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Matrix Depot: an extensible test matrix
collection for Julia
Weijian Zhang and Nicholas J. Higham
School of Mathematics, University of Manchester, Manchester, UK

ABSTRACT
Matrix Depot is a Julia software package that provides easy access to a large and diverse
collection of test matrices. Its novelty is threefold. First, it is extensible by the user, and
so can be adapted to include the user’s own test problems. In doing so, it facilitates
experimentation and makes it easier to carry out reproducible research. Second, it
amalgamates in a single framework two different types of existing matrix collections,
comprising parametrized test matrices (including Hansen’s set of regularization test
problems and Higham’s Test Matrix Toolbox) and real-life sparse matrix data (giving
access to the University of Florida sparse matrix collection). Third, it fully exploits
the Julia language. It uses multiple dispatch to help provide a simple interface and, in
particular, to allowmatrices to be generated in any of the numeric data types supported
by the language.

Subjects Algorithms and Analysis of Algorithms, Data Science, Scientific Computing and
Simulation
Keywords Julia, Software package, Test matrices, Matrix algorithm., Test problems

INTRODUCTION
In 1969, Gregory and Karney published a book of test matrices (Gregory & Karney, 1969).
They stated that ‘‘In order to test the accuracy of computer programs for solving numerical
problems, one needs numerical examples with known solutions. The aim of thismonograph
is to provide the readerwith suitable examples for testing algorithms for finding the inverses,
eigenvalues, and eigenvectors of matrix.’’ At that time it was common for journal papers
to be devoted to introducing and analyzing a particular test matrix or class of matrices,
examples being the papers of Clement (1959) (in the first issue of SIAM Review), Pei (1962)
(occupying just a quarter of a page), and Gear (1969).

Today, test matrices remain of great interest, but not for the same reasons as fifty
years ago. Testing accuracy using problems with known solutions is less common because
a reference solution correct to machine precision can usually be computed at higher
precision without difficulty. The main uses of test matrices nowadays are for exploring the
behavior of mathematical quantities (such as eigenvalue bounds) and for measuring the
performance of one or more algorithms with respect to accuracy, stability, convergence
rate, speed, or robustness.

Various collections of matrices have been made available in software. As well as giving
easy access to matrices these collections have the advantage of facilitating reproducibility
of experiments (Donoho & Stodden, 2015), whether by the same researcher months later or
by different researchers.
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1The University of Florida Sparse Matrix
Collection is to be renamed as The
SuiteSparse Matrix Collection.

An early collection of parametrizable matrices was given by Higham (1991) and made
available in MATLAB form. The collection was later extended and distributed as a
MATLAB toolbox (Higham, 1995). Many of the matrices in the toolbox were subsequently
incorporated into the MATLAB gallery function. Marques, Vömel, Demmel, and
Parlett (Marques et al., 2008) present test matrices for tridiagonal eigenvalue problems
(already recognized as important by Gregory and Karney, who devoted the last chapter
of their book to such matrices). The Harwell–Boeing collection of sparse matrices (Duff,
Grimes & Lewis, 1989) has beenwidely used, and is incorporated in theUniversity of Florida
Sparse Matrix Collection1 (Davis & Hu, 2011), which contains over 2700 matrices from
practical applications, including standard and generalized eigenvalue problems from Bai et
al. (1997). Among other MATLAB toolboxes we mention the CONTEST toolbox (Taylor
& Higham, 2009), which produces adjacency matrices describing random networks, and
the NLEVP collection of nonlinear eigenvalue problems (Betcke et al., 2013).

The purpose of this work is to provide a test matrix collection for Julia (Bezanson
et al., 2014; Bezanson et al., 2012), a new dynamic programming language for technical
computing. The collection, called Matrix Depot, exploits Julia’s multiple dispatch features
to enable all matrices to be accessed by one simple interface. Moreover, Matrix Depot is
extensible. Users can add matrices from the University of Florida Sparse Matrix Collection
and Matrix Market; they can code new matrix generators and incorporate them into
Matrix Depot; and they can define new groups of matrices that give easy access to subsets
of matrices. The parametrized matrices can be generated in any appropriate numeric data
type, such as

• floating-point types Float16 (half precision: 16 bits), Float32 (single precision: 32
bits), and Float64 (double precision: 64 bits);
• integer types Int32 (signed 32-bit integers), UInt32 (unsigned 32-bit integers),
Int64 (signed 64-bit integers), and UInt64 (unsigned 64-bit integers);
• Complex, where the real and imaginary parts are of any Real type (the same for both);
• Rational (ratio of integers); and
• arbitrary precision type BigFloat (with default precision 256 bits), which uses the

GNU MPFR Library (Fousse et al., 2007).

This paper is organized as follows. We start by giving a brief demonstration of Matrix
Depot in ‘A Taste of Matrix Depot.’ Then we explain the design and implementation of
Matrix Depot in ‘Package Design and Implementation,’ giving details on how multiple
dispatch is exploited; how the collection is stored, accessed, and documented; and how it
can be extended. In ‘The Matrices’ we describe the two classes of matrices in Matrix Depot:
parametrized test matrices and real-life sparse matrix data. Concluding remarks are given
in the final section.
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A TASTE OF MATRIX DEPOT
To download Matrix Depot, in a Julia REPL (read-eval-print loop) run the command

> Pkg.add("MatrixDepot")

Then import Matrix Depot into the local scope.

> using MatrixDepot

Now the package is ready to be used. First, we find out what matrices are in Matrix Depot.

> matrixdepot()

Matrices:
1) baart 2) binomial 3) blur 4) cauchy
5) chebspec 6) chow 7) circul 8) clement
9) companion 10) deriv2 11) dingdong 12) fiedler
13) forsythe 14) foxgood 15) frank 16) golub
17) gravity 18) grcar 19) hadamard 20) hankel
21) heat 22) hilb 23) invhilb 24) invol
25) kahan 26) kms 27) lehmer 28) lotkin
29) magic 30) minij 31) moler 32) neumann
33) oscillate 34) parallax 35) parter 36) pascal
37) pei 38) phillips 39) poisson 40) prolate
41) randcorr 42) rando 43) randsvd 44) rohess
45) rosser 46) sampling 47) shaw 48) spikes
49) toeplitz 50) tridiag 51) triw 52) ursell
53) vand 54) wathen 55) wilkinson 56) wing

Groups:
all data eigen ill-cond
inverse pos-def random regprob
sparse symmetric

All the matrices and groups in the collection are shown. It is also possible to obtain just the
list of matrix names.

> matrixdepot("all")
56-element Array{ASCIIString,1}:
"baart"
"binomial"
"blur"
"cauchy"
"chebspec"
"chow"
"circul"
"clement"
"companion"
"deriv2"
...

"spikes"
"toeplitz"
"tridiag"
"triw"
"ursell"
"vand"
"wathen"
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"wilkinson"
"wing"

Here, ‘‘ ...’’ denotes that we have omitted some of the output in order to save space.
Next, we check the input options of the Hilbert matrix hilb.

> matrixdepot("hilb")
Hilbert matrix
================

The Hilbert matrix has (i,j) element 1/(i+j-1). It is notorious
for being ill conditioned. It is symmetric positive definite
and totally positive.

Input options:

* [type,] dim: the dimension of the matrix.

* [type,] row_dim, col_dim: the row and column dimensions.

Groups: ["inverse", "ill-cond", "symmetric", "pos-def"]

References:

M. D. Choi, Tricks or treats with the Hilbert matrix, Amer. Math.
Monthly, 90 (1983), pp. 301-312.

N. J. Higham, Accuracy and Stability of Numerical Algorithms,
second edition, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2002; sec. 28.1.

Note that an optional first argument type can be given; it defaults to Float64.
The string of equals signs on the third line in the output above is Markdown notation
for a header. Julia interprets Markdown within documentation, though as we are using
typewriter font for code examples here, we display the uninterpreted source. We generate
a 4× 6 Hilbert matrix with elements in the default double precision type and then in
Rational type.

> matrixdepot("hilb", 4, 6)
4x6 Array{Float64,2}:
1.0 0.5 0.333333 0.25 0.2 0.166667
0.5 0.333333 0.25 0.2 0.166667 0.142857
0.333333 0.25 0.2 0.166667 0.142857 0.125
0.25 0.2 0.166667 0.142857 0.125 0.111111

> matrixdepot("hilb", Rational, 4, 6)
4x6 Array{Rational{T<:Integer},2}:
1//1 1//2 1//3 1//4 1//5 1//6
1//2 1//3 1//4 1//5 1//6 1//7
1//3 1//4 1//5 1//6 1//7 1//8
1//4 1//5 1//6 1//7 1//8 1//9

A list of all the symmetric matrices in the collection is readily obtained.

> matrixdepot("symmetric")
21-element Array{ASCIIString,1}:
"cauchy"
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"circul"
"clement"
"dingdong"
"fiedler"
"hankel"
"hilb"
"invhilb"
"kms"
"lehmer"
"minij"
"moler"
"oscillate"
"pascal"
"pei"
"poisson"
"prolate"
"randcorr"
"tridiag"
"wathen"
"wilkinson"

Here, symmetric is one of several predefined groups, and multiple groups can be
intersected. For example, the for loop below prints the smallest and largest eigenvalues of
all the 4×4 matrices in Matrix Depot that are symmetric positive definite and (potentially)
ill conditioned.

> for name in matrixdepot("symmetric", "pos-def", "ill-cond")
A = full(matrixdepot(name, 4))
@printf "
name eigmin(A) eigmax(A)

end

cauchy: smallest eigval = 2.131e-05, largest eigval = 9.776e-01
hilb: smallest eigval = 9.670e-05, largest eigval = 1.500e+00

invhilb: smallest eigval = 6.666e-01, largest eigval = 1.034e+04
kms: smallest eigval = 3.750e-01, largest eigval = 2.086e+00

moler: smallest eigval = 3.336e-02, largest eigval = 5.122e+00
oscillate: smallest eigval = 1.490e-08, largest eigval = 1.000e+00

pascal: smallest eigval = 3.802e-02, largest eigval = 2.630e+01
pei: smallest eigval = 1.000e+00, largest eigval = 5.000e+00

tridiag: smallest eigval = 3.820e-01, largest eigval = 3.618e+00

Matrices can also be accessed by number within the alphabetical list of matrix names.

> matrixdepot(2)
"binomial"

> matrixdepot(2:5)
4-element Array{AbstractString,1}:
"binomial"
"blur"
"cauchy"
"chebspec"

> matrixdepot(15:20, 5, 6, 1:3)
11-element Array{AbstractString,1}:
"frank"
"golub"
"gravity"
"grcar"
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"hadamard"
"hankel"
"chebspec"
"chow"
"baart"
"binomial"
"blur"

Access by number provides a convenient way to run a test on subsets of matrices in the
collection. However, the number assigned to a matrix may change if we include new
matrices in the collection. In order to run tests in a way that is repeatable in the future it
is best to group matrices into subsets using the macro @addgroup, which stores them
by name. For example, the following command will group test matrices frank, golub,
gravity, grcar, hadamard, hankel, chebspec, chow, baart, binomial, and
blur into test1.

> @addgroup test1 = matrixdepot(15:20, 5, 6, 1:3)

After reloading the package, we can run tests on these matrices using group test1. Here
we compute the 2-norms. Since blur (an image deblurring test problem) generates a
sparse matrix and the matrix 2-norm is currently not implemented for sparse matrices in
Julia, we use full to convert the matrix to dense format.

> for name in matrixdepot("test1")
A = full(matrixdepot(name , 4))
@printf "\%9s has 2-norm \%0.3e \n" name norm(A)

end

baart has 2-norm 3.192e+00
binomial has 2-norm 4.576e+00

blur has 2-norm 8.298e-01
chebspec has 2-norm 6.474e+00

chow has 2-norm 3.414e+00
frank has 2-norm 7.624e+00
golub has 2-norm 2.050e+02

gravity has 2-norm 6.656e+00
grcar has 2-norm 2.562e+00

hadamard has 2-norm 2.000e+00
hankel has 2-norm 1.160e+01

To download the test matrix SNAP/web-Google from the University of Florida
Sparse Matrix Collection (see ‘Matrix Data from External Sources’ for more details), we
first download the data with

> matrixdepot("SNAP/web-Google", :get)

and then generate the matrix with

> matrixdepot("SNAP/web-Google", :r)
916428x916428 sparse matrix with 5105039 Float64 entries:
[11343 , 1] = 1.0
[11928 , 1] = 1.0
[15902 , 1] = 1.0
[29547 , 1] = 1.0
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[30282 , 1] = 1.0
[31301 , 1] = 1.0
[38717 , 1] = 1.0
...
[720325, 916427] = 1.0
[772226, 916427] = 1.0
[785097, 916427] = 1.0
[788476, 916427] = 1.0
[822938, 916427] = 1.0
[833616, 916427] = 1.0
[417498, 916428] = 1.0
[843845, 916428] = 1.0

Note that the omission marked ‘‘ ...’’ was in this case automatically done by Julia based
on the height of the terminal window. Matrices loaded in this way are inserted into the
list of available matrices, and assigned a number. After downloading further matrices
HB/1138_bus, HB/494_bus, and Bova/rma10 the list of matrices is as follows.

julia> matrixdepot()

Matrices:
1) baart 2) binomial 3) blur 4) cauchy
5) chebspec 6) chow 7) circul 8) clement
9) companion 10) deriv2 11) dingdong 12) fiedler

13) forsythe 14) foxgood 15) frank 16) golub
17) gravity 18) grcar 19) hadamard 20) hankel
21) heat 22) hilb 23) invhilb 24) invol
25) kahan 26) kms 27) lehmer 28) lotkin
29) magic 30) minij 31) moler 32) neumann
33) oscillate 34) parallax 35) parter 36) pascal
37) pei 38) phillips 39) poisson 40) prolate
41) randcorr 42) rando 43) randsvd 44) rohess
45) rosser 46) sampling 47) shaw 48) spikes
49) toeplitz 50) tridiag 51) triw 52) ursell
53) vand 54) wathen 55) wilkinson 56) wing
57) Bova/rma10 58) HB/1138_bus 59) HB/494_bus 60) SNAP/web-Google

Groups:
all data eigen ill-cond
inverse pos-def random regprob
sparse symmetric test1

PACKAGE DESIGN AND IMPLEMENTATION
In this section we describe the design and implementation of Matrix Depot, focusing
particularly on the novel aspects of exploitation of multiple dispatch, extensibility of the
collection, and user-definable grouping of matrices.

Exploiting multiple dispatch
Matrix Depotmakes use ofmultiple dispatch in Julia, an object-oriented paradigm in which
the selection of a function implementation is based on the types of each argument of the
function. The generic function matrixdepot has eight different methods, where each
method itself is a function that handles a specific case. This is neater and more convenient
than writing eight ‘‘case’’ statements, as is necessary in many other languages.
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> methods(matrixdepot)
# 8 methods for generic function "matrixdepot":
matrixdepot() ...
matrixdepot(name::AbstractString) ...
matrixdepot(name::AbstractString, method::Symbol) ...
matrixdepot(props::AbstractString...) ...
matrixdepot(name::AbstractString, args...) ...
matrixdepot(num::Integer) ...
matrixdepot(ur::UnitRange{T<:Real}) ...
matrixdepot(vs::Union{Integer,UnitRange{T<:Real}}...) ...

For example, the following two functions are used for accessing matrices by number and
range respectively, where matrix_name_list() returns a list of matrix names. The
second function calls the first function in the inner loop.

function matrixdepot(num::Integer)
matrixstrings = matrix_name_list()
n = length(matrixstrings)
if num > n

error("There are $(n) parameterized matrices,
but you asked for the $(num)-th.")

end
return matrixstrings[num]

end

function matrixdepot(ur::UnitRange)
matrixnamelist = AbstractString[]
for i in ur

push!(matrixnamelist, matrixdepot(i))
end
return matrixnamelist

end

As a result, matrixdepot is a versatile function that can be used for a variety of
purposes, including returning matrix information and generating matrices from various
input parameters.

In the following example we see how multiple dispatch handles different numbers and
types of arguments for the Cauchy matrix.

> matrixdepot("cauchy")
Cauchy matrix
=============

Given two vectors x and y, the (i,j) entry of the Cauchy matrix
is 1/(x[i]+y[j]).

Input options:

* [type,] x, y: two vectors.

* [type,] x: a vector. y defaults to x.

* [type,] dim: the dimension of the matrix. x and y default to
[1:dim;].

Groups: ["inverse", "ill-cond", "symmetric", "pos-def"]
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References:

N. J. Higham, Accuracy and Stability of Numerical Algorithms,
second edition, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2002; sec. 28.1

> matrixdepot("cauchy", [1, 2, 3], [4, 5, 6])
3x3 Array{Float64,2}:
0.2 0.166667 0.142857
0.166667 0.142857 0.125
0.142857 0.125 0.111111

> matrixdepot("cauchy", [0.2, 0.3, 0.4])
3x3 Array{Float64,2}:
2.5 2.0 1.66667
2.0 1.66667 1.42857
1.66667 1.42857 1.25

> matrixdepot("cauchy", 3)
3x3 Array{Float64,2}:
0.5 0.333333 0.25
0.333333 0.25 0.2
0.25 0.2 0.166667

> matrixdepot("cauchy", Float32, 3)
3x3 Array{Float32,2}:
0.5 0.333333 0.25
0.333333 0.25 0.2
0.25 0.2 0.166667

Multiple dispatch is also exploited in programming the matrices. For example, the
Hilbert matrix is implemented as

function hilb{T}(::Type{T}, m::Integer, n::Integer)
H = zeros(T, m, n)
for j = 1:n, i = 1:m

@inbounds H[i,j] = one(T)/ (i + j - one(T))
end
return H

end
hilb{T}(::Type{T}, n::Integer) = hilb(T, n, n)
hilb(args...) = hilb(Float64, args...)

The function hilb has three methods, which enable one to request, for example,
hilb(4,2) for a 4× 2 Hilbert matrix of type Float64, or simply (thanks to the
final two lines) hilb(4) for a 4× 4 Hilbert matrix of type Float64. The keyword
@inbounds tells Julia to turn off bounds checking in the following expression, in order
to speed up execution. Note that in Julia it is not necessary to vectorize code to achieve
good performance (Bezanson et al., 2014).

All the matrices in Matrix Depot can be generated using the function call

matrixdepot("matrix_name", p1, p2, ...),

where matrix_name is the name of the test matrix, and p1, p2, . . . , are input arguments
depending on matrix_name. The help comments for each matrix can be viewed by
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calling function matrixdepot("matrix_name"). We can access the list of matrix
names by number, range, or a mixture of numbers and range.
1. matrixdepot(i)returns the name of the ith matrix;
2. matrixdepot(i:j)returns the names of the ith to jth matrices, where i< j;
3. matrixdepot(i:j, k, m)returns the names of the ith, (i+1)st, ..., jth, kth, and

mth matrices.

Matrix representation
Matrix names in Matrix Depot are represented by Julia strings. For example, the Cauchy
matrix is represented by "cauchy". Matrix names and matrix groups are stored as hash
tables (Dict). In particular, there is a hash table matrixdict that maps each matrix
name to its underlying function and a hash table matrixclass that maps each group to
its members.

The majority of parametrized matrices are dense matrices of type Array{T,2},
where T is the element type of the matrix. Variables of the Array type are stored
in column-major order. A few matrices are stored as sparse matrices (see also
matrixdepot("sparse")), in the Compressed Sparse Column (CSC) format; these
include neumann (a singular matrix from the discrete Neumann problem) and poisson
(a block tridiagonal matrix from Poisson’s equation). Tridiagonal matrices are stored in
the built-in Julia type Tridiagonal, which is defined as follows.

immutable Tridiagonal{T} <: AbstractMatrix{T}
dl::Vector{T} # sub-diagonal
d::Vector{T} # diagonal
du::Vector{T} # sup-diagonal
du2::Vector{T} # supsup-diagonal for pivoting

end

Matrix groups
A group is a subset of matrices in Matrix Depot. There are ten predefined groups, described
in Table 1, most of which identify matrices with particular properties. Each group is
represented by a string. For example, the group of random matrices is represented by
"random". Matrices can be accessed by group names, as was illustrated in ‘A Taste of
Matrix Depot.’

The macro @addgroup is used to add a new group of matrices toMatrix Depot and the
macro @rmgroup removes an added group. All the predefined matrix groups are stored
in the hash table matrixclass. The macro addgroup essentially adds a new key-value
combination to the hash table usermatrixclass. Using a separate hash table prevents
the user from contaminating the predefined matrix groups.

Being able to create groups is a useful feature for reproducible research (Donoho &
Stodden, 2015). For example, if we have implemented algorithm alg01 and we used
circul, minij, and grcar as test matrices for alg01, we could type

> @addgroup alg01_group = ["circul", "minij", "grcar"]
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Table 1 Predefined groups.

Group Description

all All the matrices in the collection.
data The matrix has been downloaded from the University of

Florida Sparse Collection or the Matrix Market Collection.
eigen Part of the eigensystem of the matrix is explicitly known.
ill-cond The matrix is ill-conditioned for some parameter values.
inverse The inverse of the matrix is known explicitly.
pos-def The matrix is positive definite for some parameter values.
random The matrix has random entries.
regprob The output is a test problem for regularization methods.
sparse The matrix is sparse.
symmetric The matrix is symmetric for some parameter values.

This adds a new group to Matrix Depot (we need to reload the package to see the changes).

julia> matrixdepot()

Matrices:
1) baart 2) binomial 3) blur 4) cauchy
5) chebspec 6) chow 7) circul 8) clement
9) companion 10) deriv2 11) dingdong 12) fiedler
13) forsythe 14) foxgood 15) frank 16) golub
17) gravity 18) grcar 19) hadamard 20) hankel
21) heat 22) hilb 23) invhilb 24) invol
25) kahan 26) kms 27) lehmer 28) lotkin
29) magic 30) minij 31) moler 32) neumann
33) oscillate 34) parallax 35) parter 36) pascal
37) pei 38) phillips 39) poisson 40) prolate
41) randcorr 42) rando 43) randsvd 44) rohess
45) rosser 46) sampling 47) shaw 48) spikes
49) toeplitz 50) tridiag 51) triw 52) ursell
53) vand 54) wathen 55) wilkinson 56) wing

Groups:
all data eigen ill-cond
inverse pos-def random regprob
sparse symmetric alg01_group

We can then run alg01 on the test matrices by

> for name in matrixdepot(alg01_group)
A = matrixdepot(name, n) # n is the dimension of the matrix.
@printf "Test result for

end

Adding new matrix generators
Generators are Julia functions that generate test matrices. When Matrix Depot is first
loaded, a directory myMatrixDepot is created. It contains two files, group.jl and
generator.jl, where group.jl is used for storing all the user-defined groups (see
‘Matrix Group’) and generator.jl is used for storing generator declarations.
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2Git is a free and open source distributed
version control system.

Julia packages are simply Git repositories.2 The directory myMatrixDepot is
untracked by Git, so any local changes to files in myMatrixDepot do not make the
MatrixDepot package ‘‘dirty.’’ In particular, all the newly defined groups or matrix
generators will not be affected when we upgrade to a new version of Matrix Depot. Matrix
Depot automatically loads all Julia files in myMatrixDepot. This feature allows a user to
simply drop generator files into myMatrixDepot without worrying about how to link
them to Matrix Depot.

Anewgenerator is declaredusing the syntaxinclude_generator(FunctionName,
"fname", f). This adds the new mapping "fname" → f to the hash table
matrixdict, which we recall maps each matrix name to its underlying function.
Matrix Depot will refer to function f using string "fname" so that we can call function f
by matrixdepot("fname"...). The user is free to define new data types and return
values of those types. Moreover, as with any Julia function, multiple values can be returned
by listing them after the return statement.

For example, suppose we have the following Julia file rand.jl, which contains two
generators randsym and randorth and we want to use them from Matrix Depot. The
triple quotes in the file delimit the documentation for the functions.

"""
random symmetric matrix
=======================

Input options:

* n: the dimension of the matrix
"""
function randsym(n)

A = zeros(n, n)
for j = 1:n

for i = 1:j
A[i,j] = randn()
if i != j; A[j,i] = A[i,j] end

end
end
return A

end

"""
random orthogonal matrix
========================

Input options:

* n: the dimension of the matrix
"""
randorth(n) = qr(randn(n,n))[1]

We can copy the file rand.jl to the directory myMatrixDepot and add the following
two lines to generator.jl.

include_generator(FunctionName, "randsym", randsym)
include_generator(FunctionName, "randorth", randorth)
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This includes the functions randsym and randorth in Matrix Depot, as we can see by
looking at the matrix list (the new entries are numbered 43 and 45).

julia> matrixdepot()

Matrices:
1) baart 2) binomial 3) blur 4) cauchy
5) chebspec 6) chow 7) circul 8) clement
9) companion 10) deriv2 11) dingdong 12) fiedler
13) forsythe 14) foxgood 15) frank 16) golub
17) gravity 18) grcar 19) hadamard 20) hankel
21) heat 22) hilb 23) invhilb 24) invol
25) kahan 26) kms 27) lehmer 28) lotkin
29) magic 30) minij 31) moler 32) neumann
33) oscillate 34) parallax 35) parter 36) pascal
37) pei 38) phillips 39) poisson 40) prolate
41) randcorr 42) rando 43) randorth 44) randsvd
45) randsym 46) rohess 47) rosser 48) sampling
49) shaw 50) spikes 51) toeplitz 52) tridiag
53) triw 54) ursell 55) vand 56) wathen
57) wilkinson 58) wing

Groups:
all data eigen ill-cond
inverse pos-def random regprob
sparse symmetric

The new generators can be used just like the built-in ones.

> matrixdepot("randsym")
random symmetric matrix
=======================

Input options:

* n: the dimension of the matrix

> matrixdepot("randsym", 4)
4x4 Array{Float64,2}:
-0.00992523 0.174531 -1.73322 -0.765096
0.174531 1.69308 0.269062 0.594058

-1.73322 0.269062 -0.824277 -0.541458
-0.765096 0.594058 -0.541458 -0.480428

> matrixdepot("randorth")
random orthogonal matrix
========================

Input options:

* n: the dimension of the matrix

> A = matrixdepot("randorth", 4)
4x4 Array{Float64,2}:
-0.233943 0.179893 0.563926 -0.771295
-0.769649 -0.141938 -0.5807 -0.224235
0.247165 0.832118 -0.449941 -0.20986

-0.540204 0.505046 0.377263 0.557477

> A’*A - eye(4,4)
4x4 Array{Float64,2}:
-2.22045e-16 1.66533e-16 -2.77556e-17 -1.66533e-16
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1.66533e-16 -1.11022e-16 -3.05311e-16 1.66533e-16
-2.77556e-17 -3.05311e-16 -1.11022e-16 1.94289e-16
-1.66533e-16 1.66533e-16 1.94289e-16 0.0

We can also add group information with the function include_generator. The
following lines are put in generator.jl.

include_generator(Group, "random", randsym)
include_generator(Group, "random", randorth)

This adds the functions randsym and randorth to the group random, as we can see
with the following query (after reloading the package).

> matrixdepot("random")
10-element Array{ASCIIString,1}:
"golub"
"oscillate"
"randcorr"
"rando"
"randorth"
"randsvd"
"randsym"
"rohess"
"rosser"
"wathen"

Documentation
The Matrix Depot documentation is created using the documentation generator Sphinx
(http://sphinx-doc.org/) and is hosted at Read the Docs (http://matrixdepotjl.readthedocs.
org). Its primary goals are to provide examples of usage of Matrix Depot and to give
a brief summary of each matrix in the collection. Matrices are listed alphabetically
with hyperlinks to the documentation for each matrix. Most parametrized matrices
are presented with heat map plots, which are produced using the Winston package
(https://github.com/nolta/Winston.jl), with the color range determined by the smallest
and largest entries of the matrix. For example, Fig. 1 shows how the Wathen matrix is
documented in Matrix Depot.

THE MATRICES
We now describe the matrices that are provided with, or can be downloaded into, Matrix
Depot.

Parametrized matrices
In Matrix Depot v0.5.5, there are 58 parametrized matrices (including the regu-
larization problems described in the next section), most of which originate from
the Test Matrix Toolbox (Higham, 1995). All these matrices can be generated as
matrixdepot("matrix_name", n), where n is the dimension of the matrix.

Manymatrices can have more than one input parameter, andmultiple dispatch provides
a convenient mechanism for taking different actions for different argument types. For
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Figure 1 Documentation for theWathenmatrix.

example, the tridiag function generates a tridiagonal matrix from vector arguments
giving the subdiagonal, diagonal, and superdiagonal vectors, but a tridiagonal Toeplitz
matrix can be obtained by supplying scalar arguments that specify the dimension of the
matrix, the subdiagonal, the diagonal, and the superdiagonal. If a single, scalar argument n
is supplied then an n-by- n tridiagonal Toeplitz matrix with subdiagonal and superdiagonal
−1 and diagonal 2 is constructed. This matrix arises in applying central differences to a
second derivative operator, and the inverse and the condition number are known explicitly
(Higham, 2002, sec. 28.5).

Here is an example of the different usages of tridiag.

> matrixdepot("tridiag")
Tridiagonal Matrix
====================

Construct a tridiagonal matrix of type Tridiagonal.
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Input options:

* [type,] v1, v2, v3: v1 and v3 are vectors of subdiagonal and
superdiagonal elements, respectively, and v2 is a vector of
diagonal elements.

* [type,] dim, x, y, z: dim is the dimension of the matrix, x,
y, z are scalars. x and z are the subdiagonal and
superdiagonal elements,
respectively, and y is the diagonal elements.

* [type,] dim: x = -1, y = 2, z = -1. This matrix is also
known as the second difference matrix.

Groups: ["inverse", "ill-cond", "pos-def", "eigen"]

References:

J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,
Birkhauser, Basel, and Academic Press, New York, 1977, p. 155.

> matrixdepot("tridiag", [2,5,6;], ones(4), [3,4,1;])
4x4 Tridiagonal{Float64}:
1.0 3.0 0.0 0.0
2.0 1.0 4.0 0.0
0.0 5.0 1.0 1.0
0.0 0.0 6.0 1.0

> matrixdepot("tridiag", 4, 5, 3, 1)
4x4 Tridiagonal{Float64}:
3.0 1.0 0.0 0.0
5.0 3.0 1.0 0.0
0.0 5.0 3.0 1.0
0.0 0.0 5.0 3.0

> matrixdepot("tridiag", Int, 4)
4x4 Tridiagonal{Int64}:

2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2

Test problems for regularization methods
A mathematical problem is ill-posed if the solution is not unique or if an arbitrarily
small perturbation of the data can cause an arbitrarily large change in the solution.
Regularization methods are an important class of methods for dealing with such problems
(Hansen, 1998; Hansen, 2010). One means of generating test problems for regularization
methods is to discretize a given ill-posed problem.

Matrix Depot contains a group of regularization test problems derived from Hansen’s
MATLABRegularization Tools (Hansen, 1994;Hansen, 2007;Hansen, 2008) that aremostly
discretizations of Fredholm integral equations of the first kind:∫ 1

0
K (s,t )f (t )dt = g (s), 0≤ s≤ 1.
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The regularization test problems form the group regprob.

> matrixdepot("regprob")
12-element Array{ASCIIString,1}:
"baart"
"blur"
"deriv2"
"foxgood"
"gravity"
"heat"
"parallax"
"phillips"
"shaw"
"spikes"
"ursell"
"wing"

Each problem is a linear system Ax = bwhere the matrix A and vectors x and b are obtained
by discretization (using quadrature or the Galerkin method) of K , f , and g . By default,
we generate only A, which is an ill-conditioned matrix. The whole test problem will be
generated if the parameter matrixonly is set to false, and in this case the output has
type RegProb, which is defined as

immutable RegProb{T}
A::AbstractMatrix{T} # matrix of interest
b::AbstractVector{T} # right-hand side
x::AbstractVector{T} # the solution to Ax = b
end

If r is a generated test problem, then r.A, r.b, and r.x are the matrix A and vectors x
and b respectively. If the solution is not provided by the problem, the output is stored as
type RegProbNoSolution, which is defined as

immutable RegProbNoSolution{T}
A::AbstractMatrix{T} # matrix of interest
b::AbstractVector{T} # right-hand side
end

For example, the test problem wing can be generated as follows.

> matrixdepot("wing")
A Problem with a Discontinuous Solution
=======================================

Input options:

* [type,] dim, t1, t2, [matrixonly]: the dimension of matrix
is dim. t1 and t2 are two real scalars such that 0 < t1 < t2
< 1. If matrixonly = false, the matrix A and vectors b and x
in the linear system Ax = b will be generated(matrixonly =
true by default).

* [type,] n, [matrixonly]: t1 = 1/3 and t2 = 2/3.

Groups: ["regprob"]
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References:

G. M. Wing, A Primer on Integral Equations of the First Kind,
Society for Industrial and Applied Mathematics, 1991, p. 109.

> A = matrixdepot("wing", 4)
4x4 Array{Float64,2}:
0.031189 0.0921165 0.148804 0.198786
0.0310674 0.0889342 0.134959 0.164156
0.0309463 0.085862 0.122403 0.13556
0.0308257 0.0828958 0.111014 0.111945

> r = matrixdepot("wing", 4, false)
Test problems for Regularization Methods
A:
4x4 Array{Float64,2}:
0.031189 0.0921165 0.148804 0.198786
0.0310674 0.0889342 0.134959 0.164156
0.0309463 0.085862 0.122403 0.13556
0.0308257 0.0828958 0.111014 0.111945
b:
4-element Array{Float64,1}:
0.0804953
0.0751385
0.0701787
0.0655842
x:
4-element Array{Float64,1}:
0.0
0.5
0.5
0.0

> r.x
4-element Array{Float64,1}:
0.0
0.5
0.5
0.0

Matrix data from external sources
Matrix Depot provides access to matrices fromMatrixMarket (Boisvert et al., 1997) and the
University of Florida Sparse Matrix Collection (Davis & Hu, 2011), both of which contain
many matrices taken from applications. In particular, these sources contain many large,
sparse matrices.

Matrix Market and the University of Florida Sparse Matrix Collection both categorize
matrices by application domain and the problem source and both provide matrices in
Matrix Market Format (Boisvert, Pozo & Remington, 1996). These similarities allow us
to design a generic interface for both collections. The symbol :get (or :g) is used for
downloading matrices from both collections and the symbol :read (or :r) is used for
reading in matrices already downloaded. Downloaded matrix data is stored on disk in the
Matrix Market format and when read into Julia is stored in the type SparseMatrixCSC.
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MatrixDepot.update()downloads the matrix name data files from the two web
servers.

> MatrixDepot.update()

\% Total \% Received \% Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 1887k 0 1887k 0 0 97337 0 --:--:-- 0:00:19 --:--:-- 472k

\% Total \% Received \% Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 41552 0 41552 0 0 4421 0 --:--:-- 0:00:09 --:--:-- 41018

The University of Florida Sparse Matrix Collection is divided into matrix groups and
the group of a matrix forms part of the full name of the matrix (Davis & Hu, 2011). For
example, the full name of the matrix 1138_bus in the Harwell-Boeing Collection is
HB/1138_bus.

> matrixdepot("HB/1138_bus", :get)

\% Total \% Received \% Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 19829 100 19829 0 0 2320 0 0:00:08 0:00:08 --:--:-- 49572

> matrixdepot("HB/1138_bus", :read)

1138x1138 Symmetric{Float64,SparseMatrixCSC{Float64,Int64}}:

1474.78 0.0 0.0 ... 0.0 0.0 0.0 0.0

0.0 9.13665 0.0 0.0 0.0 0.0 0.0

0.0 0.0 69.6147 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

-9.01713 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 -3.40599 0.0 0.0 0.0 0.0 0.0

... ...

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 ... 0.0 -24.3902 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 26.5639 0.0 0.0 0.0

0.0 0.0 0.0 ... 0.0 46.1767 0.0 0.0

0.0 0.0 0.0 0.0 0.0 10000.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 117.647

Matrices from the University of Florida Sparse Matrix Collection are stored in
MatrixDepot/data/uf and they are stored by group (to avoid duplicate names),
i.e., one directory per group. Similarly, matrices from Matrix Market are stored in
MatrixDepot/data/mm. Both directories are untracked by Git. Many matrices in
the University of Florida Sparse Matrix Collection contain problem-specific metadata,
all of which is downloaded. The metadata is accessed by setting the keyword argument
meta to true. Then instead of returning the matrix, Matrix Depot will return the
metadata (including the matrix) as a dictionary. For example, the IMDB movie database
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Pajek/IMDB has metadata related to actors and movies. The following command stores
all the metadata of Pajek/IMDB in a variable r, where r["IMDB"] is the matrix.

> r = matrixdepot("Pajek/IMDB", :r, meta = true)

Dict{AbstractString,Any} with 8 entries:

"IMDB_colname" => "’La Tata’ Castro, Maria Tereza\n’La Veneno’...

"IMDB_MovieBacon" => 428440x1 Array{Float64,2}

"IMDB_code" => "Drama\nShort\nDocumentary\nComedy\nWestern\nFamily...

"IMDB_KevinBacon" => 1x1 Array{Float64,2}

"IMDB_ActorBacon" => 896308x1 Array{Float64,2}

"IMDB_category" => 428440x1 Array{Float64,2}

"IMDB" => 428440x896308 sparse matrix with 3782463 Float64 entries

"IMDB_year" => 428440x1 Array{Float64,2}

We can download a whole group of matrices from the University of Florida sparse
matrix collection using the command matrixdepot("group name/*", :get).
The next example downloads all 67 matrices in the Gset group of matrices from random
graphs (contributed by Y. Ye) then displays all the matrices in Matrix Depot, including the
newly downloaded matrices.

> matrixdepot("Gset/*", :get)

Downloading all matrices in group Gset...

\% Total \% Received \% Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 48083 100 48083 0 0 95388 0 --:--:-- --:--:-- --:--:-- 96166

download:/home/weijian/.julia/v0.4/MatrixDepot/src/../data/uf/Gset/G1.tar.gz

G1/G1.mtx

\% Total \% Received \% Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 55180 100 55180 0 0 75318 0 --:--:-- --:--:-- --:--:-- 75692

download:/home/weijian/.julia/v0.4/MatrixDepot/src/../data/uf/Gset/G10.tar.gz

G10/G10.mtx

\% Total \% Received \% Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 5926 100 5926 0 0 23126 0 --:--:-- --:--:-- --:--:-- 23515

download:/home/weijian/.julia/v0.4/MatrixDepot/src/../data/uf/Gset/G11.tar.gz

G11/G11.mtx

\% Total \% Received \% Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 6349 100 6349 0 0 24223 0 --:--:-- --:--:-- --:--:-- 24608

...

> matrixdepot()

Matrices:

1) baart 2) binomial 3) blur 4) cauchy

5) chebspec 6) chow 7) circul 8) clement

9) companion 10) deriv2 11) dingdong 12) fiedler

13) forsythe 14) foxgood 15) frank 16) golub

17) gravity 18) grcar 19) hadamard 20) hankel

21) heat 22) hilb 23) invhilb 24) invol

25) kahan 26) kms 27) lehmer 28) lotkin

29) magic 30) minij 31) moler 32) neumann

33) oscillate 34) parallax 35) parter 36) pascal
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37) pei 38) phillips 39) poisson 40) prolate

41) randcorr 42) rando 43) randsvd 44) rohess

45) rosser 46) sampling 47) shaw 48) spikes

49) toeplitz 50) tridiag 51) triw 52) ursell

53) vand 54) wathen 55) wilkinson 56) wing

57) Gset/G1 58) Gset/G10 59) Gset/G11 60) Gset/G12

61) Gset/G13 62) Gset/G14 63) Gset/G15 64) Gset/G16

65) Gset/G17 66) Gset/G18 67) Gset/G19 68) Gset/G2

69) Gset/G20 70) Gset/G21 71) Gset/G22 72) Gset/G23

73) Gset/G24 74) Gset/G25 75) Gset/G26 76) Gset/G27

77) Gset/G28 78) Gset/G29 79) Gset/G3 80) Gset/G30

81) Gset/G31 82) Gset/G32 83) Gset/G33 84) Gset/G34

85) Gset/G35 86) Gset/G36 87) Gset/G37 88) Gset/G38

89) Gset/G39 90) Gset/G4 91) Gset/G40 92) Gset/G41

93) Gset/G42 94) Gset/G43 95) Gset/G44 96) Gset/G45

97) Gset/G46 98) Gset/G47 99) Gset/G48 100) Gset/G49

101) Gset/G5 102) Gset/G50 103) Gset/G51 104) Gset/G52

105) Gset/G53 106) Gset/G54 107) Gset/G55 108) Gset/G56

109) Gset/G57 110) Gset/G58 111) Gset/G59 112) Gset/G6

113) Gset/G60 114) Gset/G61 115) Gset/G62 116) Gset/G63

117) Gset/G64 118) Gset/G65 119) Gset/G66 120) Gset/G67

121) Gset/G7 122) Gset/G8 123) Gset/G9

Groups:

all data eigen ill-cond

inverse pos-def random regprob

sparse symmetric

The full name of a matrix in Matrix Market comprises three parts: the collection
name, the set name, and the matrix name. For example, the full name of the
matrix BCSSTK14 in the set BCSSTRUC2 from the Harwell-Boeing Collection is
Harwell-Boeing/bcsstruc2/bcsstk14. Note that both set name and matrix
name are in lower case.

> matrixdepot("Harwell-Boeing/bcsstruc2/bcsstk14", :get)

\% Total \% Received \% Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 292k 100 292k 0 0 22635 0 0:00:13 0:00:13 --:--:-- 61144

download:/home/weijian/.julia/v0.4/MatrixDepot/data/mm/Harwell-Boeing/bcsstruc2

/bcsstk14.mtx.gz

> matrixdepot("Harwell-Boeing/bcsstruc2/bcsstk14", :read)

1806x1806 Symmetric{Float64,SparseMatrixCSC{Float64,Int64}}:

1.93161e6 0.0 -1.02166e5 ... 0.0 0.0

0.0 1.0 0.0 0.0 0.0

-1.02166e5 0.0 1.93147e6 0.0 0.0

-35568.9 0.0 1.65787e5 0.0 0.0

-1.06959e5 0.0 -1.06959e5 0.0 0.0

-1.65835e5 0.0 35568.9 ... 0.0 0.0

-717.845 0.0 0.0 0.0 0.0

0.0 0.0 88998.5 0.0 0.0

0.0 0.0 -1.82865e6 0.0 0.0

0.0 0.0 1.24988e5 0.0 0.0

... ...

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.06103e7 -5.25151e5

0.0 0.0 0.0 -5.25151e5 -53434.0
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0.0 0.0 0.0 ... 1.06959e5 -1.65835e5

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.06959e5 35568.9

0.0 0.0 0.0 -816518.0 1.21311e7

0.0 0.0 0.0 4.55624e7 8.15266e5

0.0 0.0 0.0 ... 8.15266e5 5.27942e8

We recommend downloading matrices from the University of Florida Sparse Matrix
Collection when there is a choice, because almost every matrix from Matrix Market is
included in it.

CONCLUDING REMARKS
Matrix Depot follows in the footsteps of earlier collections of matrices. Its novelty is
threefold. First, it is extensible by the user, and so can be adapted to the user’s needs. In
doing so it facilitates experimentation, and in particular makes it easier to do reproducible
research. Second, it combines several existing test matrix collections, namely Higham’s
Test Matrix Toolbox, Hansen’s regularization problems, and the University of Florida
Sparse Matrix Collection, in order to provide both parametrized test matrices and real-life
sparse matrix data in a single framework. Third, it fully exploits the Julia language. It uses
multiple dispatch to help provide a simple interface and, in particular, to allow matrices
to be generated in any of the numeric data types supported by the language. Matrix Depot
therefore anticipates the development of intrinsic support in Julia for computations with
BigFloat and other data types.

Matrix Depot has been in development since 2014. It is an open source project
(https://github.com/weijianzhang/MatrixDepot.jl) hosted on GitHub and is available
under the MIT License. A first release was announced in December 2014. Matrix Depot
v0.5.5 is the latest official release and consists of around 3,000 lines of source code, with
test coverage of 98.91% according to Codecov (https://codecov.io/). From GitHub traffic
analytics, we learn that Matrix Depot has 40–70 unique downloads (unique cloners) every
month. Matrix Depot also benefits the development of other Julia packages. LightGraphs
(https://github.com/JuliaGraphs/LightGraphs.jl), an optimized graph package for Julia, for
example, has embedded Matrix Depot as its database.

We built Matrix Depot to facilitate the development and testing of matrix (and other)
algorithms in Julia. and we will continue to develop Matrix Depot by introducing new test
matrices and integrating other test collections.
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