logarithms, and using [6, Cor. 3.10],

1

2
asinA = −1

2
i log(iA+ (I −A2)1/2)

= −i log(iB + (I −B2)1/2)

= asinB,

which is (3.12). To show that (3.14) holds, we use (3.12) and the relation (3.7) between
asin and asinh.

We will also use the formulas in the next result, which relate the trigonometric
functions cos and sin and their inverses acos and asin, and generalize formulas for
scalars in [32, Table 4.16.3].

Lemma 3.7. If A ∈ Cn×n has no eigenvalues ±1 then

sin (acosA) = cos (asinA) = (I −A2)1/2.

Proof. Using the exponential form (2.2) of the sine and the logarithmic represen-
tation of acos given in Theorem 3.1, we write

sin(acosA) =
ei acosA − (ei acosA)−1

2i

=
A+ i(I −A2)1/2 −

(
A+ i(I −A2)1/2

)−1
2i

.

But (A+ i(I −A2)1/2)−1 = A− i(I −A2)1/2, so

sin(acosA) =
A+ i(I −A2)1/2 −

(
A− i(I −A2)1/2

)
2i

= (I −A2)1/2.

In a similar way, it can be shown that cos(asinA) = (I −A2)1/2.
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1462 MARY APRAHAMIAN AND NICHOLAS J. HIGHAM

We now give summation formulas for the principal inverse sine and cosine func-
tions. These identities are known to hold for real scalars, but by using the matrix
unwinding function we can generalize them to complex square matrices.

In the remaining results of this section we make assumptions that are stronger
than A having no eigenvalues at the branch points of the respective inverse functions.
This is done so that we can obtain necessary and sufficient conditions for identities
to hold.

The first result is given for scalars in [32, eq. (4.24.13)] for the multivalued inverse
sine, with the branch for each occurrence of an inverse sine not specified.

Theorem 3.8. For all A,B ∈ Cn×n with no eigenvalues in Ω and such that
AB = BA,

asin A+ asin B = asin
(
A(I −B2)1/2 +B(I −A2)1/2

)
if and only if all the eigenvalues of −AB + (I −A2)1/2(I −B2)1/2 have arguments in
the interval (−π/2, π/2].

Proof. Applying the logarithmic representation (3.2) and the formula describing
the logarithm of a matrix product via the unwinding function [6, Lem. 3.12], we have

asinA+ asinB =− i log
(
iA+ (I −A2)1/2

)
− i log

(
iB + (I −B2)1/2

)
=− i log

((
iA+ (I −A2)1/2

)(
iB + (I −B2)1/2

))
+ 2π U

(
log
(
iA+ (I −A2)1/2

)
+ log

(
iB + (I −B2)1/2

))
=− i log

((
iA+ (I −A2)1/2

)(
iB + (I −B2)1/2

))
+ 2π U

(
i asinA+ i asinB).

Expanding the product and rearranging, using the fact that A and B commute, gives(
iA+ (I −A2)1/2

)(
iB + (I −B2)1/2

)
= iC −AB + (I −A2)1/2(I −B2)1/2,

where C = A(I −B2)1/2 +B(I −A2)1/2. We also note that(
−AB + (I −A2)1/2(I −B2)1/2

)2
= I − C2,

and using [6, Lem. 3.11] we have(
I − C2

)1/2
=
(
−AB + (I −A2)1/2(I −B2)1/2

)
e−πiU

(
2 log
(
−AB+(I−A2)1/2(I−B2)1/2

))
.

Since A and B have no eigenvalues in Ω, asinA and asinB both have eigenvalues
with real parts in the interval (−π2 ,

π
2 ). Using the commutativity of A and B and

Lemma 3.4 we then have U(i asinA+ i asinB) = 0. We can finally write

asinA+ asinB = −i log
(
iC +

(
I − C2

)1/2
eπiU

(
2 log
(
−AB+(I−A2)1/2(I−B2)1/2

)))
.

By Lemma 3.4 the unwinding term vanishes if and only if the arguments of all the
eigenvalues of −AB + (I −A2)1/2(I −B2)1/2 lie in the interval (−π/2, π/2].

Now we give an analogous result for the inverse cosine.

Theorem 3.9. For all A,B ∈ Cn×n with no eigenvalues in Ω and such that
AB = BA,

(3.15) acosA+ acosB = acos
(
AB − (I −A2)1/2(I −B2)1/2

)
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MATRIX INVERSE FUNCTIONS: THEORY AND ALGORITHMS 1463

if and only if the arguments of all the eigenvalues of iA(I − B2)1/2 + iB(I − A2)1/2

lie in the interval (−π/2, π/2] and the real parts of the eigenvalues of acosA+ acosB
lie in [0, π].

Proof. We omit the proof because it follows the same framework as the proof of
Theorem 3.8.

By definition, cos(acosA) = A, but the inverse relation acos(cosA) = A does not
always hold. In the next few theorems we give explicit formulas for acos(cosA) and the
counterparts for the sine and the inverse hyperbolic cosine and sine, and identify when
these formulas reduce to A. These “round trip” formulas are new even in the scalar
case. We note that scalar functional identities relating all four functions and their
respective inverses are given in [14, App. B], but they have the unattractive feature
that the identity for acos(cos z) involves sin z, and similarly for the other identities.

Theorem 3.10. If A ∈ Cn×n has no eigenvalue with real part of the form kπ,
k ∈ Z, then

acos(cosA) =
(
A− 2π U(iA)

)
sign

(
A− 2π U(iA)

)
.

Proof. Let B = A − 2π U(iA). We first show that cos(B signB) = cosA. With
G = signB we have cosB = cos(BG), which can be seen using the Jordan canonical
form definitions of cos and sign along with the fact that cos(−X) = cosX for any
matrix X. Using the exponential representation (2.2) of the cosine function,

cosB =
eiB + e−iB

2

=
ei(A−2π U(iA)) + e−i(A−2π U(iA))

2

=
eiAe−2πiU(iA) + e−iAe2πiU(iA)

2
.

Now e2πiU(iA) = e−2πiU(iA) = I, since U(iA) is diagonalizable and has integer eigen-
values [6, Lem. 3.5], so

cos(BG) = cosB =
eiA + e−iA

2
= cosA.

Finally, since iB = iA−2πiU(iA) = log eiA by the definition (3.8) of the unwinding
function, iB has eigenvalues with imaginary parts in the interval (−π, π], hence B has
eigenvalues with real parts in the interval (−π, π]. Therefore B signB has eigenvalues
with real parts in the interval [0, π]. We note that the end points of this interval are
excluded because of the conditions in the statement of the theorem. Therefore the
eigenvalues of B satisfy the condition in Definition 2.2 (a) (i).

The following corollary of Theorem 3.10 gives necessary and sufficient conditions
under which A = acos(cosA) holds.

Corollary 3.11. For A ∈ Cn×n with no eigenvalue with real part of the form
kπ, k ∈ Z, acos(cosA) = A if and only if every eigenvalue of A has real part in the
interval (0, π).

Proof. If all the eigenvalues of A satisfy the condition of this corollary, then, by
Lemma 3.4, we have U(iA) = 0. Then, since signA = I, by Theorem 3.10 we have
acos(cosA) = A. Conversely, if acos(cosA) = A then, since the condition of the
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1464 MARY APRAHAMIAN AND NICHOLAS J. HIGHAM

corollary rules out A having an eigenvalue with real part 0 or π, the eigenvalues of A
have real parts in the interval (0, π), by Definition 2.2 (a).

Theorem 3.12. If A ∈ Cn×n has no eigenvalue with real part of the form (2k +
1)π/2, k ∈ Z, then

asin(sinA) = eπiU(2iA)
(
A− π U(2iA)

)
.

Proof. Let C = A − π U(2iA) and H = eπiU(2iA). We will first prove that
sin(HC) = sinA.

The matrix unwinding function U(2iA) is diagonalizable with integer eigenvalues,
so the matrix H is diagonalizable with eigenvalues equal to ±1. It is not hard to show
that sin(HC) = H sinC. Now

sinC = sin
(
A− π U(2iA)

)
= sinA cos

(
π U(2iA)

)
− cosA sin

(
π U(2iA)

)
.

Since U(2iA) is diagonalizable and has integer eigenvalues, sin(π U(2iA)) = 0. From
the properties of H described above, H = eπiU(2iA) = e−πiU(2iA), and so

cos(π U(2iA)) =
eπiU(2iA) + e−πiU(2iA)

2
= H.

Therefore sin(HC) = H sinC = H2 sinA = sinA, which completes the first part of
the proof.

Finally, we show that every eigenvalue of HC satisfies the condition in Defini-
tion 2.2 (b). We note that the real parts of the eigenvalues of HC lie in [−π, 2/π/2]
and the conditions in the statement of the theorem exclude the end points of this
interval, so conditions (ii) and (iii) in Definition 2.2 (b) need not be checked. Using
the definition (3.8) of the unwinding function we have

iC = iA− πiU(2iA) = iA− πi

(
2iA− log e2iA

2πi

)
=

log e2iA

2
.

Here log is the principal matrix logarithm, so C has eigenvalues with real parts in the
interval (−π/2, π/2], and therefore HC has eigenvalues with real parts in the interval
[−π/2, π/2]. But, as already noted, the end points of this interval are excluded because
of the assumptions in the statement of the theorem.

Corollary 3.13. For A ∈ Cn×n with no eigenvalue with real part of the form
(2k + 1)/2π, k ∈ Z, asin(sinA) = A if and only if every eigenvalue of A has real part
in the interval (−π/2, π/2).

Proof. If the eigenvalues of A have real parts in the interval (−π/2, π/2) then by
Lemma 3.4 we have U(2iA) = 0. Applying Theorem 3.12 we then have asin(sinA) =
A.

Conversely, if asin(sinA) = A then, since the condition of the corollary rules out
A having an eigenvalue with real part ±π/2, the eigenvalues of A have real parts in
the interval (−π/2, π/2), by Definition 2.2 (b).

Similar results hold for the inverse hyperbolic cosine and sine functions.

Theorem 3.14. For A ∈ Cn×n with no eigenvalue with imaginary part of the
form kπ, with odd k ∈ Z, and no pure imaginary eigenvalue,

acosh(coshA) =
(
A− 2πiU(A)

)
sign

(
A− 2πiU(A)

)
.
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MATRIX INVERSE FUNCTIONS: THEORY AND ALGORITHMS 1465

Proof. Let B = A−2πiU(A). We follow the same framework as that in the proofs
of the previous two results. First, we note that cosh(B signB) = coshB. Expressing
cosh in terms of exponentials we have

coshB =
1

2

(
eA−2πiU(A) + e−A+2πiU(A)

)
=

1

2

(
eA + e−A

)
= coshA,

where we used e±2πiU(A) = I [6, Lem. 3.5].
Finally, we have to show that the eigenvalues of B signB satisfy the require-

ments of Definition 2.2 (c). Using the definition of the unwinding function, B =
A − 2πiU(A) = log eA, we see that the imaginary parts of the eigenvalues of B lie
in (−π, π]. Therefore each eigenvalue of B signB has eigenvalues with nonnegative
real part and imaginary part in the interval [−π, π]. The end points of this interval
and the case when the eigenvalues of B signB are pure imaginary are excluded be-
cause of the assumptions in the statement of the theorem. Therefore the conditions
of Definition 2.2 (c) are satisfied.

Corollary 3.15. For A ∈ Cn×n with no eigenvalue with imaginary part of the
form kπ, for odd k ∈ Z, and no pure imaginary eigenvalue, acosh(coshA) = A if and
only if every eigenvalue of A has imaginary part in the interval (−π, π) and positive
real part.

Proof. If the eigenvalues of A all have imaginary parts in the interval (−π, π)
then U(A) = 0, and if they all have positive real parts then signA = I. Therefore
Theorem 3.14 gives acosh(coshA) = A. Conversely, if acosh(coshA) = A and if A
satisfies the conditions of the corollary then the eigenvalues of A have imaginary
parts in the interval (−π, π) and positive real parts, by Definition 2.2 (c) (i).

Theorem 3.16. If A ∈ Cn×n has no eigenvalue with imaginary part of the form
(2k + 1)πi/2, k ∈ Z, then

asinh(sinhA) = eπiU(2A)
(
A− πiU(2A)

)
.

Proof. Suppose first that A does not have any eigenvalues whose imaginary parts
are of the form (2k+ 1)π/2, k ∈ Z. This implies that sin(−iA) has no eigenvalues ±1,
so we can use the identity sinhA = i sin(−iA) from (2.4) and Theorems 3.3 and 3.12
to write

asinh(sinhA) = asinh
(
i sin(−iA)

)
= i asin

(
sin(−iA)

)
= ieπiU(2A)

(
−iA− π U(2A)

)
= eπiU(2A)

(
A− πiU(2A)

)
.

Corollary 3.17. For A ∈ Cn×n with no eigenvalue with imaginary part of the
form (2k + 1)πi/2, k ∈ Z, asinh(sinhA) = A if and only if every eigenvalue of A has
imaginary part in the interval (−π/2, π/2).

Proof. If every eigenvalue of A has imaginary part in (−π/2, π/2) then by Lem-
ma 3.4 we have U(2A) = 0 and Theorem 3.16 gives asinh(sinhA) = A.

Conversely, if asinh(sinhA) = A, by Definition 2.2 (d), since (d) (ii) and (d) (iii)
are excluded by the assumptions on A, the eigenvalues of A must have imaginary
parts in the interval (−π/2, π/2).
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1466 MARY APRAHAMIAN AND NICHOLAS J. HIGHAM

4. Conditioning. The absolute condition number of a function f at the matrix
A is given by [21, sect. 3.1]

(4.1) condabs(f,A) = max
E 6=0

‖Lf (A,E)‖
‖E‖

.

Here, Lf is the Fréchet derivative of f , which is a linear operator such that f(A+E) =
f(A) + Lf (A,E) + o(‖E‖).

To study the conditioning of the inverse sine and cosine we need only study one of
them, in view of the relation given in the next result between the respective Fréchet
derivatives.

Lemma 4.1. For A ∈ Cn×n with no eigenvalues in Ω in (2.5),

Lacos(A,E) + Lasin(A,E) = 0.

Proof. Fréchet differentiate (3.5).

A simple relation also exists between the Fréchet derivatives of asin and asinh.

Lemma 4.2. For A ∈ Cn×n with no eigenvalues in Ω in (2.5),

Lasin(A,E) = Lasinh(iA,E).

Proof. Fréchet differentiate (3.7) using the chain rule [21, Thm. 3.4].

We now study further the Fréchet derivative of acos. Assume that A has no
eigenvalues in Ω. By [21, Thm. 3.5] we have

(4.2) Lcos (acosA,Lacos(A,E)) = E.

Recall the integral representation of the Fréchet derivative of the matrix cosine func-
tion [21, sect. 12.2]

(4.3) Lcos(A,E) = −
∫ 1

0

[
cos (A(1− t))E sin(At) + sin (A(1− t))E cos(At)

]
dt.

Substituting into the relation (4.2) we find that the Fréchet derivative of acos satisfies

E = −
∫ 1

0

[
cos ((1− t) acosA)Lacos(A,E) sin (t acosA)

+ sin ((1− t) acosA)Lacos(A,E) cos (t acosA)
]

dt.

(4.4)

If A and E commute then the relation (4.4) simplifies to E = −Lacos(A,E) sin (acosA).
Now we can apply Lemma 3.7 to obtain the more useful expression

(4.5) Lacos(A,E) = −E(I −A2)−1/2 (AE = EA).

Setting E = I in (4.5) gives Lacos(A, I) = −(I − A2)−1/2, and for any subordinate
norm we obtain the bound

condabs(acos, A) ≥ ‖(I −A2)−1/2‖.

The condition number is necessarily large when A has an eigenvalue close to 1 or −1,
which are the branch points of acos.
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MATRIX INVERSE FUNCTIONS: THEORY AND ALGORITHMS 1467

One would also expect acos to be ill conditioned when a pair of eigenvalues lies
close to, but on either side of, the branch cut. This is revealed by applying a general
lower bound from [21, Thm. 3.14], which gives

condabs(acos, A) ≥ max
λ,µ∈Λ(A)

| acos[µ, λ]|,

where Λ(A) is the spectrum of A and the lower bound contains the divided difference
acos[λ, µ] = (acos λ− acos µ)/(λ− µ). For example, if λ = −2 + εi and µ = −2− εi,
with 0 < ε � 1, then acos λ = π − acos 2 + O(ε) and acos µ = π + acos 2 + O(ε), so
acos[λ, µ] = O(1/ε).

5. Algorithms. Lemma 3.2 and Theorem 3.3 show that if we have an algo-
rithm for computing any one of the four functions acosA, asinA, acoshA, and asinhA
then the others can be obtained from it, although this may necessitate using com-
plex arithmetic for a real problem. In the next subsection we propose an algorithm
for computing the principal matrix inverse cosine based on Padé approximation. In
subsection 5.2 we consider an alternative algorithm for computing the inverse trigono-
metric and inverse hyperbolic functions via their logarithmic representations given in
Theorem 3.1.

We exploit a Schur factorization A = QTQ∗, where Q is a unitary matrix and T
is upper triangular with the eigenvalues of A on its diagonal, along with the property
f(A) = Qf(T )Q∗. The problems of computing acosA, asinA, acoshA, and asinhA
are thus reduced to computing the same functions of the triangular matrix T . We
will explain how Schur-free variants of the algorithms can also be constructed; these
are of interest for situations in which a highly efficient implementation of the Schur
decomposition is not available, as may be the case in certain parallel computing
environments (for example, the Parallel Computing Toolbox in MATLAB 2016a does
not have a function for the Schur decomposition).

5.1. Schur–Padé algorithm. We develop an algorithm analogous to the in-
verse scaling and squaring method for computing the matrix logarithm.

For ρ(A) < 1, where ρ is the spectral radius, we can write acosA as the power
series (in view of (3.5)) [32, eq. (4.24.1)]

(5.1) acosA =
π

2
I −

∞∑
k=0

(
2k
k

)
4k(2k + 1)

A2k+1, ρ(A) < 1.

Alternatively, we can expand as a series in I −A [32, eq. (4.24.2)]:

acosA = 21/2(I −A)1/2
∞∑
k=0

(
2k
k

)
8k(2k + 1)

(I −A)k, ρ(I −A) < 2.

Here, to ensure the existence of (I − A)1/2, we require that A have no eigenvalues
equal to 1. Replacing A by I −A gives, for nonsingular A,

(5.2) acos(I −A) = (2A)1/2
∞∑
k=0

(
2k
k

)
8k(2k + 1)

Ak, ρ(A) < 2.

We will employ Padé approximants of the function f(x) = (2x)−1/2 acos(1 − x),
which (5.2) shows is represented by a power series in x that converges for |x| ≤ 2
and so should be well approximated by Padé approximants near the origin. Let
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1468 MARY APRAHAMIAN AND NICHOLAS J. HIGHAM

rm(x) = pm(x)/qm(x) denote the diagonal [m/m] Padé approximant of f(x), so that
pm(x) and qm(x) are polynomials of degrees at most m.

We now consider the backward error of approximating acos. For A ∈ Cn×n we
define hm : Cn×n → Cn×n by

(2A)1/2rm(A) = acos
(
I −A+ hm(A)

)
,

assuming that all of the eigenvalues of (2A)1/2rm(A) have real parts in the interval
(0, π). We can rewrite this equation as

hm(A) = cos
(
(2A)1/2rm(A)

)
− (I −A).

The relative backward error in approximating acos(I − A) by (2A)1/2rm(A) is given
by ‖hm(A)‖/‖A‖ , and we wish to bound it by the unit roundoff for IEEE double
precision arithmetic, u = 2−53 ≈ 1.11× 10−16; that is, we would like to ensure that

(5.3)
‖hm(A)‖
‖A‖

=
‖ cos

(
(2A)1/2rm(A)

)
− (I −A)‖

‖A‖
≤ u.

We now follow the same framework as for backward error analysis of the exponential [2]
and the cosine and sine [5, sect. 2]. We have rm(x) = (2x)−1/2 acos(1−x)+O(x2m+1),
and so hm(x) = cos((2x)1/2rm(x)) − (1 − x) = O(x2m+2), where the last equality is
obtained after some manipulations.

We can write

hm(A) =

∞∑
`=0

c`A
2m+`+2 = A

∞∑
`=0

c`A
2m+`+1

for some coefficients c`. We now use [2, Thm. 4.2(a)] to obtain the bound on the
relative backward error

‖hm(A)‖
‖A‖

≤
∞∑
`=0

|c`|αp(A)2m+`+1,

where
αp(A) = max

(
‖Ap‖1/p, ‖Ap+1‖1/(p+1)

)
and p is an integer such that 2m + 1 ≥ p(p − 1). It can be shown that α1(A) ≥
α2(A) ≥ α3(A), but for p ≥ 4 the relation between αp−1(A) and αp(A) depends on
the matrix A. We need to find the smallest value of αp(A) subject to the constraint
2m+ 1 ≥ p(p− 1).

With the definition

βm = max

{
β :

∞∑
`=0

|c`|β2m+`+1 ≤ u

}
,

the inequality αp(A) ≤ βm implies that the relative backward error is bounded by u.
Table 5.1 gives the values of βm for a range of values of m, determined experimentally
using a combination of high precision arithmetic and symbolic calculations, in a similar
way as in [22].

Table 5.1 also gives the number of matrix multiplications πm required to eval-
uate the Padé approximant rm(A) of order [m/m] using the Paterson–Stockmeyer
scheme [21, sect. 4.2 and Table 4.2], [33] for both pm and qm.
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MATRIX INVERSE FUNCTIONS: THEORY AND ALGORITHMS 1469

Table 5.1
Values of βm, values of p to be considered, and number of matrix multiplications πm required

to evaluate rm.

m 1 2 3 4 5 6
βm 3.44e-5 4.81e-3 3.97e-2 1.26e-1 2.59e-1 4.17e-1
p ≤ 2 2 3 3 3 4
πm 0 1 2 3 4 4

m 7 8 9 10 11 12
βm 5.81e-1 7.39e-1 8.84e-1 1.01 1.13 1.22
p ≤ 4 4 4 5 5 5
πm 5 5 6 6 7 7

To ensure that αp(A) ≤ βm for a suitable value of m we use repeatedly the
identity acosX = 2 acos

(
((I + X)/2)1/2

)
in (3.11), which brings the argument close

to the identity, as shown by the next result.

Lemma 5.1. For any X0 ∈ Cn×n, the sequence defined by

(5.4) Xk+1 =

(
I +Xk

2

)1/2

satisfies limk→∞Xk = I.

Proof. First, consider the scalar iteration xk+1 = ((1 + xk)/2)
1/2

. It is easy to
see that

xk+1 − 1 =
xk − 1

2
((

1+xk

2

)1/2
+ 1
)

and hence that |xk+1 − 1| ≤ |xk − 1|/2, since Re ((1 + xk)/2)
1/2 ≥ 0. Therefore

limk→∞ xk = 1. The function ((1 + x)/2)
1/2

is holomorphic for Rex ≥ 0, and fur-
thermore its derivative at x = 1 satisfies | ddx ( 1

2 (x+1)1/2|x=1 = 1
4 < 1. The convergence

of the matrix iteration follows from a general result of Iannazzo [26, Thm. 3.20].

We apply the recurrence (5.4) with X0 = T , selecting the scaling parameter s so
that αp(I − Xs) ≤ βm. To compute the square roots required to obtain Xs we use
the Björck–Hammarling method [8], [21, Alg. 6.3]. Increasing the scaling parameter
s by 1 has a cost of n3/3 flops, so it is worth doing if it decreases the number of
(triangular) matrix multiplications, which also cost n3/3 flops each, by more than 1.
From the relation

(I −Xs+1)(I +Xs+1) = I −X2
s+1 = I − I +Xs

2
=
I −Xs

2
,(5.5)

it is clear that for large s (so that Xs ≈ I), αp(I −Xs+1) ≈ αp(I −Xs)/4. From the
values of βm in Table 5.1 we see that for m ≥ 9 it is more efficient to continue the
recursion and consequently use an approximant of a lower degree. Indeed for m = 9,
β9/4 = 2.21e-1 < 2.59e-1 = β5, so the effect of taking an extra step in the recursion
would be that we could use an approximant of type [5/5], and so the number of matrix
multiplications required would be reduced from 6 to 4.

In computing αp(A) we avoid explicit computation of powers of A by estimating

‖Ap‖1/p1 and ‖Ap+1‖1/(p+1)
1 using the block 1-norm estimator of Higham and Tisseur

[24].

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

10
/1

9/
16

 to
 8

6.
22

.1
74

.2
07

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



1470 MARY APRAHAMIAN AND NICHOLAS J. HIGHAM

A further computational saving can be provided by computing a lower bound on
the scaling parameter s. Denote by D = diag(T ) the diagonal matrix containing the
eigenvalues of A on its diagonal and observe that ρ(I −D) = ρ(I − T ) ≤ αp(I − T ).
The largest β we consider is β8, and the inequality αp(I − T ) ≤ β8 also requires that
ρ(I−D) ≤ β8, so we can apply the recurrence (5.4) to the matrix D to obtain a lower
bound s0 on s at negligible cost.

We are now ready to state the algorithm for computing acos. In the pseudocode
the statement “break” denotes that execution jumps to the first statement after the
while loop.

Algorithm 5.2 (Schur–Padé algorithm). Given A ∈ Cn×n with no eigenvalues
equal to ±1, this algorithm computes X = acosA. The algorithm is intended for use
with IEEE double precision arithmetic.

1 Compute the Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).
2 Find s0, the smallest s such that ρ(I −Xs) ≤ β8, where the Xs are the

iterates from (5.4) with X0 = diag(T ).
3 for i = 1: s0

4 T =
(
1
2 (I + T )

)1/2
5 end
6 s = s0, m = 0
7 while m = 0
8 Z = I − T
9 Estimate d2(Z) = ‖Z2‖1/21 .

10 Estimate d3(Z) = ‖Z3‖1/31 .
11 α2(Z) = max(d2, d3)
12 if α2(Z) ≤ β1, m = 1, break, end
13 if α2(Z) ≤ β2, m = 2, break, end

14 Estimate d4(Z) = ‖Z4‖1/41 .
15 α3(Z) = max(d3, d4)
16 if α3(Z) ≤ β3, m = 3, break, end
17 if α3(Z) ≤ β4, m = 4, break, end
18 if α3(Z) ≤ β5, m = 5, break, end

19 Estimate d5(Z) = ‖Z5‖1/51 .
20 α4(Z) = max(d4, d5)
21 γ(Z) = min(α3(Z), α4(Z))
22 if γ(Z) ≤ β6, m = 6, break, end
23 if γ(Z) ≤ β7, m = 7, break, end
24 if γ(Z) ≤ β8, m = 8, break, end

25 T =
(
1
2 (I + T )

)1/2
26 s = s+ 1
27 end
28 Compute U = rm(Z) by using the Paterson–Stockmeyer scheme

to evaluate pm(Z) and qm(Z) and then solving qm(Z)U = pm(Z).
29 Y = Z1/2

30 V = 21/2UY
31 W = 2sV
32 X = QWQ∗

Cost: 25n3 flops for the Schur decomposition, sn3/3 flops to compute the square
roots for the scaling stage, (πm + 1)n3/3 flops to compute the Padé approximation
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MATRIX INVERSE FUNCTIONS: THEORY AND ALGORITHMS 1471

of order [m/m], n3/3 flops for the final square root, and 3n3 flops to form X: about
(28 2

3 + πm+s
3 )n3 flops in total.

Note that Algorithm 5.2 requires only that A have no eigenvalues on the branch
points of acos; eigenvalues may lie anywhere else on the branch cuts.

A Schur-free variant of Algorithm 5.2 can be obtained by removing lines 1–5 and
32, setting s = 0 on line 6, and computing the square roots using (for example) a
scaled Denman–Beavers iteration [21, sect. 6.3].

The other functions of interest can be computed by using Algorithm 5.2 in con-
junction with the formulas, from Lemma 3.2 and Theorem 3.3,

asinA = (π/2)I − acosA,(5.6)

asinhA = i asin(−iA) = i
(
(π/2)I − acos(−iA)

)
,(5.7)

acoshA = i sign(−iA) acosA if A has no eigenvalues in (0, 1].(5.8)

The last relation requires computation of the matrix sign function of a triangular
matrix (exploiting the Schur form), which can be done by [21, Alg. 5.5] at a cost of up
to 2n3/3 flops, with a further n3/3 flops for the final (triangular) matrix multiplica-
tion. A fast, blocked implementation of [21, Alg. 5.5] has recently been developed by
Stotland, Schwartz, and Toledo [38]. The relation (5.6) may suffer from subtractive
cancellation when A ≈ 0; in this case we can simply take a few terms of the power
series in (5.1); similarly for (5.7).

For a Schur-free algorithm, the matrix sign function can be computed using a
Newton algorithm or some other rational iteration [21, Chap. 5], [31]. Equation (5.8)
is applicable only when A has no eigenvalue in the interval (0, 1]. When this condition
is not satisfied acosh can be computed using the logarithmic representations of acosh
given in (3.3), as described in the next subsection. Alternatively, a special purpose
algorithm could be designed, using analysis similar to that in subsection 5.1.

5.2. Algorithms based on logarithmic formulas. Another way to compute
the matrix inverse trigonometric and inverse hyperbolic functions is via their logarith-
mic representations given in Theorem 3.1. The most popular method for computing
the matrix logarithm is the inverse scaling and squaring method. It was introduced
by Kenney and Laub [28] and has undergone extensive development [3], [11], [13],
[21, sect. 11.5], with special attention to computation in real arithmetic [4], [17]. The
inverse scaling and squaring method is based on the relation logX = 2s log(X1/2s)
for s ∈ Z, with s taken sufficiently large that X1/2s is close to the identity matrix
and a Padé approximant to log(1 + x) used to approximate log(X1/2s). In the most
recent algorithms the degree of the Padé approximant is variable.

Using the first formula in (3.1) we obtain the following algorithm.

Algorithm 5.3. Given A ∈ Cn×n with no eigenvalues equal to ±1, this algorithm
computes C = acosA via the matrix logarithm.

1 Compute the Schur decomposition A = QTQ∗.
2 R = (I − T 2)1/2

3 Compute X = −i log(T + iR) using [3, Alg. 4.1].
4 C = QXQ∗

Cost: 25n3 flops for the Schur decomposition, 2n3/3 flops to compute R, (ŝ +
m̂)n3/3 flops to compute X (where ŝ is the scaling parameter in the inverse scaling
and squaring method and m̂ is the degree of the Padé approximation used), plus 3n3

flops to form C: about (28 2
3 + ŝ+m̂

3 )n3 flops in total.
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1472 MARY APRAHAMIAN AND NICHOLAS J. HIGHAM

A Schur-free algorithm can be obtained by omitting the first and last lines of
the algorithm, replacing T by A on lines 2–3, and computing the logarithm using [3,
Alg. 5.2].

Corresponding algorithms for asin, acosh, and asinh are obtained by using (3.2),
the first formula in (3.3), and (3.4).

In the linear-algebra package of GNU Octave (version 4.0.0) [18], the function
thfm.m (“trigonometric/hyperbolic functions of square matrix”) implements logarith-
mic formulas for acos, asin, acosh, and asinh. This function has two weaknesses. First,
the formula used for acosh is acoshA = log(A+ (A2 − I)1/2), which differs from (3.3)
(cf. Lemma 3.5) and does not produce the principal branch as we have defined it.
Second, the formulas are implemented as calls to logm and sqrtm, and so two Schur
decompositions are computed rather than one.

6. Numerical experiments. We present numerical experiments with the fol-
lowing algorithms.

• Algorithm 5.2, which computes acos by the Schur–Padé algorithm. In the
case of asin, acosh, and asinh, the algorithm is used together with (5.6)–
(5.8). In (5.8) the sign function of a triangular matrix is computed with
the function signm from [20]. When (5.8) is not applicable we use the first
logarithmic formula for acosh in (3.3).

• Algorithm 5.3 and its counterparts for asin, acosh, and asinh based on the
logarithmic representations.

We note that an algorithm for computing the matrix inverse hyperbolic sine has
been proposed by Cardoso and Silva Leite [10, Alg. 1]. They compute asinhA using
its logarithmic representation (3.4). In computing the logarithm they use the relation
log((1 +x)/(1−x)) = 2 atanhx, where atanh is the inverse hyperbolic tangent, along
with Padé approximations of atanh. The degree of the Padé approximant is fixed at
8 and is not chosen optimally. For this reason we will not consider this algorithm
further.

All computations are performed in MATLAB 2016a, for which the unit roundoff
is u ≈ 1.11× 10−16.

We consider a set of 20 test matrices, which are mostly 10× 10 and are based on
matrices from the MATLAB gallery function, the Matrix Computation Toolbox [19],
test problems provided with EigTool [39], and matrix exponential test problems [2].
We excluded all matrices that caused overflow or that had eigenvalues at the branch
points of any of the four functions. Two of the matrices have an eigenvalue exactly on
the branch cuts of some of the functions. Many of the test matrices have eigenvalues
close to the branch cuts, where ill conditioning occurs. It is important to note that
since the branch cuts are points of discontinuity one cannot expect an algorithm for
these functions always to be accurate when an eigenvalue lies exactly on the branch
cut, since a single rounding error in the Schur reduction can move the eigenvalue off
the branch cut and produce a very large change in the function.

Figure 6.1 gives the relative errors ‖ acosA − Ĉ‖1/‖ acosA‖1. Here, an accurate
acosA was obtained using 100-digit arithmetic with the Advanpix Multiprecision Com-
puting Toolbox for MATLAB [30], exploiting the eigendecomposition A = V DV −1

and the property f(A) = V f(D)V −1. For each matrix we also estimated the relative
condition number

condrel(f,A) =
condabs(f,A)‖A‖

‖f(A)‖
,
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2 4 6 8 10 12 14 16 18 20

10
-15

10
-10

10
-5

10
0

Alg. 5.2

Alg. 5.3

Fig. 6.1. Relative error in computing acosA using Algorithms 5.2 and 5.3. The solid line is
condacos(A)u.

where condabs is defined in (4.1), using the algorithm funm_condest1 from the Ma-
trix Function Toolbox [20], which implements [21, Alg. 3.22]. The latter algorithm
requires the Fréchet derivatives Lacos(A,E), which are obtained using the identity [21,
Thm. 3.6], [29]

(6.1) acos

([
A E
0 A

])
=

[
acosA Lacos(A,E)

0 acosA

]
,

and we use Algorithm 5.2 for this computation. We use Lemmas 4.1 and 4.2 to obtain
the Fréchet derivatives of asin and asinh, and the analogue of (6.1) for acosh, along
with (5.8), to obtain the Fréchet derivative of acosh.

Figures 6.2–6.4 give the 1-norm relative errors for asin, acosh, and sinh computed
using the variants of Algorithm 5.3, based on the matrix logarithm.

For all four functions it can be seen that Algorithm 5.2 gives the best results
overall and behaves in a forward stable fashion, that is, the relative error is not much
larger than condrel(f,A)u. The algorithms based on the logarithmic representations
have a major disadvantage. The branch point of the logarithm is at zero, and so when
the argument of the logarithm has an eigenvalue close to this branch point there may
be large relative errors in computing the logarithm. However, the argument of the
logarithm can have eigenvalues close to zero when the argument of asin, acos, asinh, or
acosh is not close to a branch point of that function. Consider, for example, a matrix
A with some eigenvalues with large negative imaginary parts. The corresponding
eigenvalues of A + i(I − A2)1/2 are close to zero, which may be detrimental for the
computation of the logarithm in Algorithm 5.3. We observed this for the matrix
indexed 19 in Figure 6.1. A slightly modified version of this matrix is

A =

[
0 b
−b 0

]
, b = 1000,

with eigenvalues ±1000i. The eigenvalues of A+ i(I − A2)1/2 are approximately 5×
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2 4 6 8 10 12 14 16 18 20

10-15

10-10

10-5

100

Via Alg. 5.2

Via log formula

Fig. 6.2. Relative error in computing asinA using Algorithm 5.2 (with (5.6)) and via log formula
(variant of Algorithm 5.3). The solid line is condasin(A)u.

2 4 6 8 10 12 14 16 18 20

10-15

10-10

10-5

100

Via Alg. 5.2

Via log formula

Fig. 6.3. Relative error in computing acoshA using Algorithm 5.2 (with (5.8)) and via log
formula (variant of Algorithm 5.3). The solid line is condacosh(A)u.

10−4 i and 2000i, so one of them is very close to zero, and this is reflected in the relative
error for Algorithm 5.3 for computing acos, which is ‖ acosA − Ĉ‖1/‖ acosA‖1 ≈
1.98 × 10−9 versus 3.68 × 10−16 for Algorithm 5.2. This is not surprising in view of
the large difference between the (estimated) relative 1-norm condition numbers, which
are 0.83 for acosA and 2.1× 107 for log(A+ i(I −A2)1/2).

Finally, we reiterate that acoshA can be computed using Algorithm 5.2 and (5.8)
only if A has no eigenvalue in the interval (0, 1]. This restriction was satisfied for all
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2 4 6 8 10 12 14 16 18 20

10-15

10-10

10-5

100

Via Alg. 5.2

Via log formula

Fig. 6.4. Relative error in computing asinhA using Algorithm 5.2 (with (5.7)) and via log
formula (variant of Algorithm 5.3). The solid line is condasinh(A)u.

but two of the matrices—those indexed 3 and 7 in Figure 6.3. However, as we see
from the figure, the acosh variant of Algorithm 5.3 provides a good alternative for
such cases.

7. Concluding remarks. The goals of this work were to study matrix inverse
trigonometric and inverse hyperbolic functions and to derive algorithms for their com-
putation. We characterized when the functions exist. We defined the principal matrix
functions, asin, acos, asinh, and acosh, precisely specifying the values they attain on
their respective branch cuts, and proved that they exist, are unique, and are primary
matrix functions. We showed that many identities known to hold for real scalars can
be extended to complex matrices. We also derived some identities that are new even
in the scalar case, namely, a relation between acoshA and acosA (Theorem 3.3) and
“round trip” identities that yield necessary and sufficient conditions for acos(cosA) to
equal A, and similarly for the other functions (Theorems 3.10, 3.12, 3.14, and 3.16).
In addition, we obtained insight into the conditioning of the functions. Essential tools
in our analyses are the matrix unwinding function and the matrix sign function. An
important feature of all our results is that, unlike many treatments of their scalar
counterparts, all choices of branches and signs are precisely specified.

Our new Schur–Padé algorithm for acos, Algorithm 5.2, performs in a forward
stable fashion in our experiments and is clearly superior in accuracy to the algorithm
based on the logarithm, which has the disadvantage of being susceptible to the sen-
sitivity of the logarithm near the origin. Algorithm 5.2, combined with (5.6)–(5.8)
for asin, acosh, and asinh, forms the first numerically reliable set of algorithms for
computing these matrix functions.

Our MATLAB implementations of Algorithm 5.2, and the variants for asin, acosh,
and asinh, can be found at https://github.com/higham/matrix-inv-trig-hyp.
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