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Conjugacy problem in HNN-extensions: regular elements
and black holes
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Abstract. We discuss the complexity of conjugacy problem in HNN-extensions
of groups. We stratify the groups in question and show that for “almost all”,

in some explicit sense, elements, the conjugacy search problem is decidable.
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1. Introduction

The present paper continues the development of a new approach to algorithmic
problems in groups initiated in [1]; see that paper for a detailed introduction into
the subject. Following the key idea of [1], we stratify a given HNN-extension G
into two parts with respect to the “hardness” of the conjugacy problem:

• a Regular Part RP , consisting of so-called regular elements for which the
conjugacy problem is decidable by standard algorithms. We show that
the regular part RP satisfies all the necessary conditions from [1]:

– the standard algorithms are very fast on regular elements;
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– if an element is a conjugate of a given regular element then the algo-
rithms quickly provide a conjugator, so the Search Conjugacy prob-
lem is also decidable for regular elements;

– the set RP is generic in G, i.e., it is very “big” in some particular
sense explained in the previous paper [2];

• the Black Hole BH (the complement of the set of regular elements) which
consists of elements in G for which either the standard algorithms do not
work at all, or they require a considerable modification, or it is not clear
yet whether these algorithms work or not.

This paper concentrates on the case of non-degenerate HNN-extensions. The
conjugacy problem for the so-called degenerated HNN-extensions (H = A = B)
is considered in our next paper [3] devoted to the analysis of the class of groups
constructed by Miller [6].

Results of Section 4 are parallel to similar results of [1] for amalgamated prod-
ucts, with proofs which can be obtained by obvious transformation of proofs from
[1] and therefore can be omitted.

2. HNN-extensions

2.1. Preliminaries. We introduce in brief some terminology and formulate
several known results on HNN-extensions of groups. We refer to the books [5, 6]
and one of the original papers [4] for more detail.

Let H = 〈X | R〉 be a group given by generators and relators, A = 〈Ui | i ∈ I〉
and B = 〈Vi | i ∈ I〉 two isomorphic subgroups of H with an isomorphism φ : A→
B given by φ : Ui → Vi, i ∈ I. Then the group G defined by the presentation

G =
〈
X, t | R, t−1Uit = Vi, i ∈ I

〉
is called an HNN-extension of the base group H with the stable letter t and associ-
ated (via the isomorphism φ) subgroups A and B. We sometimes write G as

G =
〈
H, t | t−1At = B, φ

〉
An HNN-extension G is called degenerate if H = A = B.

A modification of the above definition is that of multiple HNN-extension. The
data consist of a groupH and a set of isomorphisms φi : Ai → Bi between subgroups
of H. Then similar to the above we define a multiple HNN-extension of H as

G =
〈
H, ti | t−1

i Ati = B,φi, i ∈ I
〉
.

2.2. Reduced and normal forms. In this section following [5] we discuss
reduced and normal forms of elements in HNN-extensions of groups. The main
focus is on algorithms for computing them. We consider only HNN-extensions
with one stable letter, but one can easily extend the results to arbitrary multiple
HNN-extensions.

Let G =
〈
H, t | t−1At = B, φ

〉
be an HNN-extension of a group H with the

stable letter t and associated subgroups A,B. Every element g of G can be written
in the form

(1) g = w0t
ε1w1 · · · tεnwn,

where εi = ±1 and wi is a (possibly empty) word in the generating set X. The
following result is well known (see, for example, [5]).
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Theorem 2.1 ([5]). Let G =
〈
H, t | tAt−1 = B,φ

〉
, and let g = w0t

ε1w1 · · · tεnwn.
If g represents the identity element of G then either

(a) n = 0 and w0 represents the identity element of H; or
(b) g contains either t−1wit where wi ∈ A or twit−1 where wi ∈ B (words of

this type are called pinches).

Theorem 2.1 immediately gives a decision algorithm for the Word Problem in
G provided one can solve effectively in the group H the Word and Membership
Problems w0 = 1, wi ∈ A, wi ∈ B from (a) and (b) above. We will have to say
more on the time complexity of the Word Problem in G in the sequel.

We say that (1) is a reduced form of g ∈ G if no pinches occur in it. It can be
shown that the number of occurrences of ti in a reduced form of g does not depend
on the choice of reduced form; we shall call it length of g and denote it by l(g).

We say that an element g with l(g) > 0 is cyclically reduced if l(g2) = 2l(g). In
addition, we impose extra conditions in case l(g) = 0 (which is equivalent to saying
that g ∈ H): namely, we say that g is cyclically reduced if either g ∈ A ∪B or g is
not conjugate in H to any element from A ∪B.

We warn that our definition of cyclically reduced elements differs from that of
[5]; elements reduced in our sense are reduced in the sense of [5] but not vice-versa.

Reduced forms of elements in G are not unique. To define unique normal forms
of elements in G one needs to fix systems of right coset representatives of A and B
in G.

Let SA and SB be systems of right representatives (transversals) of the sub-
groups A and B in H. A reduced form

(2) g = h0t
ε1s1 · · · tεnsn

of an element g ∈ G is said to be a normal form of g if the following conditions
hold:

• h0 ∈ H;
• if εi = −1 then si ∈ SA;
• if εi = 1 then si ∈ SB ;

Normal forms of elements of G are unique; see, for example, [5]. It is convenient
sometimes to write down the normal form (2) of g as

(3) g = h0p1 · · · pk
where pi = tεisi and si ∈ SA if εi = −1, si ∈ SB if εi = 1. Observe that this
decomposition corresponds to the standard decomposition of elements of G when
G is viewed as the universal Stallings group U(P ) associated with the pregroup

P = {H, tH, t−1H},
(see a more detailed description of pregroups in [7]).

Now the definition of cyclically reduced elements can be formulated as follows.
A reduced form

g = htε1s1 · · · tεnsn
of element g is cyclically reduced if and only if

• If n = 0 then either h ∈ A ∪B or h is not conjugate in G to any element
in A ∪B.
• if n > 0 then either ε1 = εn, or snh does not belong to A provided εn = −1,

or snh does not belong to B provided εn = 1.
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2.3. Algorithm 0 for computing reduced forms. This algorithm takes as
an input a word of the form

g = w0t
ε1w1 · · · tεnwn.

If the word contains no pinches then it is reduced. Otherwise find the first pinch
We look at the first subword of the form tεiwit

εi+1 and transform the subword
according to one of the rules

• If wi ∈ A and εi = −1 then replace t−1wit by φ(wi)
• If wi ∈ B and εi = 1 then replace twit−1 by φ−1(wi).

After that we multiply the elements wi−1φ(wi)wi+1 (or, correspondingly,
wi−1φ

−1(wi)wi+1), thus decreasing the length l(g) of the word by 2.
Therefore we can formulate the following result (similar to the one for amalga-

mated products [1]).

Proposition 2.2. Let G = 〈H, t | t−1At = B〉 be an HNN-extension of a
group H with associated subgroups A and B. If the Membership Subgroup Problem
is decidable for subgroups A and B in H then Algorithm 0 finds the reduced form
for every given g ∈ G.

2.4. Algorithm I for computing normal forms. Assume now that the
Coset Representative Search Problem (CRSP), as defined in [1], is decidable for the
subgroups A and B in H, i.e., there exist recursive sets S and T of representatives
of A and B in H and two algorithms which for a given word w ∈ F (X) find,
correspondingly, a representative for Aw in S and for Bw in T .

Now we describe the standard Algorithm I for computing normal forms of
elements in G.

Algorithm I can be viewed as a sequence of applications of rewriting rules of
the type

• t−1h→ φ(c)t−1s, where h = cs, c ∈ A, s ∈ SA;
• th→ φ−1(c)ts, where h = cs, c ∈ B, s ∈ SB ;
• tεt−ε → 1

to a given element g ∈ G presented as a word in the standard generators of G.
Since the problem CRSP is decidable for A and B in H the rewriting rules above
are effective (i.e., given the left side of the rule one can effectively find the right
side of the rule). The rewriting process is organized “from the right to the left”,
i.e, the algorithm always rewrites the rightmost occurrence of the left side of a rule
above.

It is not hard to see that the Algorithm I halts on every input g ∈ G in finitely
many steps and provides with a normal form of g.

We summarize the discussion above in the following well-known theorem.

Theorem 2.3. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of a group

H with associate subgroups A and B. If the Coset Representative Search Problem
CRSP is decidable for subgroups A and B in H (with respect to fixed transversals
SA and SB) then Algorithm I finds the normal form for every given g ∈ G.

2.5. Algorithm II for computing cyclically reduced normal forms.
Now we want to briefly outline an algorithm which, given an element g ∈ G in
reduced form, computes its cyclically reduced normal form. We work under the
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assumption that the Coset Representative Search Problem (CRSP) and the Con-
jugacy Membership Search Problem (CMSP) are decidable for subgroups A and
B in H.

Algorithm II: Computing Cyclically Reduced Normal Forms.

Input: a word in the reduced form

g = h0t
ε1h1 · · ·hk−1t

εkhk,

Step 0 Find the normal form of g using Algorithm I:

g = hp1 · · · pk
Step 1

– If l(g) = 0 then g ∈ H.
∗ If g ∈ C, where C = A ∪ B, or if g is not conjugate to an

element in C, then g is already in cyclically reduced form.
∗ If gx ∈ C for some x ∈ H then use a decision algorithm for

CMSP to find a particular such x and replace g by gx.
– If l(g) = 1, then g is already in cyclically reduced form.
– If l(g) > 2 and ε1 = εk then g is already in cyclically reduced form.

Step 2
If l(g) > 2 and ε1 = −εk and skh 6∈ A (when εk = −1) or tkh 6∈ B

(when εk = 1) then g is in cyclically reduced form.
Otherwise, if skh ∈ A then set

g∗ = t−ε1h−1ghtε1 ;

obviously, we have l(g∗) = l(g)−2, and we can apply the algorithm to g∗.
The case tkh ∈ B is treated similarly.

3. Transfer machine for free constructions

In this section we study a construction (transfer machine) which provides em-
beddings of HNN-extensions into free products with amalgamation. We show that
the transfer machine allows one to reduce algorithmic problems in one class of
groups into the other one with linear time overhead.

3.1. Transferring HNN-extensions into amalgamated free profucts.
In this section we describe a machine that transfers HNN-extensions into amal-
gamated free products. This yields an algorithm for computing normal forms in
HNN-extensions via computing the corresponding normal forms in suitable free
products with amalgamation with linear overhead for the time complexity. Thus
one can obtain time complexity estimates for HNN-extensions via the estimates for
corresponding free products with amalgamation. [1].

3.1.1. Direct transfer. Let G =
〈
H, t | t−1At = B,φ

〉
be an HNN-extension.

Set
P = H ∗ 〈x〉 , P̄ = H̄ ∗ 〈x̄〉

and
C = H ∗ x−1Ax, C̄ = H̄ ∗ x̄−1B̄x̄

where H̄ is an isomorphic copy of H via an isomorphism φH , B̄ is the corresponding
copy of B in H̄ (via the restriction of φH onto B). Then C is isomorphic to C̄ via
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an isomorphism φ∗ : C → C̄ such that φ∗ = φH on H and φ∗(x−1ax) = x̄−1aφx̄
for a ∈ A.

Then G can be canonically embedded in the amalgamated free product

G∗ = 〈P, P̄ | C = C̄, φ∗〉 = P ∗C=C̄ P̄ .

Setting t = xx̄−1 and discarding x̄ and H̄ yields isomorphism

G∗ = G ∗ 〈x〉

and the canonical embedding
λ : G→ G∗.

We refer to the triple (G,G∗, λ) as to HNN-machine.
As we noticed earlier every HNN-extension has a unique normal form for its

elements once transversal for C in A and C in B have been chosen. In a similar
way, an amalgamated free product has a unique representation for its elements once
transversals for P and Q have been chosen. What we shall do here is to describe
the relationship between these transversals and normal forms for G and G∗.

Let U be a transversal for C in G∗. We call U minimal if every element of U
is of minimal length in its coset class, relative to the normal form for G∗ regarded
as the free product G ∗ 〈x〉.

Lemma 3.1.
(i) Let S be a transversal for A in H. Let S∗ be the subset of P = H ∗ 〈x〉

consisting of the identity element together with all elements of the form{
xi1h1x

i2 · · ·hm−1x
im | ij ∈ Z, j = 1, . . . ,m, i1 6= 0

}
where either i1 6= −1 or i1 = −1 and h1 ∈ S. Then S∗ is a minimal
transversal for C in P .

(ii) The dual statement for B and H.

Proof. The proof is straightforward. �

Lemma 3.2.
(i) Let U be a minimal transversal for C in P . Define S(U) to be the set of

all h1 ∈ H such that there exists u ∈ U with

u = x−1h1x
i2h2 · · ·ximhm,

together with the trivial element. Then S(U) is a transversal for A in H.
(ii) The dual statement for C̄ and P̄ .

Our aim is to prove a result which can be informally formulated as follows.

Theorem 3.3 (Joint work with D. J. Collins). Let G =
〈
H, t | t−1At = B

〉
be

an HNN-extension and S, T transversals of A,B in H. Then for any g ∈ G given
in the normal form relative to S, T one can find in linear time the normal form of
the element λ(g) in the free amalgamated product

G∗ = P ∗C=C̄ P̄

with respect to the transversals S∗, T ∗.

A more formal statement of this result is contained in Theorems 3.6 and 3.7
below.
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3.1.2. Rewriting procedures. Let G∗ be given in the form

G ∗ 〈x〉 =
〈
H, t | t−1At = B, φ

〉
∗ 〈x〉

and let us assume that we have fixed transversals S and T for A and B in H so that
we have normal forms for elements of G. Then a normal form for an element of
G∗ is any expression of the form g0x

i1g1 · · ·ximgm where g0, g1, . . . , gm are normal
forms for elements of G and i1, . . . , im are non-zero integers—possibly m = 0, while
if m > 1 then g0 and gm may be trivial.

Our objective is to transform such an expression into a normal form expression
with respect to G∗ viewed as the amalgamated product P ∗C P̄ . The procedure has
two steps: the first consists of replacing each occurrence of t lying in a normal form
for an element of G and then freely reducing the result. At this point we have an
expression in the generators of P ∗C P̄ and we can clearly bracket this so that we
alternately have either a word in the generators of P or a word in the generators of
P̄ (the latter will actually just be a power of y). The second step is to transform
this expression into a normal form corresponding to the transversals S∗ and T ∗

that we have defined above. The time complexity of this latter process therefore
depends on the time complexity of the process for writing arbitrary elements of
P and P̄ in the form cs∗ or ct∗ where c ∈ C, s∗ ∈ S∗, t∗ ∈ T ∗, plus the time
complexity of transforming an element of C expressed as an element of P , into an
element of BP̄ and vice versa. The actual procedure for writing an element p of P
in the form cs∗ is as follows.
Input: an expression of the form h0x

i1 · · ·xirhr where h0, h1, . . . , hr are repre-
sentatives of elements of H.

Step 1. Write c0 = h0. If r = 0, stop with a = c = c0. Otherwise proceed to Step
1.

Step 2. Check if i1 = −1. If not, write c = c0,

s∗ = xi1h1 · · ·xirhr
and stop with a = cs∗.

Step 3. We have a = c0x
−1h1 · · ·xirhr. Write h1 = as where a ∈ A and s ∈ S. If

s 6= 1, write c1 = x−1ax, c = c0c1 and s∗ = x−1sxi2h2 · · ·xirhr and stop
with a = cs∗. Otherwise go to Step 4.

Step 4. We have p = h0x
−1axi2 · · ·xirhr. If i2 6= 1, write c1 = x−1px, c = c0c1

and s∗ = xi2−1h2 · · ·xirhr and stop with p = cs∗. Otherwise store c0, c1
and iterate the above steps, starting with Step 1 applied to h2 · · ·xirhr
until either a halt is reached.

The procedure is similar for an arbitrary element of P̄ , although here of course
we are working with the copy H̄ of H rather than H itself and so we use the
transversal T̄ rather than T . This easily leads to the following lemma.

Lemma 3.4.
(i) The time complexity of expressing an element of P in the form cs∗ where

c ∈ C and s∗ ∈ S∗ is linear in the time complexity of expressing an
element of H in the form as where a ∈ A and s ∈ S.

(ii) The dual statement for A and B.

It remains therefore to deal with the issue of switching between representations
of elements of C according to as we wish to view them as lying in P or lying in P̄ .
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The actual procedure is very simple to describe. Typically an element of C has
the form h0x

−1a1xh1 · · ·x−1arxhr when viewed as an element of P . The transfor-
mation required is the replacement of each aj by b̄j where bj is the image of paj
under the isomorphism φ : A → B. The reverse process, moving from P̄ to P ,
consists of replacing b̄j by the corresponding paj and removing the bar from each
h̄j . This can be summarized as the following lemma.

Lemma 3.5.
(i) The complexity of expressing an element of C, viewed as an element of

P , into an element of P̄ , is linear in the time complexity of mapping an
element a ∈ A into its image b = φ(a) ∈ B in H.

(ii) The dual statement for P̄ .

Now we are in position to give a more precise form of Theorem 3.3.

Theorem 3.6. The time complexity of obtaining a normal form for an element
of G∗ viewed as the amalgamated free product with respect to transversals S∗ and
T ∗ for C in P and P̄ that come from transversal S and T for A and B in H is
linear in terms of the time complexity of obtaining a normal form of an element in
G∗ viewed as the free product of G and 〈x〉 where normal forms in G are computed
using S and T .

See [1] for a detailed discussion of corresponding algorithms for amalgamated
products.

3.1.3. Inverse transfer. We now have to return to the rewriting procedure in the
opposite direction. Here our starting point is G∗ viewed as P ∗C P̄ so that when
we are give an element in normal form we are given an expression cu1u2 · · ·um
where c ∈ C and u1, u2, . . . , um lie alternatively in transversals for C in P and
for C in P̄ . To rewrite such an expression in a normal form for G∗ viewed as
G∗ = G ∗ 〈x〉, we proceed by replacing occurrences of y by t−1x and also by
deleting bars over any terms from H̄. Upon freely reducing the result we then have
an expression g0x

i1g1 · · ·xirgr where g0, g1, . . . , gr are normal forms for elements of
G and xi1 , . . . , xir are non-trivial powers of x. The latter are easy to recognise but
to obtain the former we need to have transversals for A and B in H. For our aims
it is naturally to assume that the transversals U and V are both minimal relative
to the free product decompositions of P and P̄ . Then by Lemma 3.2 we have a
canonical way to obtain transversals S and T for A and B in H. This amounts, of
course, to assuming that U and V have been constructed from S and T in the first
place.

The procedure is now quite straightforward. We have an expression

g0x
i1g1 · · ·xirgr.

Using the transversals S and T , we can put each element of G into normal form and
we are finished, except possibly when some gi turns out to represent the identity.
Then we have to consolidate the adjacent powers of x and repeat the procedure.
From an algorithmic standpoint, in practice one would work systematically from g0

towards gr.

Theorem 3.7. The time complexity of obtaining a normal form for an element
of G∗ viewed as the free product of G and 〈x〉 is linear in terms of the time com-
plexity of obtaining a normal form for an element of G∗ viewed as the amalgamated
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free product provided the transversals U and V for C in P and P̄ are minimal and
hence yield, in linear time, the transversals S and T that are used to compute the
normal forms in G that are used in the normal forms for G∗.

Theorems 3.3, 3.6 and 3.7 allow us to transfer from amalgamated products to
HNN-extensions the results about the complexity of conversion of reduced forms to
normal reduced forms [1].

In particular, if A,B,C be finitely generated free groups and let C be an infinite
index subgroup in both A and B. Then, under modest assumptions about C, the
regular part of Algorithm 0 has a linear time complexity on a generic subset [2].

Theorem 3.8. Algorithm 0 and Algorithm 1 have exponential worst case time
complexity in respect to the length of input words.

This theorem is an immediate corollary of [1, Theorem 3.7].
Notice that if A,B,C be finitely generated free groups and let C be an infinite

index subgroup in both A and B. Then, under modest assumptions about C, the
regular part of Algorithm 0 has a linear time complexity on a generic subset; see
[2] for details.

3.2. Conjugacy criterion. In this section we formulate, in a slightly modified
form, the well known conjugacy criterion for HNN-extensions, due to Collins [4].

Recall that the i-cyclical permutation of a cyclically reduced element g =
h0t

ε1 · · ·hr−1t
εr is the element

gi = hit
εi+1 · · · tεrh0t

ε1 · · ·hi−1t
εi ,

rewritten in normal form.

Theorem 3.9. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of the base

group H with associated subgroups A and B. Let

g = h0t
ε1 · · ·hr−1t

εr , g′ = h′0t
η1 · · ·h′s−1t

ηs

be conjugate cyclically reduced elements of G. Then one of the following is true:
• Both g and g′ lie in the base group H. If g 6∈ A ∪B then g′ 6∈ A ∪B and
g and g′ are conjugate in H.

• If g ∈ A∪B then g′ ∈ A∪B and there exists a finite sequence of elements
c1, . . . , cl ∈ A ∪ B, such that c0 = g, cl = g′ and ci is conjugated to ci+1

by an element of the form htε, h ∈ H, ε = ±1.
• Neither of g, g′ lies in the base group H, in which case r = s and g′

can be obtained from g by i-cyclically permuting it (i = 1, . . . , r) and then
conjugating it by an element z from A, if εi = −1, or from B, if εi = +1.

4. Conjugacy search problem for regular elements

In this section we introduce and study regular elements. Let C = A ∪B and

N∗G(C) = {g | Cg ∩ C 6= 1}
be the generalised normaliser of the set C. We say that (c, g) ∈ C×G is a bad pair
if c 6= 1, g 6∈ C, and gcg−1 ∈ C.

Notice that if (c, g) is a bad pair then g ∈ N∗G(C) r C and c ∈ Zg(C), where

Zg(C) = { c ∈ C | cg ∈ C } = Cg
−1
∩ C.

The following lemma gives a more detailed description of bad pairs.
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Lemma 4.1. Let c ∈ Cr{1}, g ∈ GrC, and g = hp1 · · · pk is the normal form
of g. Then (c, g) is a bad pair if and only if he following system of equations has
solutions c1, . . . , ck+1 ∈ C.

pkcp
−1
k = c1

pk−1c1p
−1
k−1 = c2

...
p1ck−1p

−1
1 = ck

hckh
−1 = ck+1

Moreover, in this case pi, h ∈ N∗G(C).

Proof. This lemma is a special case of Lemma 4.3 below. �

We denote the system of equations in Lemma 4.1 by Bc,g. Observe that the
consistency of the system Bc,g does not depend on the particular choice of repre-
sentatives of A and B in H. Sometimes we shall treat c as a variable, in which case
the system will be denoted Bg.

4.1. Black hole. The set

BH = N∗G(C)

will be called a black hole. Elements from BH are called singular, and elements from
R = Gr BH regular. The following description of the black hole is an immediate
corollary of Lemma 4.1.

Corollary 4.2. Let G =
〈
H, t | t−1At = B

〉
. Then an element g ∈ Gr C is

singular if and only if the system Bg has a nontrivial solution c, c1, . . . , ck+1 ∈ C.

Now we want to study slightly more general equations of the type gc = c′g′

and their solutions c, c′ ∈ C.

Lemma 4.3. Let G =
〈
H, t | t−1At = B

〉
. Let g, g′ ∈ G be elements given by

their canonical forms

(4) g = hp1 · · · pk, g′ = h′p′1 · · · p′k
Then the equation gc = c′g′ has a solution c, c′ ∈ C if and only if the following
system Sg,g′ of equations in variables c, c1, . . . , ck has a solution in G.

pkc = c1p
′
k

pk−1c1 = c2p
′
k−1

...
p1ck−1 = ckp

′
1

hck = c′h′

The proof of Lemma 4.3 is a word-by-word reproduction of the proof of Lemma 4.5
in [1].

The first k equations of the system Sg,g′ form what we call the principal system
of equations, we denote it by PSg,g′ . In what follows we consider PSg,g′ as a system
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in variables c, c1, . . . , ck, c′ which take values in C, the elements p1, . . . , pk, p
′
1, . . . , p

′
k

are constants.
Let M be a subset of a group G. If u, v ∈ G, we call the set uMv a G-shift

of M . For a collection M of subsets in G, we denote by Φ(M, G) the least set of
subsets of G which contains M and is closed under G-shifts and intersections.

Lemma 4.4. Let G be a group and C = A∪B be the union of two subgroups A
and B of G. If D ∈ Φ(C,G) and D 6= ∅ then D is the union of finitely many sets
of the form

D = (Ag1 ∩ · · · ∩Agm ∩Bg
′
1 ∩ · · · ∩Bg

′
n)h

for some elements g1, . . . , gm, g
′
1, . . . , g

′
n, h ∈ G.

The proof of this lemma repeats the proof of Lemma 4.7 of [1].

Lemma 4.5. Let G =
〈
H, t | t−1At = B

〉
. Then for any two elements g and g′

with canonical forms

g = hp1 · · · pk, g′ = h′p′1 · · · p′k (k > 1)

the set Eg,g′ of all elements c from C for which the system PS(g, g′) has a solution
c, c1, . . . , ck, is equal to

Eg,g′ = C ∩ p−1
k Cp′k ∩ · · · ∩ p−1

k · · · p
−1
1 Cp′1 · · · p′k.

In particular, if Eg,g′ 6= ∅ then it is the union of at most 2k+1 cosets with respect
to subgroups in A and B of the form described in the previous lemma.

The proof of this lemma is essentially the same as that of Lemma 4.8 in [1].
Denote by Sub(C) the set of all subgroups of C. By Lemma 4.4, non-empty

sets from Φ(Sub(C), H) are finite unions of cosets of subgroups from H.

Corollary 4.6. Let G =
〈
H, t | t−1At = B

〉
. If the Cardinality Search Prob-

lem is decidable in Φ(Sub(C), H), then, given g, g′ as above, one can effectively
find the set Eg,g′ . In particular, one can effectively check whether Eg,g′ is empty,
singleton, or infinite.

The proof repeats the proof of Corollary 4.9 in [1].

Lemma 4.7. Let G =
〈
H, t | t−1At = B

〉
and g, g′ ∈ G. If l(g) = l(g′) > 1

and the system PS(g, g′) has more than one solution in C then the elements g, g′

are singular.

The proof repeats the proof of Lemma 4.10 in [1].

Lemma 4.8. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of a finitely

presented group H with finitely generated associated subgroups A and B. Set C =
A ∪B. Assume also that H allows algorithms for solving the following problems:

• The Coset Representative Search Problem for subgroups A and B in H.
• Cardinality Search Problem for Φ(Sub(C), H) in H.
• Malnormality problem for C in H.

Then there exists an algorithm for deciding whether a given element in G is regular
or not.

Proof. The proof repeats the proof of Lemma 4.11 from [1]. �
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Corollary 4.9. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of a free

group H with finitely generated associated subgroups A and B. Then the set of
regular elements in G is recursive.

Denote by CR the set of all elements in G which have at least one regular
cyclically reduced canonical form, that is, CR is the set of elements in G which are
conjugates of cyclically reduced regular elements. The set CR plays an important
part in our analysis of the conjugacy search problem in G.

Lemma 4.10. Let G =
〈
H, t | t−1At = B

〉
. Set C = A ∪ B. Assume also that

H allows algorithms for solving the following problems
• The Coset Representative Search Problem for subgroups A and B in H.
• The Cardinality Search Problem for Φ(Sub(C), H) in H.
• The Malnormality Problem for C in H.

Then there exists an algorithm to determine whether a given element in G is in CR
or not.

Proof. Proof follows from Lemma 4.8 and Algorithm II from Section 2.5 of
this paper. �

4.2. Conjugacy search problem and regular elements. The aim of this
section is to study the Conjugacy Search Problem for regular elements in HNN-
extensions. We show that the conjugacy search problem for regular elements is
solvable under some very natural restrictions on the group H. We start with the
following particular case of the Conjugacy Search Problem.

The Conjugacy Search Problem for a fixed element g: this the Conjugacy
Search Problem for the set of pairs

Φg = {(g, u) | u ∈ G}.

Theorem 4.11. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of finitely

presented group H with associated finitely generated subgroups A and B. Assume
also that H allows algorithms for solving the following problems:

• The Coset Representative Search Problem for subgroups A and B in H.
• The Cardinality Search Problem for Φ(Sub(C), H) in H.

Then the Conjugacy Search Problem in G is decidable for cyclically reduced regular
elements g of length l(g) > 1.

The proof of this theorem follows the proof of Theorem 4.15 from [1], if we
replace the conjugacy criterion for amalgamated products by the conjugacy criterion
for HNN-extensions.

Now we study the Conjugacy Search Problem for regular elements of length 0.

Lemma 4.12. Let G =
〈
H, t | t−1At = B

〉
and g be a cyclically reduced regular

element of G with l(g) = 0. If the Coset Representative Search Problem for sub-
groups A and B in H and the Conjugacy Search Problem for C in H are decidable
then the Conjugacy Search Problem for g in G is decidable.

The proof follows from the conjugacy criterion.
We are ready to formulate a general conjugacy search problem for regular ele-

ments.
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The Conjugacy Search Problem for CR is the Conjugacy Search Problem for
the set of pairs

ΦCR = {(g, u) | g ∈ CR, u ∈ G}.

Theorem 4.13. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of a finitely

presented group H with associated finitely generated subgroups A and B. Assume
also that H allows algorithms for solving the following problems:

• The Coset Representative Search Problem for subgroups A and B in H.
• The Cardinality Search Problem for Φ(Sub(C), H) in H.
• The Conjugacy Search Problem in H.
• The Conjugacy Membership Search Problems for A and B in H

Then the Conjugacy Search Problem in G is decidable for elements from CR.

Corollary 4.14. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of a free

H with associated finitely generated subgroups A and B.
Then the Conjugacy Search Problem in G is decidable for elements from CR.
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