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Hyperbolicity of the invariant set for the logistic map with � > 4

Paul Glendinninga �

aDepartment of Mathematics, UMIST,
P.O. Box 88, Manchester M60 1QD, U.K.

Classic results due to Guckenheimer and Misiurewicz imply that the invariant set of the
logistic map with � 2 (4; 2 +

p
5] is hyperbolic. This is well known, but the only obvious

reference in the literature uses relatively sophisticated ideas from complex variable theory.
This pedagogical note provides a brief, self-contained account of this result using only
elementary real analysis. The method also gives a good estimate of the expansion rate on
the invariant set.

1. INTRODUCTION

Almost every introduction to chaos and dynamical systems contains an account of the
dynamics of the logistic map

F�(x) = �x(1� x): (1)

If � 2 (0; 4] then the interval [0; 1] is invariant under the map, and `interesting' phenomena
(period-doubling, chaos etc.) can be observed as � is varied. If � > 4 then there is no
invariant interval, but if we de�ne


n = fx 2 [0; 1] j F r
�(x) 2 [0; 1]; r = 0; : : : ; n� 1g (2)

then 
 := \11 
n is a closed invariant set on which the dynamics is topologically conjugate
to a one-sided shift on two symbols. Such an unstable set is said to be hyperbolic if there
exists � > 1 (the expansion rate) such that for all x 2 
 and all n 2 Z+

jDF n
� (x)j � c�n (3)

where DF n denotes the derivative of F n (the nth iterate of F ) and c is a constant. It
is a standard graduate exercise (see [2], Ch. 1.7, Theorem 7.5 and Ex. 2b for example)
to show that 
 is hyperbolic if � > 2 +

p
5, which follows immediately from a direct

calculation: jDF�(x)j > 1 for all x 2 
2 if � > 2+
p
5. This leaves an uncomfortable gap

in the parameter space: 4 < � � 2 +
p
5. It is well known that 
 is hyperbolic for these

parameters, and a standard statement (see e.g. [8]) is that it can be proved using the
techniques developed by Guckenheimer [3] and Misiurewicz [7] (see also [5,6,9]). Robinson
[8] gives a shorter proof using ideas from complex variable theory, but the proof is by no

�This article was motivated by a question posed by Mrs Das after my talk in the session chaired by Prof.

Sengupta at WCNA2000, Catania, Sicily.



2

means simple. In most graduate courses it is probably enough to assure students that 

is indeed hyperbolic for these parameter values, but that the proof is more complicated.
The more persistent student might like more detail, and it is this curiosity which I hope
to satisfy below. So this note provides a new and elementary proof of the following result:

Theorem 1.1 If � > 4 then � is hyperbolic.

The proof uses ideas which can be found in [4,6], see, for example, Lemma 4.1 of [4]
where the technique is used to study expansion in logistic maps with � < 4. This method
uses the standard topological conjugacy between the logistic map with � = 4 and the
tent map with slope two. It is shown below that this conjugacy (or more precisely, the
congugacy for a related quadratic map) can be used to conjugate the quadratic map to a
map which has a slope with modulus greater than one for an appropriate range of values {
this makes it possible to obtain estimates of the derivative of the original map and hence
prove hyperbolicity. The proof also provides good estimates of the expansion rate � which
I have not seen elsewhere in the literature.

2. QUADRATIC MAPS

The logistic map, (1), is just one of several equivalent parametrizations of a quadratic
map of the interval to itself. It turns out (for reasons alluded to in the next section, but
which only really reveal themselves if the relevant calculations are attempted) that the
algebraic manipulations needed for the proof are greatly simpl�ed if the family

fr(x) = 1� rx2; r > 2 (4)

is used instead of the standard logistic map. If r > 0 then each member of the family (fr)
is topologically conjugate to the member of the logistic family (F�) with � and r related
by the formula

r =
1

4
�(�� 2) (5)

and, in particular, � = 4 gives r = 2, and � > 4 corresponds to r > 2. The interesting
dynamics of (fr) lies in an interval Ir = [�a; a], where x = �a is the �xed point of fr
with

a =
1 +

p
1 + 4r

2r
: (6)

Note that if r < 2 then Ir � [�1; 1]. The conjugating function, p, such that F� =
p�1 � fr � p, is a�ne (i.e. p(x) = Ax + B); the precise values of the coe�cients A and
B are unimportant and left as an exercise. Note that p maps the interval [0; 1] onto Ir,
and 
 and 
n onto the corresponding sets for fr, which will be denoted � and �n. For
the remainder of this note we concentrate on (4) rather than (1). The results of the next
three sections establish the following result.



3

Theorem 2.1 If r > 2 then for all x 2 � and n 2 Z+

jDfn
r (x)j � Cr�

n
r (7)

where �r =
p
2r and Cr > 0 with

C2
r =

2r2 � 2r � 1�p
1 + 4r

2r2 � 2r + 1 +
p
1 + 4r

: (8)

Note that as r # 2, Cr # 0 and as r !1, Cr " 1.

3. A CHANGE OF VARIABLE

If r = 2 then the change of variable h : [�1; 1]! [�1; 1] de�ned by

h(�) = cos
1

2
�(� � 1); � 1 � � � 1; (9)

conjugates the quadratic map f2 to the tent map g2 : [�1; 1]! [�1; 1], where

g2(x) =
�
1 + 2� if � 2 [�1; 0]
1� 2� if � 2 [0; 1]

(10)

i.e.

h�1 � f2 � h(�) = g2(�): (11)

The main idea behind the elementary proof of Theorem 2.1 given below is to use the
function h above to conjugate fr (r > 2) to a new map gr which has jDgr(�)j > 1 for all
� in h�1(�). Once this has been established, the proof is simple.
Thus, for r > 2 de�ne a new map gr by

gr(�) = h�1 � fr � h(�): (12)

Note that the invariant set � of fr is contained in the set �2 = Irn� where � = (�b; b)
with

b2 =
2r � 1�p

1 + 4r

2r2
(13)

and so we are only interested in gr for � 2 h�1(�2). (The value of b is found by computing
the set of points near x = 0 for which fr(x) = a.) Di�erentiating (12) and rearranging a
little gives

jDfn
r (x)j =

�����Dh(gnr (y))

Dh(y)

����� :jDgnr (y)j; y = h�1(x): (14)

The aim of the next two sections is to control the two terms making up the right hand
side of (14) for y 2 h�1(�).
Equation (14) also explains, at least implicitly, why we have chosen to work with fr

instead of the logistic map F�: as noted earlier, if r > 2 then the invariant set of fr is
contained inside the interval [�1; 1] on which the conjugacy (9) was de�ned for f2, and
h is a di�eomorphism on any closed interval contained in (�1; 1). Had the logistic map
been used this would no longer have been the case, and rather than use the conjugating
function it would have been necessary to try families of rescaled versions of the conjugating
function, thus adding an extra level of complexity to the manipulations.
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4. BOUNDING THE FIRST TERM OF (14)

In the previous section it was established that if r > 2 then the invariant set of fr is
contained in �2 = [�a;�b] [ [b; a]. Thus, for all y 2 h�1(�),�����Dh(gnr (y))

Dh(y)

����� � Cr (15)

where

Cr = min
�;�02h�1(�2)

�����Dh(�)

Dh(�0)

����� = min
�;�02h�1(�2)

j sin 1
2
�(� � 1)j

j sin 1
2
�(�0 � 1)j : (16)

Now, since �2 = [�a;�b] [ [b; a] with 0 < b < a < 1, h�1(�2) is also a union of two
intervals, [��;��] [ [�; �] with 0 < � < � < 1, cos 1

2
�(�� 1) = a and cos 1

2
�(� � 1) = b.

Hence

Cr =
j sin 1

2
�(�� 1)j

j sin 1
2
�(� � 1)j : (17)

Since a and b are known from equations (6) and (13), this implies that

C2
r =

1� a2

1� b2
=

2r2 � 2r � 1�p
1 + 4r

2r2 � 2r + 1 +
p
1 + 4r

: (18)

5. BOUNDING THE SECOND TERM OF (14)

Using (9) and (11), gr may be written explicitly as

gr(�) = 1 +
2

�
cos�1

�
1� r cos2

1

2
�(� � 1)

�
(19)

and so by the chain rule

Dgr(�) = 2r
cos 1

2
�(� � 1) sin 1

2
�(� � 1)�

1� (1� r cos2 1
2
�(� � 1))2

� 1

2

=
p
2r

sin 1
2
�(� � 1)�

1� 1
2
r cos2 1

2
�(� � 1)

� 1

2

:

Set w = j cos2 1
2
�(� � 1)j = jh(�)j2, so if � 2 h�1(�) then b2 � w � a2 and

jDgr(�)j =
p
2r

 
1� w

1� 1
2
rw

! 1

2

: (20)

If r > 2 then, provided 1� 1
2
rw > 0, this implies that

jDgr(�)j �
p
2r: (21)

For w in the interval [b2; a2], 1� 1
2
rw � 1� 1

2
ra2, and by looking at the derivative of the

expression 1� 1
2
ra2 with respect to r it is straightforward to show that for if r > 2 then

1� 1
2
ra2 > 0. Hence 1� 1

2
rw > 0 if r > 2 and so (21) does indeed hold for all r > 2.
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6. COMPLETING THE PROOF

To complete the proof of Theorem 2.1 it only remains to substitute the bounds obtained
in the previous two sections into (14) to obtain

jDfn
r (x)j � Crj2rjn2 for all n > 0 and x 2 � (22)

if r > 2. In fact, if more care is taken with the minimization of the right hand side of
(20) it is possible to obtain the slightly better estimate, jDfn

r (x)j � Cr�
n
r with

�r = 2

 
2r2 � 2r + 1 +

p
1 + 4r

2r + 1 +
p
1 + 4r

! 1

2

: (23)

However, this expression is not quite as transparent as the expression derived in the
sections above!
Note that throughout this proof the only mathematical techniques used have been from

elementary calculus: di�erentiating functions of functions (the chain rule) and �nding
maxima and minima. From dynamical systems, the proof exploits the idea of (smooth)
topological conjugacy. The proof of Robinson [8] uses a more advanced de�nition of
distance together with the Schwarz Lemma from complex variable theory, and does not
appear to give good estimates of the expansion rate without more work. I have never seen
a complete proof of this result using the earlier ideas of Guckenheimer [3] and Misiurewicz
[7]. It is not hard to see how this would work, but such a proof would involve considerably
longer arguments than the reasoning above (although it would be more general).
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