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Abstrac t .  In this paper, we present preliminary results on a complet.e 
eigensolver based on the Yau and Lu method. We first give an overview of 
this invariant subspace decomposition method for dense symmetric ma- 
t.rices followed by numerical results and work in progress of a distributed- 
memory implementation. We expect that the algorithm's heavy reliance 
on matrix-matrix multiplication, coupled with FFT should yield a highly 
parallelizable algorithm. We present performance results for the domi- 
nant computation kernel on the Intel Paragon. 

1 I n t r o d u c t i o n  

As quantitative analysis becomes increasingly important  in sciences and engi- 
neering, the need for faster methods to solve bigger and more realistic problem 
grows. Large order symmet, ric eigenvalues problems occur in a wide variety of 
applications, including the dynamic analysis of large-scale structures such as 
aircraft, and spacecraft, the prediction of structural responses in solid and soil 
mechanics, the study of solar convection, the modal analysis of electronic circuits, 
and the statistical analysis of data. 

There are many algorithms for solving the symmetric eigenvalue problem 
[13]. Much recent work has been devoted on parallel solvers, both on traditional 
methods [8, 9, 10] and in the development of new methods [3, 7]. The traditional 
method for computing the eigensystem of a real dense syrnmetric matrix A 
consists in three steps [11]. First, A is reduced to tridiagonal form. Second, the 
eigenvalues and eigenvectors of the tridiagonal matrix are computed. Third, the 
eigenvectors are back transformed via the reduction transformation. 

In this paper, we investigate the parallelization of a new eigensolver for real 
dense symmetric matrices. Our algorithm is based on a recent method attr ibuted 
to Yau and Lu [16], which reduces the symmetric eigenvalue problem t.o a number 
of matr ix multiplications. Yau and Lu's method involves approximating invariant 
subspaces of a special matrix using an FFT. The computation of the special 

* This work is partly supported by the European project KIT 108 and Eureka Euro- 
TOPS project. 
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matr ix  and the vectors for the FFT  is rich in matr ix-rnatr ix multiplications 
Matrix multiplications can be implemented efficiently on most high-performance 
machines, and is often available as an optimized implementat ion in a level 3 
BLAS library [2, 4]. 

The rest of this paper will give an overview of the Yau and Lu's method.  
We will present the algorithm and valid it with numerical results. Then, we will 
investigate the parallelization of this new eigensolver and present performance 
results for the dominant computat ion kernel on the Intel Paragon. 

2 Y a u  a n d  L u  m e t h o d  

For computing invariant subspaces of a symmetr ic  n x n matr ix  A with eigen- 
values A1, . . . ,A~ and eigenveetors x l , . . . , x , . ,  Yau and Lu use a polynomial  
acceleration method. 
Consider the unitary matr ix  B = e iA whose eigenvalues all lie on the unit circle. 
Note that  A and B have the same invariant subspaces. 

N - 1  

Let PN(Z) = E ~JZJ be a polynomial of degree N - 1 that  has a peak at 
j = 0  

z = 1 and is close to zero on the unit circle away from a vicinity of z = 1. Such 
a polynomial exists and it.s coefficients Sj, j = 0, N - 1 can be obtained by a 
recursive tbrmula (see [16]). 
Starting from an initial vector expanded in terms of the eigenvectors as v0 = 
~ i=1  a, ixi, we can define the function ,u : [0, 2re) --+ ff~" by 

n 

j = l  

If A is chosen close to a particular Ak and the other eigenvalues of B are not 
close to )~ then the coefficient of x j  will be small except when j = k. Thus, u(A) 
can be viewed as an approximation of the eigenvector of B associated with the 
eigenvMue e i A k  . 

Setting v:i = BJvo, the function u( t )  can be written as 

N - 1  N - 1  

= = = Z 
j = 0  j = 0  

where f l ivj  are the Fourier coefficients of u. Therefore, the FFT  can be used 
to compute u()~) at many different values of ~ simultaneously. Then, we need 
to select vectors u(k) that  can be taken as eigenvectors, group them into p 
orthogonal clusters and add more vectors if necessary. These p clusters form an 
orthogonal basis W = [W~, . . . ,  Wp] whose elements span invariant subspaces of 
A and hence, application of A to W decouples the spectrum : 0) 

W ' r A W  = ... . 

Ap 
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So, the initial problem is reduced to a small symmetric matrix eigenvalue problem 
in each cluster. Note that the subproblems A1, . . . ,  Ap can be solved totally 
independently. The algorithm is presented in next. section. 

3 N u m e r i c a l  a lgor i thm 

Consider a real symmetric matrix A. The following steps find the eigenvalues 
and eigenveetors of A to the desired precision. 

1- Sca l ing  a n d  T r a n s l a t i o n :  Compute upper and lower bounds of the spec- 
t rum of A and use these bounds to scale and translate the spectrum of A in 
[o, 2~). 
2- P o l y n o m i a l  c o m p u t a t i o n :  Let TN_ 1 be the Chebyshev polynomial of de- 
gree N - 1. The degree N is chosen such that 

1 

TN-1 ((3 -- COS ~)/(Zn +COS~)) -< ~;' 

where re is a measure of the desired accuracy of t.he computed invariant subspace. 

Compute the coefficients f l~N-1), . . . ,  fl(xN11) of the polynomial PN by the recur- 
sive formulas : 

where 

f l(k+l) aft} k) -F 2bfl}, k) - ~k-1) Q 

PlR<k+I) : a (2fl;k) jr_ fl~k)) _[_ 2bfllk) _ fllk-1) 

{ = a  23;s "4- ~}~)1 -]- 2bfl] k ) -  ~.}k-l) for j > 1 

~I ~'+1) = 0 for j > k.+ 1. 

2 1 - cos(Tr/n) 
a-- b-- 

i + cos(~/,,) 1 + c o s ( H . )  ' 

3- U n i t a r y  m a t r i x :  Compute matrices cos (rrX) and X -~ sin(rrX) where X = 
A 
-- - I using the following Chebyshev expansion : 
7r 

cos(~x) _ c0 + ClT~(x) + ~:.,T4(x) + . . - +  ~;,d40(,) 

+T10 (c6T2(,)  + c7T4(x) + . . .  + ~-10Tl0(x)) 
s i n ( ~ )  
- -  ~- .~0 + .~IT.,(~) + .~=r4(x) + . . .  + .~T~0(x) X 

+17]o (sGT;(x) + sTT4(x) + . . .  + s~oTlo(X)), 

where co,. . . ,  clQ, so, . . . ,  Sl0 are Chebyshev coefficients. 
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4-  C o m p u t a t i o n  of  v e c t o r s  vj = eijAvo, j = 0, 2 N - 1  The real and imaginary 
part  of v~ are obtained with the approximation of cos (rrX) and X -~ sin(TrX) : 

'vl = cos (rrX)vo + X -1 s in ( rcX) (Xvo) .  

The remaining vectors can be computed following these M = (log~ N - 1) steps: 
step I : C1 = cos(A) 

v2 = 2 C l V l  - v0 

step ~ ." c . ,  : "2c~ - ] 

('U:3, '/)4) ~'~ 2 C 2 ( V l ,  v2) - -  ( v i i  vo) 

step 3 �9 

s t e p M :  C p = 2 C ~ _ ~ - I  

( ~ ) @ - { - I ' ' ' ' ' V N )  = 2Cp(v l , ' ' ' , 'UN)  - ( ' / )N_I  , . , , V 0 ) .  

5 E v a l u a t i o n  o f  u(A): Via the FFT, compute the vectors 

N - 1  

E - i  'k~-z ~ = ~(~)~=_~ = s~  9 j ~  ~ ,  for k = 0 , . . . ,  2N  - 1. 
j=0 

6- S e l e c t i o n  a n d  r e f i n e m e n t "  Select. the most  useful vectors from the 2N 
vectors u 0 , . . . ,  v'~N-1. Group them into a number of orthogonal clusters, add 
more vectors if necessary and reduce the initial problem to a small symmetr ic  
matr ix  eigenvalue problem in each cluster. 

The most t ime consuming part  of the algorithm is the computat ion of the 2N 
vectors vj. We need log 2 N - 1 multiplications of real symmetr ic  rna{.rices and 
log 2 N - 1 more multiplications between a symmetr ic  matr ix  and a rectangular 
one. This part  needs (log2(N) - 1)n a + 4 N n  2 floating point operations. The 
computat ion of e IA to the desired accuracy requires 6 multiplications of real 
symmetr ic  matrices for Ccosr~X and one more for S = X -1 sin reX, that  is, 7n :~ 
operations. The step of computing the uk is still efficient, because of the F F T  
algorithm and can be done in n N  logs(N ) operations. When necessary, the work 
for the supplementary vectors involves 8 3 5n more operations since we need to 
construct an orthogonal matr ix  by a QI:(. factorization. The reduction 1 4 f r A W  

involves two matr ix  multiplications or 3n a operations. Usually, the subproblems 
in each cluster only involve small matrices and the cost. is negligible compared 
to the total  work. So, the total number of operations is given by 

(17 
3 + l~ + 4Nn2 + O(n2)" 

Since N is typically a small multiple of n, we see from this operation count that  
the sequential complexity of the Yau and Lu algorithm is considerably greater 
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than the QFI. algorithm. However, note that steps 3,4 and 6 of the algorithm are 
all based on matr ix-matr ix multiplications and if we suppose that N _~ 8n then 

Total operations involving matrix multiplications 

Total operations 
35 + 3 log2 (n) > 

- 3 8 §  2(n) '  

So, for matrices of dimension between 500 and 1000, we find that  matr ix mul- 
tiplications account for more than 90% of the total operation count. For larger 
dimensions of the matrix A, this percentage will of course increase. The efficiency 
of level ;~ BLAS routines can justify the use of the extra multiplications. The 
IReuse-Flatio defined by the rapport between the number of flops and the size of 
memory reference bounds the performances. Its value is 2/3 for level 1 BLAS, 
2 for level 2 BLAS and n/2 for level 3 BLAS. So, high level BLAS 3 improve 
performances. 

4 N u m e r i c a l  resul ts  

All the test results presented in this section where pertbrrned on a SUNsparc 
512, MP. The arithmetic was IEEE standard double precision with a machine 
precision of e = 2 .53 _~ 2.22044 x 10 -16 and over/underflow threshold 10 J:a~ 

We have tested our algorithm on a large set of test matrices using the LAPACK 
[1] test. generation routine DLATMS. This routine constructs symmetric matrices 
of the form 

A = U T D U  

where U is a random orthogonal matrix and D = diag(A1,. . . ,  A,.) a diagonal 
matrix. We can define the elements of D and then simulate more or less critical 
situations that. is, Well separated spectrum, clusters of eigenvMues, . . . .  

We quantified accuracy in the computed eigenvalues by computing the rela- 
tive error 

I n a X  

where )~i denotes an exact eigenvalue and -~i the corresponding computed eigen- 
value (see Fig.l).  

Accuracy in the residuMs for a given matrix A is quantified by computing 
the maximum normalized 2-norm residual 

- 

max , with 1l~r = 1 
IIAIIF 

where xi is the computed eigenvector corresponding to the computed eigenvMue 
~i (see Fig.2). 

We. have computed (see Fig. 3) the departure from orthogonality given by 

max ] (QTQ _ i,.)~j [ 
i,j 
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Fig. 3. Departure from orthogonality for dense symmetric matrices. 

where Q is the matr ix  of eigenvectors. 
The accuracy of invariant subspaces is controlled in step 2 of the algorithm. 

As we have chosen N such that, ec _< 10 ..9 we expect, at, most nine corrects 
significant, digits for the eigenvectors. If we choose N such that  r~ _< 10 -16, we 
increase the computat ional  cost but, obtain better  accuracy (see Fig. 4 and Fig. 
5). 

5 P a r a l l e l  i m p l e m e n t a t i o n  

There are two forms of parallelism in the Yau and Lu rnethod. The first one 
corresponds to data  parallelism with the heavy reliance on matrix-n~latrix multi- 
plications. The second one is a kind of functional parallelism with the reduction 
of the initial problem to a number of small symmetr ic  eigenvalue problems that  
can be solved totally independently on each processor. That, is why we say that  
Yau and Lu method yields to a highly parMlelizable algorithm. 
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5.1 P a r a l l e l  Y a u  a n d  L u  a l g o r i t h m  
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Fig. 6. Block cyclic distribution on a 2x2 processor grid. 

For an es t imat ion of the upper and lower bound of the spec t rum of A we use 
a rnethod developed by Rojo and Soto [15]. This me thod  is based on matr ix  
mult ipl icat ions but. does not increase the total  number  of operat ions since the 
computed  mat r ix -mat r ix  product, is reused for the construct ion of C and ,5. 

We prefer to focus our paraltelization on the most  cost effective par t  of the 
algori thm, that. is the construct ion of the matrices C, ,S ~ and the Fourier 's  coetfi- 
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cients. In order to ensure a good load balancing, performance and scalability of 
our code, we use a 2-dimensional block cyclic distribution on a P x Q processor 
grid (see Fig.6). This kind of distribution encompasses a large number (but not 
all) data distribution schemes. 

/*Construction of TI, T2, T4, T,~, 2/'10. 
T 2 + - 2 A * A - I  

FOR i=4 TO 10 STEP 2 
Ti +-- 2 Ti-2 * T2 - Ti-4 

ENDFOR 
/*Chebyshev expansion of C and S 
C +-- col 

S e- so l  

FOIl, i=1 TO 5 
C ~ c~T~ + C 
S +-- s~T2i + S 

C C  ~ ci+sT2i + C C  

SS  ~-- si+sZ2i 4 -SS  
ENDFOR 
C := - T l o  * C C  + C 
,5' :=  -T10 * S o  e 4- S 

, /  

/* Parallel level 3 BLAS */ 

/* Parallel level 3 BLAS */ 

, /  

/* Parallel level 3 BLAS */ 
/* Parallel level 3 BLAS */ 

Table 1. Algorithm for computing C and S. 

In Tab.l ,  we present the parallel algorithm for the computation of the ma- 
trices C = cosrcX and S = X -1 sinrrX which defined the unitary matrix e iA.  

It is only based on 7 calls of parallel level 3 BLAS. ..- 
The computation of Fourier's vectors is the most cost effective part. in corn- 

putation and communication times. At each step k, k = 1 , . . . , l o g ; ( N / 2 ) ,  the 
following matrix-matrix multiplication is performed: 

Ck 2Ck-1 * C  

Vk = 2Ok * Uk - Wk, 

w h e r e  

Co - cos rrX, l/g0 = vo and U0 = 'vl 

= [perrn(V _l), = 

The three matrices Vk, U/~, Wk are rectangular ones and their sizes increase from 
iteration to iteration. The rectangular matrix Wk depends on a permutation 
of Vk's columns and communications between processor columns are necessary 
for its construction. For a good load balancing of the cornputat, ion, we impose 



148 

the matrices Vk, Uk, ~ to have a column block size partitioning equal to 2. The 
distribution we use for the computed Eourier's coefficients v~ avoid the necessary 
communications for the bit-reversal that  is the first step of the EFT.We present 
the parallel algorithm in Tab.2. 

For the parallel 1-D EFT [6], we use a communication computat ion overlap 
algorithm. 

/* Initialization 
I/V 4- v0 
U 4- Cvo + iSvo 

V 4 - 2 C * U - W  

/* Main loop 
FOR. i = 1 TO log2(N/2 ) DO 

C 4 - 2 C * C - I  

W 4- [perm(V), W] 
u 4- [u, v ]  
V 4- 2C , U - I/V 

ENDFOR 

*/ 

/* Parallel level 2 BLAS */ 
/* Parallel level 3 BLAS */ 

*/ 

/* Parallel level 3 BLAS */ 
/* update of W, send/recv between processor col.*/ 

/* update of W 
/* Parallel level 3 BLAS */ 

Table  2. Algorithm for computing vj for j = 0 , . . . ,  N - 1. 

For the last part  of the algorithm, each processor selects the most  useful corn- 
puted vectors uk and forms a basis. When the number of selected vectors is less 
than n, we use a parallel QR factorization in order to complete the basis, after 
projection onto this basis, each processor solves its own small symmetr ic  eigen- 
value problem using a standard symmetr ic  eigensolver (for example, DSYEV 
fl'om LAPACK [1]). 

5.2 Symmetric  matrix-matrix product 

In Section 3, we have shown that. the computat ional  cost of the algorithm is 
dominated by dense matr ix-matr ix  multiplications. Thus, the performance of this 
algorithm will depend heavily on the matr ix  multiplication code. We need two 
different types of mat r ix-matr ix  products. The first one is the product between 
symmetr ic  and rectangular matrices and the second one is product between two 
symmetr ic  matrices which commute.  So the result will be a symmetr ic  matrix.  
We want to develop a double precision distributed matr ix  code for the symmetr ic  
mat r ix  product that  take into account the special properties of these matrices 
(which is not currently available in SeaLAPACK [.5]). 

The algorithm below is based on an idea presented by Snyder in [12]. It uses a 
block scattered distribution of the matrices. The whole matrices are distributed 
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and not  only  the  upper  or lower t r i angu la r  par t .  The  symbols  are the followings.  

M is the m a t r i x  size, distr ibut,  ed on a P x Q grid of  processors.  The re  are N~ x N6 
blocks, and each processor  has Pb x Pb blocks. 

N b  ~ M [~l 
= r - f 1  

/* Computation of the diagonal blocks of C */ 
FOR. i = 0 T O  N b D O  

cur_row = rood(i, P)  
cur_col = rood(i, Q) 

b,. = @1 
b~_ = I~-1 
IF ( myzcol  = cur_col ) THEN 

computes the diagonal blocks of C : 
DSCMM ~ oeATb~ x B.,bc + ~Cb,.,bo --+ Cb~,bo 
global sum of Cbr,bo : 
DGSUM2D ~ the result is left on proc. (cur_row, cur_col) 

ENDIF 
ENDFOR 
/* Computat ion of the blocks of the upper triangular part, of C */ 
F O R i = 0 T O  N b - - 1  DO 

cur_row = rood(i, P)  
cur_col = rood(i, Q) 

b,. = [@l 
b~ = [ ~ 1  
IF ( my_col = cur_col ) THEN 

DGEBS2D => broadcasts A.,b~ to all processors of the cur_row row 
computes the i th  block row of the upper triang, part  of C : 
DGEMM ~ c~ATb~ X B.,(b~+l ..... P~) q- f lObr , (bcq ' l  ..... Pb) -'+ Cbr,(bcq-1 ..... eb) 

global sum of Cb,,(bo+l ..... Pb) : 
DGSUM2D => the result is left on proc. (cur_row, rnpzo l )  

ELSE 
DGBH2D => receives A.,o~ 
computes the i th' block row of the upper triang, part  of C : 
DGEMM ~ r.~A~'b~ x B.,(b ...... eb) + flC~,,(~ ...... Pb) --+ C~r,(bo,...,Pb) 
global sum of Cb~,(b ...... eb) : 
DGSUM2D => the result is left on proc. (cur_row, my_col) 

ENDIF 
ENDFOR 
/* transpose and copy the upper triangular part  of C in the lower par t .* /  

T a b l e  3, Symmetric matrix multiplication algorithm. 

In the  first phase,  the  d iagona l  blocks of the  m a t r i x  C are compu ted .  Only  
the  upper  t r i angu la r  pa r t  of each block is computed .  For this,  a F O R T l q A N  
subrou t ine  (SCMM) has been developed since no level 3 BLAS subrou t ine  exists  
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to achieve such a computat ion.  On the Intel Paragon, this compiled subroutine 
is as efficient as the optimized level 3 BLAS subroutine. 

Since the matrices are symmetric,  each diagonal block is the product of two 
block columns that  are distributed on the same column of processors. But. after 
the multiplication, each processor has a part  of the result. Then, a global sum 
on this colunm of processor gives the total  result. For example, on a 2 x 3 grid, 
the Cll  block is the product, of column A1 by the column B.1 and these two 
columns are distributed on processors 1 and 4. The result of the global sum is 
left on processor 4 which owns the Cll block. 

The second phase is hardly different from the first,. It computes the remaining 
blocks of the upper triangular part  of C. Therefore, the A and B block columns 
to mult iply are not always on the same processors. For example, on a 2 x 3 grid, 
C13 is the product of A.1 which is distributed on processors 1 and 4, and B3 
which is on 0 and 3. Consequently, the A.i block column has to be broadcast 
and multiplied by B ( i  ..... N,,) to compute Ci,(i ..... N,). As in the first part,  each 
processor has a partial result after the multiplication and a global sum is needed. 

The last step consits to transpose the strictly upper tr iangular part  of C in 
order t,o obtain the full matrix.  

The Fig. 7 shows a comparison between the PDGEMR routine that  computes 
a full matr ix  multiplication and our routine. In solid line, this is the t ime in 
seconds taken by PDGEFIM for different matr ix  sizes. In dashed line, this is the 
same for our routine. In dotted line, this is the division of the two times. We can 
see tha t  our code is very efficient, fbr large sizes. The ratio between a complete 
and a symmetr ic  product can even reach 2. With smaller matr ix  sizes, the gain 
decreases. A preliminary theoretical analysis shows that  a ratio of 2 is not pos- 
sible for small matr ix  sizes. This is due to the block scattered distribution. Each 
processor has not exactly the half of the computat ion to achieve a sy rnmet r i c  
product.  But. this ratio is above 1.5 most of the t ime whatever the matr ix  size. 

5.3 I m p l e m e n t a t i o n  on the  Intel  Paragon 

All the tests have been done on an Intel Paragon with 30 nodes. Each node is 
composed of two i860, one for the computat ions and one for the cornmunications. 
The nodes are connected by a bidirectional 2d-torus that. allows a sustained 
bandwidth of 69 Mbytes and a latency of 60#s. 

Preliminary results on the Paragon have been obtained (see Pig. 8 and Fig. 9). 
Measures concern the main computat ional  kernel of the code with the rnatrix- 
matr ix  product p d g e m m  of ScaLAPACK. 

Because of the large amount  of memory  needed for the Mgorithm, the max-  
imum problem size is 256 on one processor and 512 on 4. Even if we have not 
yet incorporated our symmetr ic  matr ix-matr ix  product, in the code, we obtain 
an efficiency close to 1 and speed-up close to 4 for middle problem size (256) on 
4 processors. For smaller problem sizes (50-100), the speed-up stays above 2. 

Fig. 10 shows a comparison of the execution times between the ScaLAPACK 
routine PDSYEVX and the main computat ional  kernel of our code. The routine 
PDSYEVX [8] is based on a bisection method followed by inverse iterations. We 
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Fig.  7. Comparison between PDGEMM and symmetric matrix mult, iplication perfor- 
mances. 

conclude that our code may be competitive with the bisection method for the 
computation of all the eigenvalues and all the eigenvectors. 
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6 C o n c l u s i o n  

We studied a new approach to compute the eigenvalues and eigenvectors of a real 
symmetric matrix. The algorithm parallelized in this paper is not, efficient, on a 
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Fig. 10. Execution times for PDSYEVX and Yau & Lu on a Paragon. 

sequential nrachine but can fully take advantage of paralM machines because of 
less data dependences and the use of matrix product, s as the most important  corn- 
puted kernel. We obtain good performances for our code concerning efficiency 
and execution time. Theoritical study [14] showed that our code should scale 
nicely on parallel machines with a very large number of processors. Of course, 
the experiments carried out. with a grid of 2 x 2 processors are not conclusive in 
this respect. That  why we want to test our code on large size problems. Future 
target machine are the SP2 and the T3D. 

A c k n o w l e d g m e n t  t would like to thank the referees and F. Desprez for their 
helpful comment.s and suggestions. 
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