
Parallel implementation of a symmetric
eigensolver based on the Yau and Lu method

Domas, Stéphane and Tisseur, Françoise

1997

MIMS EPrint: 2007.228

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

P a r a l l e l I m p l e m e n t a t i o n o f a S y m m e t r i c
E i g e n s o l v e r B a s e d on t h e Y a u and Lu M e t h o d *

St6phane Domas 1, Fran~oise Tisseur ~,

i Laboratoire de l'Informatique du Parall61isme, URA 1398 du CNRS and INRIA
RhSne-Alpes, 46 All6e d d'Italie, 69364 Lyon Cedex 07, France.

sdomas@lip, ens-lyon, fr
2 Equipe d'Analyse Num6rique de St-Etienne,UMR 5585, 23, rue Paul Michelom

42023 Saint-Et ienne, France. I t i s s e u r O a n u m s u n l , u n i v - s t - e t i e n n e , f r

Abstrac t . In this paper, we present preliminary results on a complet.e
eigensolver based on the Yau and Lu method. We first give an overview of
this invariant subspace decomposition method for dense symmetric ma-
t.rices followed by numerical results and work in progress of a distributed-
memory implementation. We expect that the algorithm's heavy reliance
on matrix-matrix multiplication, coupled with FFT should yield a highly
parallelizable algorithm. We present performance results for the domi-
nant computation kernel on the Intel Paragon.

1 I n t r o d u c t i o n

As quantitative analysis becomes increasingly important in sciences and engi-
neering, the need for faster methods to solve bigger and more realistic problem
grows. Large order symmet, ric eigenvalues problems occur in a wide variety of
applications, including the dynamic analysis of large-scale structures such as
aircraft, and spacecraft, the prediction of structural responses in solid and soil
mechanics, the study of solar convection, the modal analysis of electronic circuits,
and the statistical analysis of data.

There are many algorithms for solving the symmetric eigenvalue problem
[13]. Much recent work has been devoted on parallel solvers, both on traditional
methods [8, 9, 10] and in the development of new methods [3, 7]. The traditional
method for computing the eigensystem of a real dense syrnmetric matrix A
consists in three steps [11]. First, A is reduced to tridiagonal form. Second, the
eigenvalues and eigenvectors of the tridiagonal matrix are computed. Third, the
eigenvectors are back transformed via the reduction transformation.

In this paper, we investigate the parallelization of a new eigensolver for real
dense symmetric matrices. Our algorithm is based on a recent method attr ibuted
to Yau and Lu [16], which reduces the symmetric eigenvalue problem t.o a number
of matr ix multiplications. Yau and Lu's method involves approximating invariant
subspaces of a special matrix using an FFT. The computation of the special

* This work is partly supported by the European project KIT 108 and Eureka Euro-
TOPS project.

141

matr ix and the vectors for the FFT is rich in matr ix-rnatr ix multiplications
Matrix multiplications can be implemented efficiently on most high-performance
machines, and is often available as an optimized implementat ion in a level 3
BLAS library [2, 4].

The rest of this paper will give an overview of the Yau and Lu's method.
We will present the algorithm and valid it with numerical results. Then, we will
investigate the parallelization of this new eigensolver and present performance
results for the dominant computat ion kernel on the Intel Paragon.

2 Y a u a n d L u m e t h o d

For computing invariant subspaces of a symmetr ic n x n matr ix A with eigen-
values A1, . . . ,A~ and eigenveetors x l , . . . , x , . , Yau and Lu use a polynomial
acceleration method.
Consider the unitary matr ix B = e iA whose eigenvalues all lie on the unit circle.
Note that A and B have the same invariant subspaces.

N - 1

Let PN(Z) = E ~JZJ be a polynomial of degree N - 1 that has a peak at
j = 0

z = 1 and is close to zero on the unit circle away from a vicinity of z = 1. Such
a polynomial exists and it.s coefficients Sj, j = 0, N - 1 can be obtained by a
recursive tbrmula (see [16]).
Starting from an initial vector expanded in terms of the eigenvectors as v0 =
~ i=1 a, ixi, we can define the function ,u : [0, 2re) --+ ff~" by

n

j = l

If A is chosen close to a particular Ak and the other eigenvalues of B are not
close to)~ then the coefficient of x j will be small except when j = k. Thus, u(A)
can be viewed as an approximation of the eigenvector of B associated with the
eigenvMue e i A k .

Setting v:i = BJvo, the function u(t) can be written as

N - 1 N - 1

= = = Z
j = 0 j = 0

where f l ivj are the Fourier coefficients of u. Therefore, the FFT can be used
to compute u()~) at many different values of ~ simultaneously. Then, we need
to select vectors u(k) that can be taken as eigenvectors, group them into p
orthogonal clusters and add more vectors if necessary. These p clusters form an
orthogonal basis W = [W~, . . . , Wp] whose elements span invariant subspaces of
A and hence, application of A to W decouples the spectrum : 0)

W ' r A W =

Ap

142

So, the initial problem is reduced to a small symmetric matrix eigenvalue problem
in each cluster. Note that the subproblems A1, . . . , Ap can be solved totally
independently. The algorithm is presented in next. section.

3 N u m e r i c a l a lgor i thm

Consider a real symmetric matrix A. The following steps find the eigenvalues
and eigenveetors of A to the desired precision.

1- Sca l ing a n d T r a n s l a t i o n : Compute upper and lower bounds of the spec-
t rum of A and use these bounds to scale and translate the spectrum of A in
[o, 2~).
2- P o l y n o m i a l c o m p u t a t i o n : Let TN_ 1 be the Chebyshev polynomial of de-
gree N - 1. The degree N is chosen such that

1

TN-1 ((3 -- COS ~)/(Zn +COS~)) -< ~;'

where re is a measure of the desired accuracy of t.he computed invariant subspace.

Compute the coefficients f l~N-1), . . . , fl(xN11) of the polynomial PN by the recur-
sive formulas :

where

f l(k+l) aft} k) -F 2bfl}, k) - ~k-1) Q

PlR<k+I) : a (2fl;k) jr_ fl~k)) _[_ 2bfllk) _ fllk-1)

{ = a 23;s "4- ~}~)1 -]- 2bfl] k) - ~.}k-l) for j > 1

~I ~'+1) = 0 for j > k.+ 1.

2 1 - cos(Tr/n)
a-- b--

i + cos(~/,,) 1 + c o s (H .) '

3- U n i t a r y m a t r i x : Compute matrices cos (rrX) and X -~ sin(rrX) where X =
A
-- - I using the following Chebyshev expansion :
7r

cos(~x) _ c0 + ClT~(x) + ~:.,T4(x) + . . - + ~;,d40(,)

+T10 (c6T2(,) + c7T4(x) + . . . + ~-10Tl0(x))
s i n (~)
- - ~- .~0 + .~IT.,(~) + .~=r4(x) + . . . + .~T~0(x) X

+17]o (sGT;(x) + sTT4(x) + . . . + s~oTlo(X)),

where co,. . . , clQ, so, . . . , Sl0 are Chebyshev coefficients.

143

4- C o m p u t a t i o n of v e c t o r s vj = eijAvo, j = 0, 2 N - 1 The real and imaginary
part of v~ are obtained with the approximation of cos (rrX) and X -~ sin(TrX) :

'vl = cos (rrX)vo + X -1 s in (rcX) (Xvo) .

The remaining vectors can be computed following these M = (log~ N - 1) steps:
step I : C1 = cos(A)

v2 = 2 C l V l - v0

step ~ ." c . , : "2c~ -]

('U:3, '/)4) ~'~ 2 C 2 (V l , v2) - - (v i i vo)

step 3 �9

s t e p M : C p = 2 C ~ _ ~ - I

(~) @ - { - I ' ' ' ' ' V N) = 2Cp(v l , ' ' ' , 'UN) - (' /)N_I , . , , V 0) .

5 E v a l u a t i o n o f u(A): Via the FFT, compute the vectors

N - 1

E - i 'k~-z ~ = ~(~)~=_~ = s~ 9 j ~ ~ , for k = 0 , . . . , 2N - 1.
j=0

6- S e l e c t i o n a n d r e f i n e m e n t " Select. the most useful vectors from the 2N
vectors u 0 , . . . , v'~N-1. Group them into a number of orthogonal clusters, add
more vectors if necessary and reduce the initial problem to a small symmetr ic
matr ix eigenvalue problem in each cluster.

The most t ime consuming part of the algorithm is the computat ion of the 2N
vectors vj. We need log 2 N - 1 multiplications of real symmetr ic rna{.rices and
log 2 N - 1 more multiplications between a symmetr ic matr ix and a rectangular
one. This part needs (log2(N) - 1)n a + 4 N n 2 floating point operations. The
computat ion of e IA to the desired accuracy requires 6 multiplications of real
symmetr ic matrices for Ccosr~X and one more for S = X -1 sin reX, that is, 7n :~
operations. The step of computing the uk is still efficient, because of the F F T
algorithm and can be done in n N logs(N) operations. When necessary, the work
for the supplementary vectors involves 8 3 5n more operations since we need to
construct an orthogonal matr ix by a QI:(. factorization. The reduction 1 4 f r A W

involves two matr ix multiplications or 3n a operations. Usually, the subproblems
in each cluster only involve small matrices and the cost. is negligible compared
to the total work. So, the total number of operations is given by

(17
3 + l~ + 4Nn2 + O(n2)"

Since N is typically a small multiple of n, we see from this operation count that
the sequential complexity of the Yau and Lu algorithm is considerably greater

144

than the QFI. algorithm. However, note that steps 3,4 and 6 of the algorithm are
all based on matr ix-matr ix multiplications and if we suppose that N _~ 8n then

Total operations involving matrix multiplications

Total operations
35 + 3 log2 (n) >

- 3 8 § 2(n) '

So, for matrices of dimension between 500 and 1000, we find that matr ix mul-
tiplications account for more than 90% of the total operation count. For larger
dimensions of the matrix A, this percentage will of course increase. The efficiency
of level ;~ BLAS routines can justify the use of the extra multiplications. The
IReuse-Flatio defined by the rapport between the number of flops and the size of
memory reference bounds the performances. Its value is 2/3 for level 1 BLAS,
2 for level 2 BLAS and n/2 for level 3 BLAS. So, high level BLAS 3 improve
performances.

4 N u m e r i c a l resul ts

All the test results presented in this section where pertbrrned on a SUNsparc
512, MP. The arithmetic was IEEE standard double precision with a machine
precision of e = 2 .53 _~ 2.22044 x 10 -16 and over/underflow threshold 10 J:a~

We have tested our algorithm on a large set of test matrices using the LAPACK
[1] test. generation routine DLATMS. This routine constructs symmetric matrices
of the form

A = U T D U

where U is a random orthogonal matrix and D = diag(A1,. . . , A,.) a diagonal
matrix. We can define the elements of D and then simulate more or less critical
situations that. is, Well separated spectrum, clusters of eigenvMues,

We quantified accuracy in the computed eigenvalues by computing the rela-
tive error

I n a X

where)~i denotes an exact eigenvalue and -~i the corresponding computed eigen-
value (see Fig.l).

Accuracy in the residuMs for a given matrix A is quantified by computing
the maximum normalized 2-norm residual

-

max , with 1l~r = 1
IIAIIF

where xi is the computed eigenvector corresponding to the computed eigenvMue
~i (see Fig.2).

We. have computed (see Fig. 3) the departure from orthogonality given by

max] (QTQ _ i,.)~j [
i,j

145

~

: : . i : ~ , ! ' : , . , : ;
. �9

| ; : . , : i . : ; , �9 : i : . : : i

, , , , , ,
20 40 r 80 I00

,}~qr ~ dimension

Fig . 1. Relative error on computed
eigenvalues.

. . . : .
�9 ~ o'" " t : t

l o : :

t

i " "

: �9 . :

20 / 0 6~ Iq' 0 1;

Fig. 2. R.esiduals for dense sym-
metric matrices.

, 1e - l l

le-13

o

o

$

+

* $

i �9 e

~

. $ 0 �9

I o * * e l * * * e , 0 $

o *0 ~o o lOO 12o
nlav~x dimension

Fig. 3. Departure from orthogonality for dense symmetric matrices.

where Q is the matr ix of eigenvectors.
The accuracy of invariant subspaces is controlled in step 2 of the algorithm.

As we have chosen N such that, ec _< 10 ..9 we expect, at, most nine corrects
significant, digits for the eigenvectors. If we choose N such that r~ _< 10 -16, we
increase the computat ional cost but, obtain better accuracy (see Fig. 4 and Fig.
5).

5 P a r a l l e l i m p l e m e n t a t i o n

There are two forms of parallelism in the Yau and Lu rnethod. The first one
corresponds to data parallelism with the heavy reliance on matrix-n~latrix multi-
plications. The second one is a kind of functional parallelism with the reduction
of the initial problem to a number of small symmetr ic eigenvalue problems that
can be solved totally independently on each processor. That, is why we say that
Yau and Lu method yields to a highly parMlelizable algorithm.

146

I e . 14
o o

�9 ~ ~

~ o ~ " �9 * �9 ~ * ~ �9 � 9 1 7 6 ~

, �9 ~176 �9 �9 � 9 0 , ~ ~ 1 4 9 : ~ 1 7 6 1 4 9 1 7 6 1 7 6 ~ . ~ o ~ 1 4 9 * ~ 1 7 6 ~

:" .: 0. ~176 ~176 . "~ . - , , - : .
�9 " ~ ,~ �9 " ~ ~176 ~I ." . ~ " " : . - 1 , = " ; : i ' ; o
~ ~ ~176 *~ � 9 ~176 �9 ~176 *~~ $, *~176 ~176 � 9 s

, : *'o ,~ s,~ ,~ , ! �9
e ~ * �9 ~

Fig. 4. Residuals on comput.ed
eigenvalues for dense symmetric
random mat.rices.

I

§

I

I
0

o

~ o * ~ * �9 * * " * * * S , * * , * ~ 1 7 6
" 6 ~ �9 ~ 1 7 6 " �9 $o ~ �9 �9 , ! S*

= " .* o ~ ,.~ �9 �9 oo~ ""�9176
." . : . 1 . - . 0 ~ 1 4 9 o " . : . : ' . . ,�9 . . " �9
" �9 : :�9176176176 o" �9 .

| o : . = o . . , ~ . � 9 . o o . ~ 1 7 6 . . ~ ~ . ~ 1 7 6 1 7 6 1 7 6 1 7 6 o . . ~ 1 7 6 ~ ~ 1 7 6 1 7 6 1 7 6 ~176

Fig . 5. Depart, ure from ort, hogonal-
it, y for dense symmetric random
matrices.

5.1 P a r a l l e l Y a u a n d L u a l g o r i t h m

G r i d 2 x 2 o f p r o c e s s o r s

0 1

!ig*i~iii (0,1) (0,4)
:]:~:~:j:!:;:!:!:!:!

::::;::::::::::::: .:.:.:.-,-.-.......,

NNNiN

(1,0) (1,3) (1,1) (1,4)

(3 , 0) (3 , 3) (3 , 1) (3 , 4)

i

B l o c k o w n e d b y tl3e p r o c e s s o r (0 , 0) .

B l o c k - M a t r i x

:i:i:i:i:i:i:i:i:i:i :::::.:.:':-;.:-;-:"

i i f ~ i c0,,)iii!~!i~ (0,47
I:-:-:-:.:-:.:.:.:.:.1;,:,;.;,:.:.:.:.;.:

(1 , 0) (1 , 3) (1 , 1) (1 , 4)

i!!~i H ii! :!:i:i:i:!:i:i:i:!:!
(3 , 0) (3 , 3) (3 , 1) (3 , 4)

i,:!i::iiii!::!iiiiil ::i~i::i:,iii::i::i::iii~
::::::::::::::::::: ~:;:;iii~iii!i!iii~

; i

J i

i
i
i
i

i
i

i

i
i

Fig. 6. Block cyclic distribution on a 2x2 processor grid.

For an es t imat ion of the upper and lower bound of the spec t rum of A we use
a rnethod developed by Rojo and Soto [15]. This me thod is based on matr ix
mult ipl icat ions but. does not increase the total number of operat ions since the
computed mat r ix -mat r ix product, is reused for the construct ion of C and ,5.

We prefer to focus our paraltelization on the most cost effective par t of the
algori thm, that. is the construct ion of the matrices C, ,S ~ and the Fourier 's coetfi-

147

cients. In order to ensure a good load balancing, performance and scalability of
our code, we use a 2-dimensional block cyclic distribution on a P x Q processor
grid (see Fig.6). This kind of distribution encompasses a large number (but not
all) data distribution schemes.

/*Construction of TI, T2, T4, T,~, 2/'10.
T 2 + - 2 A * A - I

FOR i=4 TO 10 STEP 2
Ti +-- 2 Ti-2 * T2 - Ti-4

ENDFOR
/*Chebyshev expansion of C and S
C +-- col

S e- so l

FOIl, i=1 TO 5
C ~ c~T~ + C
S +-- s~T2i + S

C C ~ ci+sT2i + C C

SS ~-- si+sZ2i 4 -SS
ENDFOR
C := - T l o * C C + C
,5' := -T10 * S o e 4- S

, /

/* Parallel level 3 BLAS */

/* Parallel level 3 BLAS */

, /

/* Parallel level 3 BLAS */
/* Parallel level 3 BLAS */

Table 1. Algorithm for computing C and S.

In Tab.l , we present the parallel algorithm for the computation of the ma-
trices C = cosrcX and S = X -1 sinrrX which defined the unitary matrix e iA.

It is only based on 7 calls of parallel level 3 BLAS. ..-
The computation of Fourier's vectors is the most cost effective part. in corn-

putation and communication times. At each step k, k = 1 , . . . , l o g ; (N / 2) , the
following matrix-matrix multiplication is performed:

Ck 2Ck-1 * C

Vk = 2Ok * Uk - Wk,

w h e r e

Co - cos rrX, l/g0 = vo and U0 = 'vl

= [perrn(V _l), =

The three matrices Vk, U/~, Wk are rectangular ones and their sizes increase from
iteration to iteration. The rectangular matrix Wk depends on a permutation
of Vk's columns and communications between processor columns are necessary
for its construction. For a good load balancing of the cornputat, ion, we impose

148

the matrices Vk, Uk, ~ to have a column block size partitioning equal to 2. The
distribution we use for the computed Eourier's coefficients v~ avoid the necessary
communications for the bit-reversal that is the first step of the EFT.We present
the parallel algorithm in Tab.2.

For the parallel 1-D EFT [6], we use a communication computat ion overlap
algorithm.

/* Initialization
I/V 4- v0
U 4- Cvo + iSvo

V 4 - 2 C * U - W

/* Main loop
FOR. i = 1 TO log2(N/2) DO

C 4 - 2 C * C - I

W 4- [perm(V), W]
u 4- [u, v]
V 4- 2C , U - I/V

ENDFOR

*/

/* Parallel level 2 BLAS */
/* Parallel level 3 BLAS */

*/

/* Parallel level 3 BLAS */
/* update of W, send/recv between processor col.*/

/* update of W
/* Parallel level 3 BLAS */

Table 2. Algorithm for computing vj for j = 0 , . . . , N - 1.

For the last part of the algorithm, each processor selects the most useful corn-
puted vectors uk and forms a basis. When the number of selected vectors is less
than n, we use a parallel QR factorization in order to complete the basis, after
projection onto this basis, each processor solves its own small symmetr ic eigen-
value problem using a standard symmetr ic eigensolver (for example, DSYEV
fl'om LAPACK [1]).

5.2 Symmetric matrix-matrix product

In Section 3, we have shown that. the computat ional cost of the algorithm is
dominated by dense matr ix-matr ix multiplications. Thus, the performance of this
algorithm will depend heavily on the matr ix multiplication code. We need two
different types of mat r ix-matr ix products. The first one is the product between
symmetr ic and rectangular matrices and the second one is product between two
symmetr ic matrices which commute. So the result will be a symmetr ic matrix.
We want to develop a double precision distributed matr ix code for the symmetr ic
mat r ix product that take into account the special properties of these matrices
(which is not currently available in SeaLAPACK [.5]).

The algorithm below is based on an idea presented by Snyder in [12]. It uses a
block scattered distribution of the matrices. The whole matrices are distributed

149

and not only the upper or lower t r i angu la r par t . The symbols are the followings.

M is the m a t r i x size, distr ibut, ed on a P x Q grid of processors. The re are N~ x N6
blocks, and each processor has Pb x Pb blocks.

N b ~ M [~l
= r - f 1

/* Computation of the diagonal blocks of C */
FOR. i = 0 T O N b D O

cur_row = rood(i, P)
cur_col = rood(i, Q)

b,. = @1
b~_ = I~-1
IF (myzcol = cur_col) THEN

computes the diagonal blocks of C :
DSCMM ~ oeATb~ x B.,bc + ~Cb,.,bo --+ Cb~,bo
global sum of Cbr,bo :
DGSUM2D ~ the result is left on proc. (cur_row, cur_col)

ENDIF
ENDFOR
/* Computat ion of the blocks of the upper triangular part, of C */
F O R i = 0 T O N b - - 1 DO

cur_row = rood(i, P)
cur_col = rood(i, Q)

b,. = [@l
b~ = [~ 1
IF (my_col = cur_col) THEN

DGEBS2D => broadcasts A.,b~ to all processors of the cur_row row
computes the i th block row of the upper triang, part of C :
DGEMM ~ c~ATb~ X B.,(b~+l P~) q- f lObr , (bcq ' l Pb) -'+ Cbr,(bcq-1 eb)

global sum of Cb,,(bo+l Pb) :
DGSUM2D => the result is left on proc. (cur_row, rnpzo l)

ELSE
DGBH2D => receives A.,o~
computes the i th' block row of the upper triang, part of C :
DGEMM ~ r.~A~'b~ x B.,(b eb) + flC~,,(~ Pb) --+ C~r,(bo,...,Pb)
global sum of Cb~,(b eb) :
DGSUM2D => the result is left on proc. (cur_row, my_col)

ENDIF
ENDFOR
/* transpose and copy the upper triangular part of C in the lower par t .* /

T a b l e 3, Symmetric matrix multiplication algorithm.

In the first phase, the d iagona l blocks of the m a t r i x C are compu ted . Only
the upper t r i angu la r pa r t of each block is computed . For this, a F O R T l q A N
subrou t ine (SCMM) has been developed since no level 3 BLAS subrou t ine exists

150

to achieve such a computat ion. On the Intel Paragon, this compiled subroutine
is as efficient as the optimized level 3 BLAS subroutine.

Since the matrices are symmetric, each diagonal block is the product of two
block columns that are distributed on the same column of processors. But. after
the multiplication, each processor has a part of the result. Then, a global sum
on this colunm of processor gives the total result. For example, on a 2 x 3 grid,
the Cll block is the product, of column A1 by the column B.1 and these two
columns are distributed on processors 1 and 4. The result of the global sum is
left on processor 4 which owns the Cll block.

The second phase is hardly different from the first,. It computes the remaining
blocks of the upper triangular part of C. Therefore, the A and B block columns
to mult iply are not always on the same processors. For example, on a 2 x 3 grid,
C13 is the product of A.1 which is distributed on processors 1 and 4, and B3
which is on 0 and 3. Consequently, the A.i block column has to be broadcast
and multiplied by B (i N,,) to compute Ci,(i N,). As in the first part, each
processor has a partial result after the multiplication and a global sum is needed.

The last step consits to transpose the strictly upper tr iangular part of C in
order t,o obtain the full matrix.

The Fig. 7 shows a comparison between the PDGEMR routine that computes
a full matr ix multiplication and our routine. In solid line, this is the t ime in
seconds taken by PDGEFIM for different matr ix sizes. In dashed line, this is the
same for our routine. In dotted line, this is the division of the two times. We can
see tha t our code is very efficient, fbr large sizes. The ratio between a complete
and a symmetr ic product can even reach 2. With smaller matr ix sizes, the gain
decreases. A preliminary theoretical analysis shows that a ratio of 2 is not pos-
sible for small matr ix sizes. This is due to the block scattered distribution. Each
processor has not exactly the half of the computat ion to achieve a sy rnmet r i c
product. But. this ratio is above 1.5 most of the t ime whatever the matr ix size.

5.3 I m p l e m e n t a t i o n on the Intel Paragon

All the tests have been done on an Intel Paragon with 30 nodes. Each node is
composed of two i860, one for the computat ions and one for the cornmunications.
The nodes are connected by a bidirectional 2d-torus that. allows a sustained
bandwidth of 69 Mbytes and a latency of 60#s.

Preliminary results on the Paragon have been obtained (see Pig. 8 and Fig. 9).
Measures concern the main computat ional kernel of the code with the rnatrix-
matr ix product p d g e m m of ScaLAPACK.

Because of the large amount of memory needed for the Mgorithm, the max-
imum problem size is 256 on one processor and 512 on 4. Even if we have not
yet incorporated our symmetr ic matr ix-matr ix product, in the code, we obtain
an efficiency close to 1 and speed-up close to 4 for middle problem size (256) on
4 processors. For smaller problem sizes (50-100), the speed-up stays above 2.

Fig. 10 shows a comparison of the execution times between the ScaLAPACK
routine PDSYEVX and the main computat ional kernel of our code. The routine
PDSYEVX [8] is based on a bisection method followed by inverse iterations. We

151

12

10 2x2 processors : pdgemnl - -
2x2 processorsl[s: iXl: Iscmm

N_ 2x21 l~Igen~q~pd

N ~ ~ f l / / / / / j . .

200 300 400 500 600 700 800 900 lnnO 1100

n~atfix size (in double precision)

Fig. 7. Comparison between PDGEMM and symmetric matrix mult, iplication perfor-
mances.

conclude that our code may be competitive with the bisection method for the
computation of all the eigenvalues and all the eigenvectors.

Xl , o ~ e . . . -

20 / / ;

/ /

, C / '
/

J

0 = "-"
so 1oo iso 2oe 2so ~oo ~so 40o ~so ~oc .~so

_ m alril~ size (in dor.rbLe preoisiog)
F i g . 8. bSxecutmn tames tor a 2x2

grid according to t, he size of the ma-
t, rix on Paragon.

i 2.5

/; x , . / \ , J " "

/ / 'X , X ~ t % " , j '

2~x2 pro~2~er= : em~eney - -
/

/
/
i

/

t , r I i
so ,o~ 1so 2o~ ,"so ~a~

�9 . matrix size (in dr,ub e prer~sK, n)
Fig. 9. Efficmncy an~ speed up for
a 2x2 grid according to the size of
t, he mat, rix on Paragon.

6 C o n c l u s i o n

We studied a new approach to compute the eigenvalues and eigenvectors of a real
symmetric matrix. The algorithm parallelized in this paper is not, efficient, on a

152

160

140

~20

100

80

60

40

20

~

4x4 processors : Yau and Lu - -
4x4 pr uoessors : SoaLAPACK biseclion

//,"
/"

./ 1 "
.f-"

[f I

200 300 400

//
7 /

/
/

/
/ !

i / //

//////
//

I I

500 600 700

mat[{x size (in c[ouble precision)

Fig. 10. Execution times for PDSYEVX and Yau & Lu on a Paragon.

sequential nrachine but can fully take advantage of paralM machines because of
less data dependences and the use of matrix product, s as the most important corn-
puted kernel. We obtain good performances for our code concerning efficiency
and execution time. Theoritical study [14] showed that our code should scale
nicely on parallel machines with a very large number of processors. Of course,
the experiments carried out. with a grid of 2 x 2 processors are not conclusive in
this respect. That why we want to test our code on large size problems. Future
target machine are the SP2 and the T3D.

A c k n o w l e d g m e n t t would like to thank the referees and F. Desprez for their
helpful comment.s and suggestions.

R e f e r e n c e s

1. E. Anderson, Z. Bai, C. H. Bischof, J. W. Demmel, J. J. Dongarra, J. J. Du Croz,
A. GreenbauIn, S.J. Hammarling, A. McKenney, S. Ostrouchov, and D.C.
Sorensen. LAPACK Users' Guide,]~elease 2.0. Society for Industrial and Ap-
plied Mat.hematics, Philadelphia, PA, USA, second edition~ 1995.

2. Christian Bischof, William George, Steven Huss-Lederrnan, Xiaobai Slm, Anna
Tsao, and Thomas Turnbull. SYISDA users ' guide, Version 2.0. Technical re-
port, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, USA, 1995.

3. Christian Bischof, Steven Huss-Lederman, Xiaobai Sun, Anna Tsao, and Thomas
Turnbull. Parallel performance of a symmet.ric eigensolver based on the invariant
subspace decomposition approach. In proceedings of Scalable High Performance
Computing Con.[erence'9~, Knoxville, Tennessee, pages 32-39, May 1994. (also
PRISM Working Note #15.

153

4. Jaeyoung Choi, James Demmel, I. Dhillon, Jack J. Dongarra, Susan Ostrouchov,
Antoine P. Petitet, k. Stanley, David W. Walker, and R. Clint Whaley. ScaLA-
PACK: A portable linear algebra library for distributed memory computers - de-
sign issues and performances. LAPACK Working Note 95, Oak Ridge National
Laboratory, Oak Ridge, TN, USA, 1995.

5. Jaeyoung Choi, Jack J. Dongarra, Roldan Pozo, and David W. Walker. ScaLA-
PACK: A scalable linear algebra library for distributed memory concurrent com-
puters. Technical Report. CS-92-181, Department of Computer Science, University
of Tennessee, Knoxville, TN, USA, November 1992. LAPACK Working Note 55.

6. C.W. Cooley and J.W. Tuckey. An Algorithm for the Machine Calculation of
Complex Fourier Series. Math. Comput., 19:297-301, 1965.

7. J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal
eigenproblem. Numer. Math., 36:177 195, 1981.

8. James W. Demmel and K. Stanley. The performance of finding eigenvalues and
eigenvectors of dense symmetric matrices on distributed memory computers. Tech-
nical Report CS-94-254, Department of Computer Science, University of Tennessee,
Knoxville, TN, USA, September 1994. LAPACK Working Note 86.

9. J. Dongarra and D. Sorensen. A fully parallel algorithm for the symmetric eigen-
value problem. SIAM J. Sci. Stat. Comput., 8:139-154, 1987.

10. D. Gim~nez, R. van de Geijn, V. Hern~ndez, and A. M. Vidal. Exploiting the
symmetry on the jacobi method on a mesh of processors. In 4th EUROMICRO
Worshop on Parallel and Distributed Processing, Braga, Portugal, 1996.

11. Gene H. Golub and Charles P. Van Loan. Matriz Computations. Johns Hopkins
University Press, Baltimore, MD, USA, second edition, 1989.

12. C. Lin and L.Snyder. A matrix product, algorithm and it.s comparative pertormance
on hypercubes. In Scalable High Performance Computing Conference SHPCC92,
pages 190-193. IEEE Computer Society, 1992.

13. Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Engle-
wood Cliffs, N J, USA, 1980.

14. Makan Pourzandi and Fran~oise Tisseur. Parallhlisation d'une nouvelle m~thode
de recherche de valeurs propres pour des matrices rfielles symfitriques. Report
TR94-37, LIP, ENS Lyon, 1994.

15. Oscar Rojo and Ricardo L. Soto. A decreasing sequence of eigenvalue localization
regions. Linear Algebra and Appl, 196:71-84, 1994.

16. Shing-Tung Yau and Ya Yah Lu. Reducing the symmetric matrix eigenvalue prob-
lem to matrix multiplications. SIAM J. Sci. Comput., 14(1):121-136, 1993.

