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FINITE AND INFINITE ELEMENTARY DIVISORS OF
MATRIX POLYNOMIALS: A GLOBAL APPROACH ∗

ION ZABALLA† AND FRANÇOISE TISSEUR‡

1. Introduction. There is general agreement on the definition of the finite el-
ementary divisors of a matrix polynomial Q(λ) ∈ F[λ]m×n, where F an arbitrary
field. One starts with the equivalence of matrix polynomials: A(λ), B(λ) ∈ F[λ]m×n

are equivalent if and only if there are unimodular matrices U(λ) ∈ F[λ]m×m and
V (λ) ∈ F[λ]n×n (i.e., matrices whose determinants are units of F[λ]) such that
B(λ) = U(λ)A(λ)V (λ) and proves the existence of a canonical form (Smith nor-
mal form) in F[λ]m×n. In fact, any m × n matrix polynomial A(λ) ∈ F[λ]m×n with
coefficients in an arbitrary field F, is equivalent to a diagonal matrix polynomial called
the Smith form of A(λ), that is, there are unimodular matrices U(λ) ∈ F[λ]m×m and
V (λ) ∈ F[λ]n×n such that

U(λ)A(λ)V (λ) = D(λ) =

[
diag

(
α1(λ), . . . , αr(λ)

)
0

0 0

]
,

where r = rankA(λ) and α1(λ)| · · · |αr(λ) are monic polynomials. Here, “|” stands for
divisibility, so that αj(λ) is divisible by αj−1(λ). These polynomials are the invariant
factors of A(λ) and are uniquely determined by A(λ).

The invariant factors of Q(λ) can be decomposed into irreducible factors over F
as follows [6, Chap. VI, §3]:

αn(λ) = φ1(λ)m11 · · ·φs(λ)ms1 ,
αn−1(λ) = φ1(λ)m12 · · ·φs(λ)ms2 ,

...
...

α1(λ) = φ1(λ)m1n · · ·φs(λ)msn ,

(1.1)

where φi(λ), i = 1: s are distinct monic polynomials irreducible over F[λ], and

mi1 ≥ mi2 ≥ · · · ≥ min ≥ 0, i = 1: s. (1.2)

The factors φi(λ)mij with mij > 0 are the finite elementary divisors of Q(λ).
Regarding the elementary divisors at infinity, or infinite elementary divisors, such

an agreement has not been so unanimous. First of all some authors prefer to talk
about the pole-zero structure at infinity of Q(λ) (see, for example, Kailath [8] and
Vardulakis [12]). The reason is that any polynomial has no zeros at infinity but it
has always poles. A matrix polynomial may have both zeros and poles at infinity.
Following the same pattern as for rational functions, the zeros and poles at infinity of
Q(λ) are defined in [8] as the poles and zeros at λ = 0 in the Smith-McMillan form
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of the rational matrix Q(λ−1). A different approach is used, for example, by Dion
and Commault [4] and Vardulakis [12]. In these references, the ring of proper rational
functions is considered. This is actually a local ring and it can be seen as the local
ring at infinity of F[λ] ([1]). Its field of fractions is the field F(s) of rational functions
and, with respect to the local ring at infinity, any matrix polynomial can be seen as
a matrix whose elements are in its field of fractions. Hence, any matrix polynomial
admits a Smith-McMillan form at infinity. Its exponents form the structure of poles
and zeros at infinity of that matrix polynomial. Both definitions lead to the same
objects.

On the other hand, Wimmer [13] defines the infinite elementary divisors of Q(λ)
as the zeros at λ = 0 in the Smith-McMillan form of the rational matrix λQ(λ−1).
This definition differs from the nowadays more accepted: if ` is the degree of Q(λ), its
elementary divisors at infinity are those of revQ(λ) = λ`Q(λ−1) at 0, where revQ(λ) is
the reversal of Q(λ). We will show in Section 2 that this is the most natural definition
if one applies the usual geometric technique of using homogeneous coordinates to deal
with the point at infinity. This technique consists in passing from the affine line to
the projective line; a process which is usually called homogenization [9]. This is the
approach that we will use here. We call it global because the homogeneous invariant
factors of Q(λ) are defined for all points of the projective line and to distinguish it
from another possible approach that, using local rings, leads to the same conclusions
(see [2], for example).

Section 2 is a simple generalization of [5, Sec. 1.14]. Section 3 is dedicated to
analyze the problem of how the finite and infinite elementary divisors of a matrix
changes under Möbius transformations. Results about this issue are scattered in the
literature (see, for example, [2, Sec. 4.2], [7, Th. 7.3], [14] and, above all, [3, Lem. 10]).
Recently a thorough and complete study has been carried on in [10]. We will approach
this issue using homogeneous invariant polynomials. Actually, this is just a simple
generalization of what is made in [3] for linear pencils.

2. Homogenization and dehomogenization of matrix polynomials. For
a polynomial f(λ) = f`λ

` + f`−1λ
`−1 + · · · + f1λ + f0 ∈ F[λ] with coefficients in an

arbitrary field F, the homogenization of f(λ) is

fh(λ, µ) = µ`f

(
λ

µ

)
= f`λ

` + f`−1λ
`−1µ+ · · ·+ f1λµ

`−1 + f0µ
`.

This is an homogeneous polynomial in F[λ, µ]. Conversely, if f(λ, µ) = f`λ
` +

f`−1λ
`−1µ+ · · ·+ f1λµ

`−1 + f0µ
` is an homogeneous polynomial in F[λ, µ] then

fd(λ) = f(λ, 1) = f`λ
` + f`−1λ

`−1 + · · ·+ f1λ+ f0 ∈ F[λ]

is the dehomogenization of f(λ, µ). Likewise, if Q(λ) = A`λ
`+A`−1λ

`−1+ · · ·+A1λ+
A0 ∈ F[λ]m×n is a matrix polynomial of degree ` (A` 6= 0), the homogenization of Q(λ)
is the homogeneous matrix polynomial Qh(λ, µ) = A`λ

`+A`−1λ
`−1µ+· · ·+A1λµ

`−1+
A0µ

` and the dehomogenization of an homogeneous matrix polynomial Q(λ, µ) is
Qd(λ) = Q(λ, 1). It is plain that the dehomogenization of the homogenization of
Q(λ) is Q(λ).

Although the ring F[λ, µ] is not a Bézout domain ([5, Sec. 1.2]) (and so matrices
over F[λ, µ] do not admit, in general, a Smith normal form), it is a unique factorization
domain ([5, Sec. 1.3]). Then the greatest common divisor of any two elements in F[λ, µ]
can be computed and the invariant factors of any matrix with elements in F[λ, µ] can
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be defined ([5, Sec. 1.14]). The following properties are direct consequences of the
definitions (see [11]).

Lemma 2.1. Let x(λ), y(λ), z(λ) ∈ F[λ] and let xh(λ, µ), yh(λ, µ) and zh(λ, µ) be
their homogenizations. The following properties hold true:

(i) z(λ) = x(λ) + y(λ) if and only if zh(λ, µ) = xh(λ, µ) + yh(λ, µ).
(ii) z(λ) = x(λ)y(λ) if and only if zh(λ, µ) = xh(λ, µ)yh(λ, µ).
(iii) x(λ)|y(λ) if and only if xh(λ, µ)|yh(λ, µ).
(iv) gcd(x(λ), y(λ)) = z(λ) if and only if gcd(xh(λ, µ), yh(λ, µ)) = zh(λ, µ).
(v) x(λ) is prime if and only if xh(λ, µ) is prime.
If x(λ, µ) and y(λ, µ) are homogeneous polynomials then their greatest common

divisor is also an homogeneous polynomial. Thus, if Q(λ, µ) is an homogeneous matrix
polynomial then its invariant factors are homogeneous polynomials as well. They
satisfy the property that each one is multiple of the previous one (same proof as [5,
Lemma 1.14.8]). For Q(λ) ∈ F[λ]m×n the invariant factors of its homogenization
Qh(λ, µ) are called the homogeneous invariant polynomials of Q(λ).

Although the following theory can be applied for non-square or rank deficient
polynomial matrices, for notational simplicity we are going to assume that Q(λ) is a
given n×n nonsingular polynomial matrix. Let its homogeneous invariant polynomials
be γ1(λ, µ)| · · · |γn(λ, µ) and write them as

γi(λ, µ) = µei γ̃i(λ, µ), i = 1: n,

where ei ≥ 0 and

γ̃i(λ, µ) = gidiλ
di + gidi−1λ

di−1µ+ · · ·+ gi1λµ
di−1 + gi0µ

di , gidi 6= 0.

Since gcd(µei , γ̃i(λ, µ)) = 1, it follows that 0 ≤ e1 ≤ · · · ≤ en and γ̃1(λ, µ)| · · · |γ̃n(λ, µ).
Given that γ̃i(λ, µ) is the homogenization of gi(λ) = gidiλ

di +gidi−1λ
di−1+· · ·+gi1λ+

gi0, by Lemma 2.1, g1(λ)| · · · |gn(λ) and these are the invariant factors of the deho-
mogenization of Qh(λ, µ), Q(λ) = Qh(λ, 1). Furthermore,

Qh(1, µ) = revQ(µ) = A0µ
` +A1µ

`−1 + · · ·+A`,

and its invariant factors are

γi(1, µ) = µei
(
gi0µ

di + · · ·+ gidi−1µ+ gidi
)
.

Taking into account that gidi 6= 0, it follows that µe1 ,. . . , µen are the elementary
divisors of Qh(1, µ) at µ = 0. But, in homogeneous coordinates, (1, 0) represents the
point at infinity in the projective line P1(F). Hence µe1 ,. . . , µen with 0 ≤ e1 ≤ · · · ≤
en are the elementary divisors of Qh(λ, µ) at infinity. They are also called infinite
elementary divisors (or elementary divisors at infinity) of Q(λ).

The relationship between the infinite elementary divisors of Q(λ) and its structure
of poles and zeros at infinity is given in Corollary 4.41 of [12].

3. Möbius transformations. Consider now the following change of variables:

(λ, µ) −→ (aλ+ bµ, cλ+ dµ), (3.1)

where A =

[
a b
c d

]
∈ F is nonsingular. For each polynomial f(λ, µ) ∈ F[λ, µ] and

each matrix F (λ, µ) ∈ F[λ, µ]n×n define, respectively, ([3]):

ΠA(f) = f(aλ+ bµ, cλ+ dµ), PA(F ) = F (aλ+ bµ, cλ+ dµ).

3



Associated with A−1 = 1
ad−bc

[
d

−c
−b
a

]
we can define the “inverse” change of variables:

for f(λ, µ) ∈ F[λ, µ] and F (λ, µ) ∈ F[λ, µ]n×n we have, respectively,

ΠA−1(f) = f

(
dλ− bµ
ad− bc

,
−cλ+ aµ

ad− bc

)
, PA−1(F ) = F

(
dλ− bµ
ad− bc

,
−cλ+ aµ

ad− bc

)
.

It is easily seen ([3, Lem. 6]) that ΠA(ΠA−1(f)) = ΠA−1(ΠA(f)) = f(λ, µ) and
PA(PA−1(F )) = PA−1(PA(F )) = F (λ, µ). The following properties are straightfor-
wardly proved (see [3, Lem. 7]).

Lemma 3.1. Let x(λ, µ), y(λ, µ), z(λ, µ) ∈ F[λ, µ] be homogeneous polynomials.
The following properties hold true:

(i) x(λ, µ) = y(λ, µ) + z(λ, µ) if and only if ΠA(z) = ΠA(x) + ΠA(y).
(ii) x(λ, µ) = y(λ, µ)z(λ, µ) if and only if ΠA(z) = ΠA(x)ΠA(y).
(iii) x(λ, µ)|y(λ, µ) if and only if ΠA(x)|ΠA(y).
(iv) gcd(x(λ, µ), y(λ, µ)) = z(λ, µ) if and only if gcd(ΠA(x),ΠA(y)) = ΠA(z).
(iv) x(λ, µ) is prime if and only if ΠA(x) is prime.
Let Q(λ) ∈ F[λ]n×n be a nonsingular matrix polynomial of degree `. For a given

matrix A ∈ F2×2 as above, we can write

Q(λ) = (cλ− a)
`0 Q1(λ), (3.2)

where Q1(λ) is not a multiple of (cλ − a) (i.e., at least one element of Q1(λ) is not
multiple of (cλ − a)) and it is understood that `0 = 0 if c = 0. Bearing in mind
Lemma 3.1, a simple computation shows that if Q1h(λ, µ) is the homogenization of
Q1(λ) then

S(λ, µ) = PA(Qh) = ΠA(cλ− a)`0PA(Q1h)

= (bc− ad)`0µ`0PA(Q1h)

= (bc− ad)`0µ`0Q1h(aλ+ bµ, cλ+ dµ). (3.3)

Hence, if degQ1(λ) = `1 then

R(λ) := S(λ, 1) = (bc− ad)`0Q1h(aλ+ b, cλ+ d)

= (bc− ad)`0(cλ+ d)`1Q1

(
aλ+b
cλ+d

)
.

(3.4)

We will write

P ∗
A(Q) =

1

(bc− ad)`0
R(λ) = Q1(aλ+ b, cλ+ d) = (cλ+ d)`1Q1h

(
aλ+ b

cλ+ d

)
. (3.5)

For f(λ) ∈ F[λ] we will use the same notation for Π∗
A(f). That is to say, if f(λ) =

(cλ−a)p0f1(λ) such that (cλ−a) and f1(λ) are relatively prime and f̃(λ, µ) = ΠA(f1h),
where f1h is the homogenization of f1(λ), then

Π∗
A(f) = f̃(λ, 1) = f1h(aλ+ b, cλ+ d) = (cλ+ d)p1f1

(
aλ+ b

cλ+ d

)
, (3.6)

where p1 is the degree of f1(λ). In words, P ∗
A(Q) and Π∗

A(f) are the dehomogenization
of PA(Qh) and ΠA(fh) where Qh(λ, µ) and fh(λ, µ) are the homogenization of Q(λ)
and f(λ), respectively.

Notice that although Qh(λ, µ) and S(λ, µ) = PA(Qh) always have the same de-
gree, this property may not be shared by Q(λ) and R(λ) = P ∗

A(Q). Actually we can
be a little more precise.

Proposition 3.2. With the above notation Q(λ) = P ∗
A−1(P ∗

A(Q)) if and only if
one (and hence all) of the following equivalent conditions holds:
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(i) `0 = 0.
(ii) Q(λ) is not multiple of (cλ− a).
(iii) Qh(aλ+ bµ, cλ+ dµ) is not a multiple of µ.
Proof. The equivalence of (i) and (ii) follows from the definition (cf. (3.2)),

and the equivalence of (ii) and (iii) from item (iv) of Lemma 3.1. Now, let R(λ) =
P ∗
A(Q) and L(λ) = P ∗

A−1(R). According to (3.5), R(λ) = Q1h(aλ+ b, cλ+ d) and its
homogenization (by (i) and (ii) of Lemma 3.1) Rh(λ, µ) = Q1h(aλ + bµ, cλ + dµ) =
PA(Q1h). Hence, PA−1(Rh) = PA−1(PA(Q1h)) = Q1h(λ, µ). So, L(λ) = Q1h(λ, 1) =
Q1(λ). It is clear that Q(λ) = Q1(λ) if and only if ` = 0.

Given Q(λ) ∈ F[λ]n×n, we aim to study the relationship between the finite and
infinite elementary divisors of Q(λ) and R(λ) = P ∗

A(Q). The following result, whose
proof is exactly the same as that of [3, Lem. 10] for matrix pencils, answers this
question for the homogeneous invariant polynomials of Q(λ).

Lemma 3.3. If γ1(λ, µ)| · · · |γn(λ, µ) are the homogeneous invariant polynomials
of Q(λ) then ΠA(γ1)| · · · |ΠA(γn) are the homogeneous invariant factors of S(λ, µ) =
PA(Qh), where Qh(λ, µ) is the homogenization of Q(λ).

With the help of Lemma 3.3 we can analyse right away how the finite and infinite
elementary divisors of Q(λ) and R(λ) = P ∗

A(Q) are related. We should bear in mind
that the change of variables (3.1) can be seen as a transformation in the projective
plane. Such a transformation brings the point at infinity (1, 0) to the point (a, c) and
the point (−d, c) to the point at infinity. In particular, if c = 0 then the point at
infinity remains unchanged.

Let us write the homogeneous invariant polynomials of Q(λ) in the following form

γi(λ, µ) = µei γ̃i(λ, µ) = µei
(
µdigi

(
λ

µ

))
, i = 1 : n,

where gcd(µ, γ̃i(λ, µ)) = 1, di = deg γ̃i(λ, µ) = deg gi(λ) and γ̃i(λ, µ) is the homoge-
nization of gi(λ). As mentioned above, µe1 | · · · |µen are the infinite elementary divisors
of Q(λ) and g1(λ)| · · · |gn(λ) are its (finite) invariant factors. Now, factor gi(λ) into
powers of prime polynomials:

gi(λ) = σ0(λ)fi0σ1(λ)fi1 · · ·σt(λ)fit , i = 1 : n,

where 0 ≤ f1j ≤ f2j ≤ · · · ≤ fnj , j = 0 : t and σ0(λ) =
(
λ− a

c

)
if c 6= 0 and a/c is an

eigenvalue of Q(λ) and σ0(λ) = 1 otherwise. Thus σi(λ)fij i = 1 : n, j = 0 : t are the
finite elementary divisors of Q(λ).

By Lemma 3.3,

αi(λ, µ) := ΠA(γi) = γi(aλ+ bµ, cλ+ dµ) = (cλ+ dµ)eiΠA(γ̃i), i = 1 : n

are the homogeneous invariant factors of S(λ, µ) = PA(Qh). By Lemma 3.1, if
σih(λ, µ) is the homogenization of σi(λ) and νi(λ, µ) = ΠA(σih) then

ΠA(γ̃i) = ν0(λ, µ)fi0ν1(λ, µ)fi1 · · · νt(λ, µ)fit i = 0 : t.

Notice that by Lemmas 2.1 and 3.1, σih(λ, µ) and νi(λ, µ) are prime polynomials.
Therefore

αi(λ, µ) = (cλ+ dµ)eiν0(λ, µ)fi0ν1(λ, µ)fi1 · · · νt(λ, µ)fit , i = 1 : t (3.7)

is a factorization of αi(λ, µ) in powers of prime polynomials.
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Assume now that

Q(λ) = (cλ− a)`0Q1(λ)

with `0 ≥ 0 and at least one element of Q1(λ) prime with cλ − a. If `0 > 0 then
σ0(λ) 6= 1. Recall (cf (3.3) and (3.5)) that S(λ, µ) = PA(Qh) = (bc−ad)`0µ`0Q1h(aλ+
bµ, cλ + dµ) and R(λ) = P ∗

A(Q) = Q1h(aλ + b, cλ + d). Hence, by Lemma 2.1, the
homogenization of R(λ) is

Rh(λ, µ) = Q1h(aλ+ bµ, cλ+ dµ) =
(bc− ad)`0

µ`0
S(λ, µ).

Therefore, the homogeneous invariant polynomials of R(λ) are 1
µ`0

αi(λ, µ), i = 1 : n.

In order to obtain the finite and infinite elementary divisors of R(λ), we compute the
prime polynomials in the prime factorization (3.7) of αi(λ, µ). We split the study into
two cases according as c = 0 or c 6= 0.

• Case c = 0. In this case d 6= 0 because ac − bd 6= 0, `0 = 0 and σ0(λ) = 1.
Then for i = 1: n

1

µ`0
αi(λ, µ) = deiµei

t∏
j=1

µj(λ, µ)fij = deiµei
t∏

j=1

σjh(aλ+ bµ, dµ)fij .

The elementary divisors at infinity of R(λ) are those of Q(λ): µe1 | · · · |µen and
the finite elementary divisors of R(λ) are the dehomogenization of σjh(aλ+
bµ, dµ)fij , i.e.,

dfijsjσj

(
a

d
λ+

b

d

)fij
= Π∗

A

(
σj(λ)fij

)
, i = 1 : n, j = 1 : t,

where sj = deg σj(λ).
• Case c 6= 0. Now it may happen that `0 > 0 and σ0(λ) 6= 1. According to

(3.7), µei is transformed into (cλ+dµ)ei and σi(λ) into νi(λ, µ), i = 0, 1, . . . , t.
But

ν0(λ, µ) = ΠA

(
λ− a

c
µ
)

= aλ+ bµ− a

c
(cλ+ dµ) =

bc− ad
c

µ,

and for i = 1 : t,

νi(λ, µ) = ΠA(σih) = σih(aλ+ bµ, cλ+ dµ) = (cλ+ dµ)siσi

(
aλ+ bµ

cλ+ dµ

)
,

where si = deg σi(λ).
(a) The dehomogenization of (cλ + dµ)ei is (cλ + d)ei and so, the elemen-

tary divisors at infinity of Q(λ), µe1 | · · · |µen , are transformed into the
following finite elementary divisors of R(λ):(

λ+
d

c

)e1
| · · · |

(
λ+

d

c

)en
.

(b) The elementary divisors of Q(λ) at a
c :
(
λ− a

c

)f10 | · · · | (λ− a
c

)fn0
are

transformed into elementary divisors at infinity of S(λ, µ): µf10 | · · ·µfn0 .
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But since Rh(λ, µ) = 1
µ`0

S(λ, µ), the elementary divisors at infinity of

Rh(λ, µ) and R(λ) are:

µf10−`0 |µf20−`0 | · · · |µfn0−`0 .

It must be noticed that if `0 > 0 then all elements of Q(λ) are multiple
of (cλ − a)`0 . This means that all (finite) invariant factors of Q(λ) are
multiple of (cλ − a)`0 and so f10 ≥ `0. Actually, since all elements of
Q1(λ) are prime with (cλ − a), we have `0 = f10. In conclusion, the
elementary divisors at infinity of R(λ) are:

1 |µf20−f10 | · · · |µfn0−f10 .

(c) The remaining elementary divisors σj(λ)fij , i = 1 : n, j = 1 : t, are
transformed into the dehomogenization of νi(λ, µ):

(cλ+d)f1jsjσj

(
aλ+ bµ

cλ+ dµ

)f1j
| · · · |(cλ+d)fnjsjσj

(
aλ+ bµ

cλ+ dµ

)fnj

, j = 1 : t.

By (3.6)

(cλ+ d)fijsjσj

(
aλ+ bµ

cλ+ dµ

)fij
= Π∗

A

(
σj(λ)fij

)
.

We have proven the following result.
Theorem 3.4. Let Q(λ) ∈ F[λ]n×n be a nonsingular matrix polynomial, let

A =

[
a b
c d

]
∈ F2×2 be nonsingular and R(λ) = P ∗

A(Q). Then the finite and infinite

elementary divisors of R(λ) and Q(λ) are related as follows:
1. Let σ(λ) is an irreducible polynomial such that if c 6= 0 then σ(λ) 6=

(
λ− a

c

)
.

If σ(λ)f1 | · · · |σn(λ)fn (fi ≥ 0) are the elementary divisors of Q(λ) with
respect to σ(λ) then ΠA

(
(σ(λ)f1

)
| · · · |ΠA

(
σ(λ)fn

)
are the elementary di-

visors of R(λ) = P ∗
A(Q) with respect to ΠA(σ(λ)) = (cλ + d)sσ

(
aλ+b
cλ+d

)
,

s = deg σ(λ).

2. If c 6= 0 and
(
λ− a

c

)f1 | · · · | (λ− a
c

)fn
(fi ≥ 0) are the elementary divisors

of Q(λ) with respect to
(
λ− a

c

)
then 1 |µf2−f1 | · · · |µfn−f1 are the infinite

elementary divisors of R(λ) = P ∗
A(Q).

3. If c 6= 0 and µf1 |µf2 | · · · |µfn (fi ≥ 0) are the infinite elementary divisors of

Q(λ) then
(
λ+ d

c

)f1 | · · · | (λ+ d
c

)fn
are the elementary divisors of R(λ) =

P ∗
A(Q) with respect to

(
λ+ d

c

)
.

4. If c = 0 the infinite elementary divisors of Q(λ) and R(λ) = P ∗
A(Q) are the

same.
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polynomials. Technical report, 2012. In preparation.
[11] S. Tan and J. Vandewalle, Novel theory for polynomial and rational matrices at infinity.

Part 1. Polynomial matrices Int. J. Control, 48 (2) (1988) pp. 545–559.
[12] A. I. G. Vardulakis, Linear Multivariable Control, Wiley, New York, 1991.
[13] H. K. Wimmer, The structure of nonsingular polynomial matrices, Math. Systems Theory, 14

(1981), pp. 367–379.
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