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Abstract

We describe the linear and nonlinear stability and insitstof certain configurations of point
vortices on the sphere forming relative equilibria. Thesefigurations consist of up to two rings,
with and without polar vortices. Such configurations havedral symmetry, and the symmetry
is used both to block diagonalize the relevant matrices amfistinguish the subspaces on which
their eigenvalues need to be calculated.

1 Introduction

Since the work of Helmholtz [H] systems of point vortices on the plane haga bridied as finite-
dimensional approximations to vorticity dynamics in ideal fluids. For a geseraky of patterns of
point vortices see [ANSTV]. Point vortex systems on the sphere, intextiby Bogomolov [B77],
provide simple models for the dynamics of concentrated regions of vortiaitll, &s cyclones and hur-
ricanes, in planetary atmospheres. In this paper we consider a ndingaphere, since the rotation
of the sphere induces a non-uniform background vorticity which malesvttole system infinite-
dimensional.

As in the planar case, the equations governing the motioN pbint vortices on a sphere are
Hamiltonian [B77] and this property has been used to study them from a mwhUéferent view-
points. Phase space reduction shows that the three vortex problem itetalynmtegrable on both
the plane and the sphere: the motion of three vortices of arbitrary vorticity sghere is studied
in [KN98]. The stabilities of some of the relative equilibria described in [KN&& computed in
[PM98] and numerical simulations are presented in [MPS99]. The existehwelative equilibria
of N vortices is treated in [LMRO01], and the nonlinear stability of a latitudinal rindNaflentical
vorticities is computed in [BCO3], and independently in the present papédact the linear stability
results of such as ring obtained by [PD93] coincide with the Lyapunoviisyaiesults. The stability
of a ring of vortices on the sphere together with a central polar vortex isestun [CMS03], and
again independently in the present paper, though with different methadgdffferent results!). The
existence and nonlinear stability of relative equilibriaNoortices of vorticity+1 together withN
vortices of vorticity—1 are studied in [LP02]. It has also been proved in [LP] that relativalibga
formed of latitudinal rings of identical vortices for the non-rotating splpemsist to relative equilibria
when the sphere rotates. However, the question of stability becomes mueldetiocate: for motions
that are not relative equilibria, the vorticity of a point vortex is no longesprved as it interacts with
the background vorticity, and the problem becomes fundamentally infiniterdiomal. In [Ku04]
Kurakin studies the stability of equilibrium configurations of identical vortiglesed at the vertices
of regular polyhedra; he finds that the tetrahedron, octahedron asahiedron are stable, while the
other two are unstable. Finally, studies of periodic orbits of point vortioethe sphere can be found
in [ST, ToO01, LPth, LP04].
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Our study of the stability of relative equilibria is based on the symmetries of thiersy and
especially the isotropy subgroups of the relative equilibria. The Hamiltoniavasiant under ro-
tations and reflections of the sphere and permutations of identical vortimegever, some of these
symmetries (eg reflections) are not symmetries of the equations of motion: ringyna-reversing
symmetries. From Noether’s theorem, the rotational symmetry provides tbnserved quantities,
the components of the momentum nap P — R3 whereP is the phase space.

Relative equilibria are dynamical trajectories that are generated by the afte 1-parameter
subgroup of the symmetry group. More intuitively, they correspond temotions of the point
vortices which are stationary in a steadily rotating frame. In other wordantiten of a relative
equilibrium corresponds to a rigid rotation Nf point vortices about some axis (which we always
take to be the-axis). In the same way as equilibria are critical points of the HamiltoHiarelative
equilibria are critical points of the restrictions Hf to the level setspb~1(u). Section 2 is devoted
to a description of the system of point vortices on the sphere, and to aneoatlstability theory
for relative equilibria. The appropriate concept of stability for relatigeilbria of Hamiltonian
system is Lyapunov stabilittnodulo a subgroupThe stability study is realized using on one hand
theenergy-momentum methffa92, Or98] which consists of computing the eigenvalues of a certain
Hessian, and leads twnlinear stability results, and on the other hand a linear study computing the
eigenvalues of the linearization of the equations of motion. To both thesewadidock-diagonalize
these matrices using a suitable basis symametry adapted bagiSection 3), which makes use of the
specific dihedral symmetry of the relative equilibrium. This is equivalent tngdhat the matrices
(or certain submatrices) amrculant, as noticed in [CMS03]. However, the symmetry is also used
to apply the energy-momentum method as it helps distinguish on which subspanputations are
needed.

The remaining five sections each treat one of five different types divekquilibria, consisting of
rings of identical vortices together with possible vortices at the poles,euwistence were proved in
[LMRO1]. The notation for the different configurations is taken fromshme source and is described
at the end of the introduction. We now outline the main stability results.

We begin in Section 4 by computing the stability of the relative equilibria consisfimgsingle
ring of identical vortices, a configuration denotéd,(R) (Figure 1.1(a)). We show in Theorem 4.2
that forn > 7, they are unstable for all co-latitudes of the ring, whilerict 7 there exist ranges of
Lyapunov stability when the ring is near a pole. These results are not?ie@3], BC03], but serve to
demonstrate the method used in later sections.

In Section 5, we study the stability of the relative equilib@ia,(R, p) (Figure 1.1(b)) which are
configurations formed of a ring ofidentical vortices together with a polar vortex. For 7 they are
all unstable if the vorticity of the polar vortex has opposite sign to that of the ring. However if the
vorticities have the same sign then for each co-latitude of the ring there exatga ofk for which
the relative equilibrium is Lyapunov stable. Adding polar vortices can foerstabilizethe unstable
pure ring relative equilibria. The detailed results are contained in Thebr2nits corollary and the
following discussion. Our results are consistent with those of [CMSG3iéafrom an error in their
Figure 7 where the wrong curves are plotted), though the present nsedh@dtronger as they give
more regions of stability than obtained in [CMS03]—see Remark 5.4.

In Section 6 we obtain analytic (in)stability criteria for the relative equilil@jg(R, 2p) which are
configurations formed of a ring afidentical vortices together wittwo polar vortices, but only with
respect to certain modes ¥ 2). As in the case of a single polar vortex, the two polar vortices play
the role of control parameters for the stability. The details are containedsiorém 6.2. A numerical
investigation is needed for the remaining=£ 1) mode in order to provide stability criteria; this is
being pursued separately.
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Figure 1.1: TheC,(R) andCy(R, p) relative equilibria.
(Crw(R,2p) has a vortex at the South pole as well.)

Finally, in Sections 7 and 8 we investigate configurations formed of two rihgsharary vor-
ticities (each ring, as always, consisting of identical vortices). In [LMROwas shown that two
rings ofn vortices can be relative equilibria if and only if they are either aligned ogstiagl. These
two arrangements are denot€g,(2R) andC,(R,R) respectively (see Figure 1.2). Here we show
that for almost all pairs of ring latitudes there is a unique ratio of the ring voescfor which these
configurations are relative equilibria. Numerical computations of their stabiktiggest that these
relative equilibria can only be stablenf< 6, and in the aligned case the two rings must be close to
opposite poles, and hence have opposite vorticities. In some casegrsthgggs may also be stable
when in the same hemisphere.

In principle the method applies to larger numbers of rings but the algeb@itgon of diagonaliz-
ing the matrices in general becomes intractable; however numerical stadjsticular (numerical)
values of the vorticities in the rings would be feasible.

Symmetry group notation All possible symmetry types of configurations of point vortices on the
sphere were classified in [LMRO1]. The symmetry group of the systemtieedbrm Q3) x S, where
Sis a group of permutations, and a particular configuration with symmetry, tofse subgroup
> < O(3) x Sis denoted™ (A), whererl is the projection of to O(3) and A represents the wa¥
permutes the point vortices. The classiBatonflies-Eyringnotation for subgroups of @) is used.

In this paper we single out configurations consisting of concentric rihgkeatical vortices, with
the same number of vortices in each ring, and with possible polar vorticeseTonfigurations have
cyclic symmetry (in the “horizontal plane”), and the $diflies-Eyring notation for this subgroup of
0O(3) isC, < SO(3). In fact we only consider the cases where the rings are either aligresddttices
lie on the same longitudes) or staggered (they lie on intermediate longitudes phatse byrt/n). In
this case the symmetry group is the lardéredralgroupC;, (n being the number of vortices in each
ring, andv denoting the fact that there are vertical planes of reflection). For cuefigurations, we
write Cny(K1R, k2R, kpp) to mean that there akg = ki + ko rings andk,, polar vortices. The difference
betweenR andR is that thek; rings R are aligned and thHe rings R are staggered with respect to
the first (and so aligned with each other). Of colkse- 0,1 or 2.
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Figure 1.2: Configurations of typ&,,(2R) (2 aligned rings) an€,,(R R) (2 staggered
rings). (Heren = 4 of course.)

2 Point vortices on the sphere and stability theory

In this section we briefly recall that the system of point vortices on a sghem-body Hamiltonian
system with symmetry and we review the stability theory for relative equilibria.

2.1 Point vortices

Considem point vorticesxy, ..., X, € S with vorticitiesky, ..., K, € R. Let6;, @ be respectively the
co-latitude and the longitude of the vortgx The dynamical system is Hamiltonian with Hamiltonian
given by

H = =% Kik;jIn(1— cosd;cosh; — sinG; sin6j cog @ — ;)

i<j

and conjugate variables given by= \/|;|cos8; andp; = sign(ki)/|Ki|@.

The phase spaceB= {(X1,..., %)) € ¥ x --- x | % #£X; if i # j} endowed with the symplectic
form w= ¥;K;sin6; d6; Ad@. The Hamiltonian vector fielky satisfiesw( - , Xy (X)) = dHx. If we
considers? as a subset dk3, so the vorticeg; € R3, then we obtain

% = X = Y K 22 =1\, 2.1)

H = =% kikjIn(|x —x[|/2).
i<]
It follows thatH is invariant under the action of(@). The symplectic form is S@) invariant and so
Xn is SQ(3)-equivariant. The reflections in(B) reverse the sign of the symplectic form and so are
time-reversing symmetries o§;. MoreoverH, w andXy are all invariant or equivariant with respect
to permutations of vortices with equal vorticity.
The rotational symmetry implies the existence of a momentumap — so(3)* ~ R3:

N
d(x) = Y Kix; (xje LCR?
; iX] j
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which is conserved under the dynamics. In other words each of the dbreponents ofp(x) is a
conserved quantity.

2.2 Relativeequilibria

A point xe € P is a relative equilibrium if and only if there exisEsc so(3) ~ R? (the angular ve-
locity) such thatxe is a critical point of the functiorHg (x) = H(x) — (®(x),§), where the pairing
(, ) betweenR3 and its dual is identified with the canonical scalar producRénEquivalently, rel-
ative equilibria are critical points of the restriction Ffto ®~1(), since the level se®d—1(p) are
always non-singular for point vortex systems of more than two vorticks.flinctionH; is called the
augmented Hamiltonian

Since the momentum is conserved, we can choose a frani*feuch thatd is parallel to the
z-axis (provided the momentum is non-zero). It follows from the symmetryttieaangular velocity
& € R3is also parallel to the-axis. We can therefore identifyand® with their z-components and
the augmented Hamiltonian becomes simglyx) = H(x) — EP(x).

Let f : P — R be aK-invariant function withK a compact group. Recall that FIK) = {x €
P|g-x=x, Vge K}. ThePrinciple of Symmetric CriticalitfP79] states that a critical point of
the restriction of &-invariant functionf to Fix(K) is a critical point off. As a corollary, if the
Hamiltonian is invariant undei andxe is an isolated point in Fig) N ®~1(l), thenxe is a relative
equilibrium. It follows in particular that all configurations of tyf@ay(R), Cnv(R, p) (Figure 1.1), and
Cn(R,2p) are relative equilibria: tak& such thatr(K) = C,y wherett: O(3) x S, — O(3) is the
cartesian projection.

Finally, one can show that i is a relative equilibrium with angular velociy, thenH; is a
Gy -invariant function.

2.3 Stability theory

Stability is determined by the energy-momentum method together with an isotypimpestion of
the symplectic slice. We recall the main points of the method.

LetXe € P be a relative equilibriumyi = ®(xe), andg its angular velocity. The energy-momentum
method consists of determining the symplectic slice

N = (s0(3)- %) NKerDD(xe)
transversal tao(3),,- Xe, Where

SOR)u = {ge SAB3) | Coagy-u=}

and then examining the definiteness of the restriati#i | v-(xe) of the Hessiam?Hg (Xe) to V. (In
practice we will represent as a vector, in which case Cqad= g is just matrix multiplication.) If
K is a group acting on the phase space a relative equilibxiuisisaid to bd_yapunov stable modulo
K if for all K-invariant open neighbourhooWsof K - xe there is an open neighbourhoddC V of xe
which is invariant under the Hamiltonian dynamics. Emergy-momentum theorarhPatrick [Pa92]
holds since S(B) is compact, and so we have:

If d?Hg |z (Xe) is definite, then gis Lyapunov stable moduBO(3),..

Forp# 0, SQO3), is the set of rotations with axigt), and so isomorphic to S@), while for u=0,
SQO(3), = SO(3). If p# 0 Lyapunov stability modulo S@),, of a relative equilibrium with non-zero
angular velocity corresponds to the ordinary stability of the correspgmriodic orbit.
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The second step consists of performing an isotypic decomposition of thdestiogslice V' in
order to block diagonalize®Hg|y(X). LetV be a finite dimensional representation of a compact
Lie groupK. Recall that &K invariant subspac®&/ C V of K is said to berreducible if W has no
properK invariant subspaces. Sinieis compacty can be expressed as a direct sum of irreducible
representationsV =W @ --- W,. In general this is not unique. There are a finite humber of
isomorphism classes of irreducible representationk af V, sayUs,...,U,. LetVk (k=1,....%)
be the sum of all irreducible representatidis C V such thatW; is isomorphic toUy. ThenV =
Vi@ ---® V. This decomposition o¥ is unique and is called thk-isotypic decompositionf V
[Se78]. By Schur's Lemma, the matrix ofkaequivariant linear mag : V — V block diagonalizes
with respect to a basi8 = {Ba,...,B} whereBy is a basis oM, each block corresponding to a
subspac®k. The basid3 is called asymmetry adapted basis

Let G denote the group of all symmetries ldfand Xy andGX the subgroup consisting of time-
preserving symmetries. In the case\bidentical vortices we have = O(3) x Sy andGX = SO(3) x
Su. SinceH; is a Gy -invariant function,d?Hg [y (Xe) is Gx.-equivariant as a matrix. Moreover the
symplectic slice\V is a Gy, -invariant subspace and so we can implemeg§aisotypic decomposi-
tion of A to block diagonalizel?Hg|r(xe). This block diagonalization ad?Hg| (%) simplifies the
computation of its eigenvalues, and hence its definiteness. If it is definitéhtbealative equilibrium
is Lyapunov stability modulo S@3),.

If dZHE |n(Xe) is not definite then we study the spectral stabilityxgf In particular we examine
the eigenvalues of »r, the matrix of the linearized system on the symplectic slice, thatyis=
JNdZHE\N(xe), Wherer\,1 is the matrix ofw|xr. The matrixL s is G -equivariant and so we perform
a G} -isotypic decomposition ol to obtain a block diagonalization afy-, and so to determine the
spectral stability oke. In particular, ifLy has eigenvalues with non-zero real part, tRgis linearly
unstable. Note that the block diagonalizatiorddf |- (xe) refines that ot - sinceGY, C Gy..

Throughout this papekLyapunov stablevill meanLyapunov stable modulBO(2) unless specified
otherwise, angll = ®(xe) will denote the momentum of the configuratirn We will assume in most
of the results that the relative equilibrium has a non-zero momentum. It istefiaigard to check that
almost all points of typ& (R, kyp) have a non-zero momentum, so this is not a strong assumption
for that case. This statement is also trueGay(2R) andCn, (R, R) relative equilibria, as we shall see.

3 Symmetry adapted basesfor rings and poles

In this section we give the ingredients needed to determine the symmetry abapesdfor the sym-
plectic slice at the configurations described above, that is those o€iyle R koR',k,p). In the first
subsection we give a general symmetry adapted basis for the tangeeflgfato the phase space
at such a configuration, and express the derivative of the momentum mdajaregent space to the
group orbit in this basis. In the following two subsections we describe thgpisodecomposition of
Ty P, first for a single ring and then in general. Recall that the isotropy suipgs always a dihedral
groupC,y and that the irreducible representations of this group are of dimensior2.1 e actual
symmetry adapted bases of the symplectic slices will be given case-bindhasdollowing sections.
We do not give the proof of the results in the first subsection, since #reype easily deduced from
the proofs of Propositions 4.1, 4.2, 4.3, 4.4 in [LP02].
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3.1 Description of the symplectic dlice

Let xe be aCn (kiR kR, kop) configuration. Lek, = ki + ko be the total number of rings. The total

number of vortices is theN = nk. + k. We suppose the vorticities in each of theiings arex for

i =1,...,k while the vorticities of the possible polar vortices arefor the North pole ands for the

South pole. In this paper we only considee= 1 or 2, but here we describe the more general case.
Foreachringi=1,....k lets=1,...,nlabel the vortices in the ring in cyclic order, and define

tangent vectors iffy, P by

0
) ° | | (3.1)
o = Yeiexp2ins/n+ilg)) o s

=

where/=0,...,n—1,i=+-1 andcp? = 0 ort/n depending on whether thé ring of vortices is of

typeRor R. Note thatB%, Bgﬂ)p vanish for/ = 0 andn/2 (for n even). For each polg=1,... ky, we

also have tangent vectodg; anddy;.
The tangent vectors defined in the last paragraph are almost cananibal sense that

© .\ _ [nsingjk; if£=0,n/2
co(aj’e,aw) - { Insingjk; otherwise
w (B%, Bﬁfﬁp) = 1nsinGj;

w(dxj,dyj) = sign(zj)Kj,

while the other pairings vanish.

In order to compute a specific basis for the symplectic slice it is necessaayecipressions for
the derivative of the momentum map and the tangent space to the groupt@ritgkiR, koR', kpp)
configuration. These expressions are given in the next two propasiti8imceCy, refers to fixed
vertical reflection planes, the valuesq)?fin (3.1) above can be taken to be:

o O ifi=1l.k
T=Vwn ifj=(kt1).. Kk

wherek; = ki + ks is the total number of rings.

Proposition 3.1 AtaCny (kiR k2R, kpp) configuration, the differential of the momentum map is given
by,

dd(3x,dy,a,B)

- < W i@ v e cing (q@ i
— z‘Kj(éXj—Fléyj)—i-ZKjCOSGj(Gj79+II3je)+IZKjSInej(Gj’(p—i-IBj.(p)
j polar =1 =i

)

< v singig®
@—gll(jsmejaw

where the direct sum corresponds to Bg-invariant decomposition afo(3)* as a direct sum of a
plane and the lind=ix(Cpy,50(3)*) (the “z-axis”).



Stability of Point Vortices on the Sphere (January 25, 2005) 8

Proposition 3.2 Let % be aCny(kiR k2R, kpp) configuration, and p= ®(xe). If p# 0, then the
tangent space to the orhit(3), - e is generated by the vector

ke

(0)
D Gg
=1

If L= 0, thenso(3),- Xe = s0(3) - Xe and is generated by the three vectors:
ke
> i (afy+iByy) — cosvysing; (affy+iBy) + | > sion(z)(5+idy)
=1 jpolar

ke
©)
Z %o
=1
where one must take the real and imaginary parts of the first line.

3.2 Asinglering

Let xe be aCny(R kpp) configuration, that is a single ring together with polar vortices where, of
coursekp, = 0,1 or 2. Since there is only one ring, we Wrdxg) , Bg)’),af‘f), pr@ instead ob((fg, [3(1%, O((fj()p, [3(1[2,,
in order to lighten the formulae.

The irreducible representations (subspaces) of dimenbmwirthe action of G, on T, P are:

<ag°)>, <afpo)> if nis odd,

<cxgo)>, <afp0)>, <0(((9”/2)>, <afp”/2)> if n is even.
Of these, onl;<ag”/2)> and<0(fp”/2)> lie in the symplectic slice. Moreov%ru(e”/zv and<afp”/2>> are
G, -isomorphic representations, but nog@somorphic representations.

while they are

The following spaces are irreducible representations of dimer@&wfrthe action of G, on T, P:

<a(eé)7B(eé)>7 <a(<p£)a[3((p€>>71§€§ n—l,f;’é n/za <6Xja6yj>7j = l?"'akp'

The representationéaé”, Bgl)>, <afpl>, prl)>, <6xj,6yj> do not lie in the symplectic slice, while the
others do. Moreove|<a<1),[3(el)>, <0(Epl), BEpl)>, and <6Xj,6yj> are G&e—isomorphic representations.

3.3 General case

In the general case wherg is aCn (kiR k2R, kpp) configuration k, = 0,1 or 2), we have the fol-
lowing decomposition.
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The subspaceéa%og>, <a5°(3)>, i =1,...,k are G-irreducible representations of dimensi@rand
are G,)Ee—isomorphic representations. If n is even, then we Hayeadditional G-irreducible repre-

sentations
(o), (@37 =10k

which are G -isomorphic.

joPie
1,...,kp are G-irreducible representations of dimensi@nMoreover, the subspaces

(af8.B5)- (o Bl » (540,

(J=1,... )k, r=1,...,kp) are G,’ée—isomorphic representations.

The subspaceéa%,ﬁ%>, <0‘(£) l3(/)>, j=1... .k, 1<l<n-1/(0#n/2and (d,0y), I =

The difficulty in the case of several rings is that usually the subspaces #ibtw/e do not lie in the
symplectic slice. One needs therefore to find linear combinations of the abokges that do lie in the
symplectic slice, and such that threeducible andisomorphisnproperties of the representations are
preserved. We will give the symmetry adapted bases for the cases dhtysonithout polar vortices,
that isCpy(2R) andCpy(R,R) configurations, in the last two sections.

4 Aringof identical vortices: Cpn(R)

The linear stability ofCp,(R) relative equilibria was determined by Polvani and Dritschel in [PD93].
Recently, Boatto and Cabral [BC03] studied their Lyapunov stability andddhat the two types of
stability coincide: whenever the relative equilibrium fails to be Lyapunovistdde linearization of
Xy has real eigenvalues. In this section, we give another proof usingettraegric method of this
paper.

For nvortices of unit vorticity the Hamiltonian is

H(6j,¢;) = —Z(In(l—sinej SinBx cog@; — @) — cosB; cosb)
1<

and the augmented HamiltonianHg = H — £ 5 ; cosb;.
Let xe be aCy(R) relative equilibrium andg the co-latitude of the ring. The angular velocity of
Xe IS

£ (n—1)cosfy
sir? 8o
sinceH; has a critical point there an‘?ﬂt'f (%) = (=2 C":i?]‘)efsmzeo.

The second derivatives &f at the relative equilibrium are:

?H _ _(n=1(n-H 0PH 1

06? 65sirf 8o 9606 2sir? B sir(1(j—k) /n)
°H ?H
sgg0g — O gog. — O

PH znfl 1 P2H 1

o r=1 2sirf(rm/n) 0¢;0¢x 2sirf(rj—k)/n) *

We note thaty '] 1/sir?(1r /n) = 3(n? — 1) [H75].
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Notation. Inorder to harmonize the statements of the results betwegan and odd, we introduce
the following notation: Ien(f),n(;),r]g),nf) be objects defined for all 2 ¢ < [”%1] where[m| is

the integer part o € N, and onlyr](f),n(zﬂ) for ¢ =n/2 whennis even. Then define

{nndng’ " 12< 0 < nj2)}
to be

{ for evenn : {n(f)jn(zf),qg),nf) 2<0<0- 1} U {n(ln/Z)’n(zn/Z)} w)

foroddn : {n{’,nY’.n{’.ny’|2<e<n/2).

Using this notation, the following proposition gives the symmetry adapted s, (R) config-
uration.

Proposition 4.1 Assume g 0. With respect to the following basis for the symplectic shéat x,

(6‘1, e, {a(e[),aff),ﬁg)ﬁg) |2<t< [n/Z]}*>

where
e = sinBg aél) 4+ cosBy [3(1)

& = sinf [3((31) — cosBg ail)

the Hessian 8Hg| v (xe) block diagonalizes it x 1 blocks, and ly block diagonalizes i x 2 blocks.

Proof. Itis straightforward to check that the vectors above do form a basthéosymplectic slice
at X thanks to Propositions 3.1 and 3.2.

The Hessial?Hg |- (Xe) and the linearizatioh y- are bothG} -invariant. Assume odd. It follows
from Section 3.2 and Schur’s Lemma (see the introduction)tftag| v (xe) andL - both block diago-

nalize into 4x 4 blocks and one R 2 block corresponding to the subspaves- <O‘(e€) , Bg), agp@, Bff)>

and (e, e), respectively. See the proof of Theorem 4.5 of [LP02] for a detaitedfpof a similar
assertion.

Now fix ¢ and denote bys an anti-symplectic (time-reversing) element®jf,. For examples
could be the reflectioy — —y together with an order two permutation &f. The restriction oHg

to V; is Z[g]-invariant. Moreove|<0(g),[3£f)> and<[3((f),a((f)> are non-isomorphic irreducible repre-

sentation ofZ,[s] onV,. Henced?Hg| (%) block diagonalizes into 2 2 blocks which correspond
to subspaceéag@,[ﬂf[f)>, <|3((f),ag)>, and(ez,e). This result does not depend on the details of the

Hamiltonian, only its symmetries. However taking in account its particular forcan improve the
block diagonalization. Indeed one has

d2He (%) - (ay ), By ) = d2He(xe) - (By,al)) = O

andd?Hg (%) - (€1,€2) = 0 which gives the desired diagonalization of the Hessian.
The particular form of the symplectic form also enables us to improve the mhdigation ofL /.

Among the basis vectors df, only w(a(eé), afpé)) and(o(B(eZ), B((f)) do not vanish, and so the restriction

of wto V; block diagonalizes into two 2 blocks which correspond to the subspaéeg),a((f)>

and< (e&, Bg)>. The block diagonalization dfs then follows fromL = JNdZHE v (Xe).
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The casen even is very similar, except that there is an additional2block in theG -isotypic
decomposition, and leads to the same result. O

The block diagonalization af?Hg |y (Xe) andL s enable us to find formulae for their eigenvalues,
and thus to conclude criteria for both Lyapunov and linear stability.

Theorem 4.2 The stability of a ring of n identical vortices depends on n and the co-lati@gozs
follows:

n=2 is Lyapunov stable at all latitudes;
n=3 is Lyapunov stable at all latitudes;
n=4 is Lyapunov stable ifos’ 8y > 1/3, and linearly unstable if the inequality is reversed;
n=5 is Lyapunov stable ifos 8y > 1/2, and linearly unstable if the inequality is reversed;
n=6 is Lyapunov stable ifos’ 8y > 4/5, and linearly unstable if the inequality is reversed;

n>7 is always (linearly) unstable.

Proof. Any arrangement of two vortices is a relative equilibrium [KN98]. Whertybing such a
relative equilibrium, we obtain a new relative equilibrium close to the first. Bmysrelative equilib-
rium of two vortices is Lyapunov stable modulo &) (modulo SQ3) if u= 0).

Hence assume > 3. We first study Lyapunov stability. Suppose further gt 0 and so the ring
is not equatorial. A simple calculation shows tkidH; (xe) - BY,BY) = d?Hg (Xe) - ( ¥ al) and

d?Hg (Xe) - (B((If), B((f)) = d?Hg (Xe) - (a((f),agf)). Hence it follows from Proposition 4.1 that

d2He (%) = diag (7\1,)\1, AP AN AL [2< < [n/2]}*)

(recall notation from (4.1)) where

M = si?BoAg’ +cogOon,’,
14 4 4
N = PHe0e) (g ay)).
14 4 4
Ay = dPHe(xe)- (ay),al)).

Thanks to the following formula [H75] (p.271)

n“Lcoq2mj/n)

>

1
& siré(mj/n) - é(nz—l)—%(n—ﬁ),

we find after some computations théﬁ) =nl(n—¢)/2 and

Y — %ﬂzeo [~(¢—1)(n—¢—1)+ (n—1)cog ] .

The eigenvalueﬁff) are all positive and; = n(n—1)cos 8y > 0, thus the relative equilibrium is

Lyapunov stable (modulo S@)) if (n—1)co$ 6 > ((—1)(n—¢—1)forall¢=2,...,[n/2], thatis
if cos?8g > ([n/2] —1)(n—[n/2] —1)/(n—1). This gives the desired values.
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We now turn to linear stability. It follows from Proposition 4.1 and the block dreization of
d’Hg| v (xe) that

- 0 -\ 0 -AY 0 -AY '
LNd'ag<< A O >’{<>\ff) 0 ) )\éz) 0 |2<<[n/2]

where the blocks are given up to a strictly positive scalar factor. Theneadiees ofL \- are therefore

Liky, {ii\/)\é@)\f{f) 12<0< [n/Z}},

(up to a positive factor) and so the relative equilibrium is linearly unstamg)ib 0 for some/, that

is if
1 n n+1
o0 < = ([5]-1) (|| 1)
In particular this inequality is satisfied@ = /2 andn > 3.

When the ring is equatorial, one h@g= 11/2 andu = 0. In particularA; = 0. This is because the
symplectic slice is smalleiG,_o = SQ(3)): it follows from Proposition 3.2 that we have to remove
the vectorsey, e, from the basis fopt # O (that is to removeé ; from the previous eigenvalue study). It
follows that theC,, equatorial relative equilibria are linearly unstableias 3, and Lyapunov stable
(modulo S@3)) for n=3. O

The proof shows that the ‘critical mode’ for stability §s= [n/2]. Forn > 7 a ring is always
unstable to this mode, while for 4 n < 6 the ring first loses stability to this mode as it moves
closer to the equator. This loss of stability is accompanied by a pitchforkchtion to a pair of
staggered rings whem= 4 or 6 (i.e. to type,/(R R) andCs,(R R) respectively, in the notation
of [LMRO01]). In the casen = 5 the bifurcation is transcritical to an “equatorial” vortex and two pairs
that are reflections of each other in that equator (ie §€R E) in [LMRO1]). The bifurcations for
n=4 and 5 are illustrated in Figures 7 and 8 of [LMRO1] respectively.

5 Aringand apolar vortex: Cny(R, p)

We assume that the polar vortex lies at the North pole and its vorticiky ishile the remaining
n vortices are all identical with vortex strength 1 and lie in a ring. The relatipélierium is of
symmetry typeCy,(R, p) and denoted,. In this case, the Hamiltonian is given by

whereH; is the ring Hamiltonian given in the previous section and
n
Hp(X,Y, 6, @) = —K Z In (1—xsin6j cosy; — ysinBj sing; — /1 —x2 —yZCOSGj) ,
j=1

is the Hamiltonian responsible for the interaction of the pole and the ring.

In this case
He = H_ (zcosej+Km>
J
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and the relative equilibrium at=y = 0, 8; = 8o, @; = 211j/n has angular velocity

(n—1)cosBy + K(1+cosBp)
sin290

& =

. OHg _ (n=1)cosfp+k(1+cosBy)—Esirf By .
smcea—ej(xe) =— s must vanish.

The second derivatives at the relative equilibriuntHotan be derived from those féf; given in
the previous section, together with:

PH, K PHp _ nk _ 9Hp

59,2 — 1-coshy X2 T2 T oy?
Hp, _ kcog2mj/n) PHp, _ ksin(2mj/n)
oxa0; 1-cos9y oyo®; 1—cos9y
PHy, _ ksinBgsin(2m;j/n) 0°H,  ksinBgcog2mj/n)
oxoQ; 1—cosHy oyop; 1—cosfy )

while the other second derivatives all vanish. Here we have use te(2mj /n) = n/2 forn > 2,
but forn = 2 the sum is 2. Thus far= 2, one obtains

PHy X Hp _ 2kcosfy
02 — 1—coshy d9y2 —  1-cosfp"

The following proposition gives the symmetry adapted basi€fg(R, p) relative equilibria.

Proposition 5.1 Let n> 3 and p# 0. With respect to the following basis for the symplectic slice:

evezesen oy 0y By By 12< 0 < n/2)} )

e

where
(1

@
(

1
il
®
(1
®
the Hessian éHg |y (%) block diagonalizes intd x 1 blocks and twa x 2 blocks, and ly block

diagonalizes int@ x 2 blocks and ond x 4 block.

= c0sBy B(el) —sinBy a
= sinBy O(él) +cosBpy B
cosBg 0((91) +5sinBy B
= sinBy Bgl) —cosHp a

—ncog26p)/(2K) dyn

)
)
) —ncog26p)/(2K) 8%,
)

L e 00
I

Proof. The proofis similar to the proof of Proposition 4.1. O

These block diagonalizations enable us to prove the following stability thefmem> 4, illus-
trated by Figures 5.2 and 5.1. The cases?2 and 3 are treated afterwards.

Theorem 5.2 A Cpy(R, p) relative equilibrium with > 4 and p# 0
(i) is spectrally unstable if and only if

K <Ko or 8ak > (nsir?8p+4(n—1)coshp)?,
(i) is Lyapunov stable if

K > Ko and & (K+ncoshp)(K —K1) < 0,
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where
ncosfy — N+ 2)(1+ cosfp)?

(
K1 = (n—1)cosdy (nsirfBp-+2(n—1)cosdy)/a
Ko = (ca—(n—1)(1+cos6p))/(1+coshp)? (5.1)

o — n’/4 if nis even,
" 7 l(MP-1)/4 ifnisodd.

a =

Proof. We first study the Lyapunov stability. Following the beginning of the prooflegéorem 4.2,
we obtain from Proposition 5.1 that

d?Hg | (%) = diag(A, A, D)

whereD = diag {AS’ AL Ay AL [ 2< € < [n/2])),

and
Ny = dPHg(x)- (a0
N = dPHg(xe) - (ap)ag)
1 = d?Hg(Xe)- (er,€1)
Gz = d?Hg(Xe): (e, &)
e = d?Hg(xe) (e2,&2).

Note thatD exists only forn > 4. From the previous section one Weﬁé) =nf(n—¢)/2 and some
additional computations give

() n

N’ = sgies (- D(—(=1)+(n-1)coS B+ k(1+cosh)?].

The eigenvaluekg) are all positive, thu® is definite if —(¢/ —1)(n— £ — 1) + (n— 1) cog 8y + K (1 +
cosp)? > 0forall £ =2,...,[n/2], thatis ifk > (([n/2] — 1)(n—[n/2] — 1) — (n—1)cogB)/(1+
coseo)2 which corresponds te > Kg.

The relative equilibrium is therefore Lyapunov stabléifs positive definite, that is 11022 —
cﬁz > 0 andqi1 + gp2 > 0. Some lengthy computations give

2 co< 26
U102 — 02, = —nKZC;nzeOOaK(K—}—nCOSGO)(K —K1)
Oz = 72(1%?)590)2 (K—K2)

wherea, K are given in the theorem amgd = —2(n— 1) cos8p/(1+ cosBp)2. Now we show that if
O11022 — q%z > 0 andk > Ko, thenqp; + g2 > 0: we havez(ai1+ gz2) > 0 sinceqi1g2 — q%z >0,
andagpz > 0 sincek > Ko > Kz, henceqpi + g2 > 0. We proved therefore thé&t, (R, p) is Lyapunov
stable ifk > Ko andak (kK +ncosp) (K — K1) < O.

We now study the spectral stability of the relative equilibrium. It follows from@@sition 5.1 and
the block diagonalization af?Hg|(xe) that

0o -AY 0o Y '
Ly = diag| AL, @ ) @ 2<4<[n/2
({0 ¥ ) o 7 Jresrsi
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where the blocks are given up to a positive scalar factor and

0 0 ab a = Pgu1—yde

A = 0O 0 cd b = Bgw2—Vyo2
-a -b 0 0 |’ C = 0OQ2—Ydi

-c -d 00 d = 0a02—Yi

and
a = w(er,es)=ncosBysirt By —n?cos(20g)/(4K)
B = (e, e4)=ncoshysir8y
Y = w(er, &) =w(e,e3)=nsindy/2.

The eigenvalues (up to a positive factor).g§ are therefore

1 NWNGNG '
iﬁ O':I:\/\_),{:I:I ANy’ 12< < [n/2]

wherev = a* + 4a?bc — 2ad? + 4bcd? + d* + 8adbcand o = —a? — 2bc— d?. The eigenvalues

ii\/)\g))\ff) are all purely imaginary if and only K > Kg. After some lengthy but straightforward

computations we obtain that

Vo= (14 U)2(202 — 1)B(K + nu)A(1— u)?
x [-8(1+u)?(nu+2—n)K + (N¥ — 4(n— 1)u—n)?|
g = —ZQ—L(ZUZ— 1)*(K + nu)?

X [—4(1+u)?(nu+2—n)K + nPu* — 4n(n— 1)u+
+2(3n? —8n+4)u? + 4n(n— 1)u+n?|

whereu = cosfp. One can check that i¥ > 0, then\/V + o0 < 0 and the eigenvalues are purely
imaginary. Ifv < 0, then the eigenvalues have a non-zero real part. Thus the eigeswalle+ /v
are purely imaginary if and only i > 0 which is equivalent to& < (nsin?8g + 4(n— 1) cosfg)?.

O

A spectrally stable relative equilibrium for which the Hessihis | z-(Xe) is not definite is said to
beelliptic. Note that in principle an elliptic relative equilibrium may be Lyapunov stableiftihere
are more than 4 vortices then it is expected to be unstable as a result ¢dl Aiffiosion. Moreover
an elliptic relative equilibrium typically becomes linearly unstable when some dissipis added to
the system [DRO02]; however adding dissipation to the point vortex systamtvihave more profound
effects, such as spreading of vorticity into vortex patches.

Corollary 5.3 AC(R, p) relative equilibrium with n> 4 and p+# O'is elliptic if and only if
K > Ko, aK(k+ncosBp)(k—K1) >0 and 8ak < (nsir?6g+4(n— 1) coshy)?,

where akp andkj are given in (5.1).

Discussion of resultsfor n> 4 See Figure 5.1.

e If the sign of the vorticity of the polar vortex is opposite to that of the ring thenefare stable
configurations withk < 0 only forn < 6. Conversely configurations with< 6 andf close to
11, ie with the ring close to the opposite pole, are Lyapunov stable fer-alD.
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Figure 5.1: Bifurcation diagrams f@,(R, p) relative equilibria. The bifurcation diagrams
for n> 7 are similar to that fon = 8, while those fom = 4 and 6 are similar to that for
n=>5. The circles represent the eigenvalues of the nfedd., while the crosses represent
those of the mod@/2]. The dark regions correspond to Lyapunov stable relative equilibria,
the light grey regions to elliptic ones (notice the sliver of light grey near peeuleft hand
corner of both diagrams: these are not drawn to scale as they are todsaggear at this
scale—cf. Fig 5.2n = 3, where it is drawn to scale) while the white areas correspond to
unstable relative equilibria. Stability is modulo §) rotations about the vertical axis, or
modulo all rotations it = 0—see text.
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e The region of Lyapunov stability is larger when the vorticities of the pole aaditly have the
same signK > 0). The stability frontiers in the upper-left corners of Figure 5.1 go theiiyfi
when8p goes to arccdd — 2/n). It follows that forn > 4 and6, > arcco$l— 2/n), the relative
equilibria are Lyapunov stable for all sufficiently large Thus, a ring of vortices is stabilized
by a polar vortex with a sufficiently large vorticity of the same sign as the varticéhe ring.
Note that for 4< n < 6 andk positive, but sufficiently small, a ring near the opposite pole is
only elliptic and may not be Lyapunov stable.

e The limiting stability results foBy = 0, ie when the ring is close to the polar vortex, coincide
with the stability of a planan-ring plus a central vortex, see [CS99] and [LP]. This is also true
forn=2andn= 3.

e One of the main stability boundaries corresponds to the M@ and is analogous to the sta-
bility boundary for a single ring. Whenis even stability is probably lost through a pitchfork
bifurcation to a relative equilibrium of typ@gv(R,R, p) consisting of two staggeregtrings
and a pole ask, 0p) passes through this boundary. Wheis odd there is an analogous tran-
scritical bifurcation to relative equilibria with only a single reflectional symmathych fixes
two vortices and permutes the others. These are denot@@l(li»?}}lR, 2E) in [LMRO1]. A nice
illustration in the case = 3 can be found in Figure 8 of [CMSO03].

e The other stability boundary corresponds to the mode 1. Stability is lost thakigmiltonian-
Hopf bifurcation: two pairs of imaginary eigenvalues ‘collide’ and leavartieginary axis. For
a detailed description of the bifurcations that can be expected in this apdi@5].

o Note that it also happens that pairsfcE 1 eigenvalues pass through zero without leaving the
imaginary axis. In this case the relative equilibrium changes from beingunav stable to
elliptic or vice versa and these stability changes are accompanied by bidasca

e Finally we note that wher crosses zero eigenvalues change sign without crossing zero due to
the fact that the symplectic form becomes degenerate fo0.

Discussion of thecasen=3 See Figure 5.2.

We assume in this discussion that the relative equilibria have non-zero mamefoun = 3, by the
proof of Theorem 5.2 we haw#Hg | (%) = diag/A,A) andLy = A_. HenceCa\ (R, p) is Lyapunov
stable ifak(k +3co9p) (K — K1) < 0, and spectrally unstable if and only if

8ak > (3sirf By + 8coshy)?,

wherea = (3cosp — 1)(1+cosfp)? as in Theorem 5.2. These results are illustrated in Figure 5.2.
Notice that a polar vorterlestabilizesa 3-ring if either the polar vortex is in the same hemisphere
as the ring and has a sufficiently strong vorticity of the same sign as the rinbe golar vortex
has the opposite sign vorticity and the ring lies in an interval contai@ing 211/3 that grows as the
magnitude of the polar vorticity increases. Outside these regions there tishavpek of regimes in
which the relative equilibrium is either Lyapunov stable or elliptic.

The transition point wherp =& = 0 andk = 1 (and co$8p) = —1/3) corresponds to the stable
equilibrium consisting of 4 identical vortices placed at the vertices of alaegetrahedron [PM98,
LMRO1, Ku04].
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Northern hemisphere | Southern hemisphere

Northern hemisphere | Southern hemisphere

Figure 5.2: Bifurcation diagrams f&3,(R, p) andCy/(R, p) relative equilibria; the polar
vortex of strengttk is at the North pole. The darker grey regions are where the relative
equilibrium is Lyapunov stable, the pale grey regions are elliptic regionsttandavhite
regions are those where there is a real eigenvalue (spectrally unskiieer equilibria).
Notice the narrow sliver of an elliptic region in the top left-hand portion of tiagidm for

n = 3. Stability is modulo S@) about the polar axis, or modulo $8 whenp =0 (see
text). The circles represent the eigenvalues of the nfcdé4.
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Discussion of thecasen= 2 See Figure 5.2.

TheCyy(R, p) relative equilibria are isosceles triangles lying on a great circle, an@yfer2m/3 the
triangle becomes equilateral. We again discuss the stability of those with nompenenta. Indeed,
any 3-vortex configuration with zero momentum is a relative equilibrium sineedtiuced space is
just a point, and is consequently also Lyapunov stable relative {8/9Pa92].

For n = 2 the symmetry adapted basis(isd01 — K 38, — 2coHg O, K d@; — K 0@ — 2 SinBp By).
Following the proof of Theorem 5.2 we obtain after some straightforwamtbetations tha€o, (R, p)
is Lyapunov stable if

(1+ 2cosB)[(1+ cosBp)K + cosBp(2+ 3cosp)] < O,

and spectrally unstable if the inequality is reversed. See Figure 5.2.

e There are two stable regions. Ry < 211/3 the relative equilibria are stable provided the polar
vorticity is less than a certaiy dependent critical value, while f@, > 21/3 they are stable
for all polar vorticities greater than a critical value. Bs— T1this value goes te-.

e Forp = 11/2, where the 2-ring is equatorial and the isosceles triangle is right-arigidare
stable if and only ik < 0. This is in agreement with [PM98, Theorem II.3], with=T> =1,
andlN3 =K.

e The restricted three vortex problemThe range of stability wher = 0 does not coincide with
the range of stability for a single ring. Indeed tBg,(R) relative equilibria are Lyapunov stable
for all co-latitudes (see Theorem 4.2) whiley(R, p) is unstable fok = 0 and6g € (0,11/2).
This means that if we placegassive traceor ghost vortexat the North pole and a ring of two
vortices in the Northern hemisphere, then the passive tracer will be lmstab

Remark 5.4 The stability ofC(R, p) relative equilibria has also been studied in [CMS03]. How-
ever our method differs significantly from theirs in that we consider thenidlerfiess of the Hessian
dZHE |x(Xe) on the 21 dimensional symplectic slice, while in [CMSO03] the authors determine condi-
tions for the Hessian to be definite on the whole 2 1) dimensional tangent space. The result is
that we prove the relative equilibria to be Lyapunov stable in a larger ragitime parameter space.
Notice in particular that fon < 6 our results say that a positive vorticityring near the south pole

is Lyapunov stable if the north pole has either negative or sufficiently pesitrticity. However in
[CMSO03] only the case of negative north polar vorticity is shown to be upap stable. In this paper
we also give criteria for when the relative equilibria arestableby considering the eigenvalues of the
linearizationL .

6 Stability of aring and two polar vortices: Cny(R,2p)

In this section we consider a relative equilibrivgof symmetry typeC (R, 2p); that is configurations
formed of a ring ofn vortices of strength 1, together with two polar vortiqeg ps of strengthxy,
Ks respectively at the North and South poles. We assume without loss afadjgnthat the ring lies
in the Northern hemisphere.

We obtain analytic (in)stability criteria for the relative equilibria with respect &/thr 2 modes,
which of course give sufficient conditions for genuine instability. A nuoainvestigation is needed
for the/ = 1 mode and hence to provide stability criteria; this is being pursued separately
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The Hamiltonian is given by
H = H, +Hp, +Hps +Hns
whereH; is given in Section 4 and
Hpy = —Kn3[iKiln(1—sin6;cosg xy —sing;sin@ yn —1/1— x4 —yZ cosd))

Hps = —KsY[1Kiln(1—sin®cosp xs— sinG;sing ys+ 1/1— X3 — y2cosh)
Hns = —KNKs|n(1—XNXS—yNYS+\/1—Xﬁ—yﬁ\/1—xé—)@,

and the augmented Hamiltonian is:

n
He=H—&[ S KicosHi +Kny/1—XG — Y3 —Ksy/1—X2—V3 |.
£ <izll i N YN SERE

The angular velocity of the relative equilibriuma = yn = Xxs=Yys= 0, 8 = 8o, ¢; = 2r1j/n
has angular velocity

(n—1)cosBp + Kn(1+cosBp) — Ks(1— cosBp)

E - Sin290

The second derivatives of at the relative equilibrium can be derived from thoseHpr(Section
4), those foH, (Section 5), together with:

PHns  %Hys  9%Hys  0%Hys  0%Hys  9%Hys
x5 oyq  0x¢  dyZ  Oxnoxs  Oyndys

= KNKs/Z

while the other second derivativestdf;s vanish.
As in the previous sections, we can choose a symmetry adapted basis yihlectic slice such
that the matricesl?Hg | (%) andL s block diagonalize.

Proposition 6.1 Let n> 3and p# 0. In the following basis for the symplectic slice,

(evezesen 050 {ay) 0y By By |2< ¢ < Inj/2)} )

where
1

@
(1

¢

= c0s9y B(el>—sineoa )
)
(1)
)
)
)

= c0SHy [3(91) —sinBy a
sinBg agl) +cosBp B
cosHp 0((91) +5sinBp B, —Ncog26p)/(2Kkn) XN
Y ncog26p)/(2ks) dxs
1

—ncog(28o)/(2Kn) dyn
— nCOS(ZB())/(ZKs) 6y3

i

)
= cosBp ag’ +sinBo By

= sinBy [3(61) — c0sBy cxfp

S HLHee
I

the Hessian &Hg |y (Xe) block diagonalizes intd x 1 blocks and twa x 3 blocks, and Ly block
diagonalizes int@ x 2 blocks and oné x 6 block.
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Proof. The proof is similar to that for a single ring (see Section 3.2 and Propositipn 4.1 O

The model = 1 gives a 3x 3 block from which, unfortunately, we can not derive a useful for-
mula for stability analogous to that for a single polar vortex. However, viedegiive formulae for
the stability of the other modes, and thereby obtain the following sufficierditon for instability,
illustrated by Figures 6.1 and 6.2.

Theorem 6.2 A Cny(R,2p) relative equilibrium with n> 4 and p# 0 is linearly unstable if
Kn(1+c0s8p)2 4 Ks(1 — cos8p)? < ¢y — (N—1)(14 coLBy),
where

o n?/4 if n is even,
"1 (nP-1)/4 ifnisodd,

and is stable with respect to tHe> 2 modes if this inequality is reversed.

-0 Unstable:

100 100

8 2 -100 s

Figure 6.1: The relative equilibri@n,(R,2p) in the Northern hemisphere are unstable ‘be-
low’ this ruled surface irf6o, Ks, Kn )-space, shown in the figure for= 4. Above the surface
the relative equilibrium is stable with respect to all the 2 modes.

Proof. The proofis similar to that for Theorem 5.2. Following the notations of thefigiobheorem
5.2, we havé\f[f) =nl(n—¢)/2 and

n
A = 3576 [—(£—1)(n—£—1)+ (n— 1) cos 8o+ Kn(1+ cos8p)? + Ks(1 — cosBp)?] .

The relative equilibrium is linearly unstable if there exiéts 2, such that\ff) < 0. Since the highest
)\(ee) is for ¢ = [n/2], the relative equilibrium is linearly unstable if

—([n/2] —=1)(n—[n/2] = 1) + (n— 1) co* By + Kn (14 cosBg)? + ks(1 — coshp)? < 0,
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and is stable with respect to tHe> 2 modes if this inequality is reversed. This gives the desired
criterion. O

Stability of the ¢ > 2 modes From the theorem we can deduce the following results about the
(in)stability of theC,y(R, 2p) relative equilibria with respect to the> 2 modes. These modes only
occur forn > 4. We continue to assume the ring lies in the Northern hemisphere.

¢ In the limiting case as the ring converges to the North p6e= 0), for all values ofks the
relative equilibria are linearly unstablexfy < %(Cn —2n+ 2). This agrees with the instability
of a ring and single pole whem ‘< Ko’ in Proposition 5.2.

e At the opposite extreme, when the ring is at the equdige(11/2) they are linearly unstable
if KN +Ks< ¢y—n+1. The right hand side of this inequality is non-negative for all positive
integersn, and so the ‘equatorialC (R, 2p) relative equilibria are unstable if the total polar
vorticity has opposite sign to that of the ring. i + ks > 0 then the critical ratio of the total
polar vorticity to the total ring vorticity needed to stabilize the 2 modes grows linearly with
n.

e For alln > 4 the relative equilibria are unstable for all latitudes in the Northern hemigpher
KN < %1(0n —2n+2) andKky +Ks < ¢, —n+ 1. In particular, fom > 7 the relative equilibria are
unstable for alBg if Ky < 0 andks < 0.

Ks
I
Unstable neay
North pole |
I
I
|
|
N
KN Unstable atall | >«
latitudes > S
n=10 N
N \\
Unstable near
equator
n=8

Figure 6.2: Schematic diagram showing the instabilities ofGh€R, 2p) configurations
due to the > 2 modes: (a) The shaded regions depict the values of the polar vorticities f
whichall the relative equilibria in the Northern hemisphere are unstable: the dagkgish
represents = 4, the nextin = 8 and the lightesh = 10. (b) demonstrates that above each
shaded region of (a) the corresponding relative equilibria near thén[dote are unstable,
while to the right it is the relative equilibria near the equator which are unstable

To determine whether there are in fatablerelative equilibria it is necessary to evaluate the eigen-
values arising from thé =1 mode. This is work in progress, and preliminary numerical investigation
suggests:
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e For alln and for all sufficiently large and positive polar vorticities there are rareg€o with
elliptic relative equilibria;

e Forallnand forky sufficiently positive and&s < O there are Lyapounov stable relative equilibria
in the Northern hemisphere.

7 Stability of two aligned rings: Cn(2R)

In this section we consider relative equilibeia of symmetry typeC,(2R), that is configurations
formed of two ‘aligned’ rings oh vortices each. We can assume without loss of generality that the
vorticities of the vortices in the first and second ring are 1 mnrespectively, and we denote their
co-latitudes bygy andB81. We can also assume that the ring of vorticity 1 and co-latitiglées
in the Northern hemispher@ € (0,71/2]. The first question to answer i&r which values of the
parameterg 6o, 61,K) is the configuratiorCpy(2R) a relative equilibrium?t was shown in [LMRO1]
(p. 126) that for giverx > 0 and eachu with |y < n|1+K| there is at least one solution f(8o,01)
with ncosBy + nk cosB; = pand withBgy < 81 and at least one with; < 68p. We now make this more
precise.

The fixed point set Fi§Gy,) is parametrized by := cosBp andy := cosB;. Denote byF the
restriction of a functiorF to Fix(Gy,). The Hamiltonian can be split in such a way that

H = Hyi+KHio+K?Hp

whereH;1,H12,H2> do not depend ok, H,, does not depend qnandﬂzz does not depend on The
following proposition shows that for almost every péip,01) there exists a unique such that the
Cnv(2R) configuration with paramete(8g,61,K) is a relative equilibrium.

Proposition 7.1 Let % be aCpy(2R) configuration with parameter®p, 61,K).

1. There exists a uniquec R* such that xis a relative equilibrium if and only if both the follow-
ing conditions hold:

6I:|12 a|:|11 a|:|22 al:|12
<a—y — W) (cosBg, coshy) # O, (a—y — W) (cosBp, cosh;) # 0.

2. The configurationgis a relative equilibrium for allkk € R* in the degenerate case when both
the following conditions hold:
(aﬁlz oH11

a—y - W) (COSGO,CO%:L) - 07 (

oy  OH1 B
a—y - W) (COSGO,Cosel) = 0

3. In both cases the angular velockyf x satisfies
1 /0Hp OH 15
& = n (W(Xe)—FKW(Xe)) .

In particular, if in addition axﬂll(xe) and axﬂlz(xe) are non-zero, then there exists a unique
K € R* such thatt = 0 and so % is an equilibrium.
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Proof.  SinceH +&® is a Gy -invariant function (see Section 2) the Principle of Symmetric Criti-
cality [P79] |mpI|es that is a relative equnlbrlum if and only if it is a critical point off + £®. It
follows from ® = n(x+ ky) thatd(H + £®)(xe) = 0 is equivalent to the pair of equations:

0H22 oH12 oH12 11 B
() - Z5206) ) + ) - ) = 0
1 /0Hy 9H 1>
&= <W(xe) +KW(xe)> -
The proposition follows easily from these. O

For example, in the case= 4 the degenerate case occurs when the two rings form the vertices of
a cube. Hence for any values of the vorticities of the two rings the “cubBguoation” is a relative
equilibrium. However among this family of relative equilibria only one is an equilibr namely
the one for which the two rings have the same vorticitiess 1, which corresponds to th@n(f)
equilibrium [LMRO1], a cube formed of identical vortices. See Figure 7.1.

For8, = 11— 69, the configuration has an extra symmetry and its symmetry typgi(2R). Such a
configuration is a relative equilibrium k= —1, the two rings have opposite vorticities. The existence
and stability of such relative equilibria were studied in [LP02].

With the help of the discussion of Section 3.3, we performe8,ainvariant isotypic decom-
position and found that the symmetry adapted basis for the symplectic slic€@t2R) relative
equilibrium withn > 3 andu # 0 is

(ela €2,€3,6€4,65,66,€7,63, BZ7 B37 R B[n/Z])

where
@ = agy—aiy
& = Ksind; aé?% —sin6g 0((1?(;
es = sinBp sinB; (kcosh; O(&lg + cosBo 0‘(1,1%)
+cos9g cosf; (Ksind; Bé%%—sineo l3(1,1<)p)
€4 = KCOSD; a(()g, cosBo 0((12)
& = Ksinb; |30(p—sm9 Bl(p
€ = SinBp sinB; (KcosB; [3079 +€0sBo B:(I}g)
—c0sBy coshs (ksind; aff()er sinBg 01(1?2[))
& = KCoSO; [38% — cosfo By
eg = KsinB; aéi)p— sinBg 0(<1,13>
and,
5 = {obh ol Bl B} ol BB} fr2cr <2
e )

The adapted basis for= 2 is simply (e, e, €4, €g).

Remark. Almost allC,(2R) relative equilibria have a non-zero momentum. Indeed0 iff X4+ Ky =
0, and from the expression afone can show that this last equation defines an algebraic curve in
variables(x,y) € [0,1) x (—1,1) ~ FixCp,.
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Figure 7.1: Sign ok for Cpy(2R) relative equilibria. The degenerate case occurs where the
curvesk = 0 andk = o intersect. The figure is fan = 4, but is similar for other values of

n. The only region of stability lies at the bottom right hand corner [?7?],esponding to

the rings lying far apart in opposite hemispheres, and contained in the regi®.

With respect to this bast?Hg | v-(xe) block diagonalises into: twost 1 blocks for¢ =0, two 3x 3
blocks for¢ = 1, two 4x 4 blocks for each of = 2...[(n—1)/2]), together with two 2 2 blocks for
¢=n/2 whenn is even. The linearisatiohys block diagonalises into half as many blocks of twice
the size. In order to calculate the stability of the relative equilibria, we ranaaU® programme
to compute numerically the eigenvalues of each of the block#?if [v-(X) andLy.. The results
are summarized fon = 2...6 in Figure 7.2. Figure 7.1 shows how the sigrkofaries for relative
equilibria with different values o8y and0;.

Discussion of results

e The numerical results suggest strongly that the relative equil@)je2R) are never stable if the
two rings lie in the same hemisphere (Figure 7.2) or have the same sign vortigitlygF.1).

e The stable configurations are f6g close to 0 and; close tott, so the ring of vorticity 1 is
close to the North pole and the other ring is close to the South pole with a vortic#y te-1.
Thus the two rings ‘look like’ two polar vortices. It is well known that anyfiguration of two
vortices is Lyapunov stable.

e As nincreases the region of stability decreases in size. Numerical experimihts w 7
suggest that in these cases the relative equilibria are never stable.

e Forn=2, 4 and 6 stability is first lost by a pair of imaginary eigenvalues of than/2 block of
L passing through 0 and becoming real. fer3 and 5 close to thB,y(2R) relative equilibria
a pair of imaginary eigenvalues of tide= (n—1)/2 block passes through 0 but remains on the
imaginary axis, so the stability changes from Lyapunov to elliptic. This imagipanythen
collides with another pair, and all move off the imaginary axis to form a complexliguple and
create instability. It seems likely that this behaviour also occurs away freD{2R) relative
equilibria, but in a region too small to be seen in the figure.
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Figure 7.2: Stability results fo€n(2R) relative equilibria. The curve plotted for eanlis
the stability frontier: on one side the relative equilibria are Lyapunov st&@)lewhile on
the other side they are linearly unstable (U), with a gap of elliptic stability (E) detvthe
two in the odd case. Far> 7, it seems likely that the relative equilibria are all unstable.

8 Stability of two staggered rings: Cny(R,R)

In this section we consider relative equilibria formed of two ringsebrtices each of strengths 1
andk and co-latitudefy and 8, respectively. They differ from those of the previous section in that
the rings here are “staggered”, that is they rotated relative to eachwithean offset ofri/n. Their
symmetry type i (R R). As in the previous section we can assume without loss of generality that
the ring of vorticity 1 and co-latitudé lies in the Northern hemisphere.

An analogue of Proposition 7.1 also holds 0%,(R,R)) configurations: for almost every pair
(60,01) there exists a unique such that the correspondi@y, (R, R) configuration is a relative equi-
librium. With the notation of the previous section, in the non-degenerate aasagdhlar velocity and
K satisfy B B 5 _

K = _(ale} - ayH122/(ayH22 — 0xH12) (Xe),
& = n}(0xHi1+KoxH12)(Xe).

There exist also degenerate cases. When 6 the configuration forms a single ring witlm2ortices
with k = 1: all the vortices have the same vorticity. These are the relative equilibtypeCon(R)
studied in Section 3.2. Fd; = 11— 6y, the configuration has an extra symmetry and its symmetry
type isDng(R,R). In this casex = —1, the two rings have opposite vorticities. The existence and
stability of such relative equilibria were studied in [LPO02].
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With the help of the discussion of Section 3.3, we found that a symmetry adapsésifor the
symplectic slice at &€, (R, R) relative equilibrium withn > 3 andu # 0 is given by:

(elv €2,€3,€4,65,65,€7, 63, BZ7 B3) sy B[H/Z])

for n odd, while forn even one is given by:

(e1,€,€3,€4,65,65,€7,68,{By | 2< ¢ <n/2—-1},
(n/2) _ _(n/2) (n/2) _(n/2) o(n/2)

Oop —O1g »0og —Uig P :Pig W >,
where the expressions ef,...,eg and B, remain as in the previous section. The corresponding
symmetry adapted basis for= 2 is simply (e, e, €3,65). As in the previous section, it can readily
be seen that almost &l (R, R) relative equilibria have non-zero momenta.
As for the aligned rings, we ran a AbLE programme to determine the stability of the relative
equilibria. The results are summarized in Figure 8.1nfer2...6.

Discussion of results

o Numerical experiments suggest that stable relative equilibria only exiat<os.

e Forn=>5 and 6 the relative equilibri@,,(R, R) are stable only if the two rings lie in the same
hemisphere but are sufficiently far apart.

e Forn < 4 these stable regions extend to include relative equilibria with the rings inetiffe
hemispheres. However, contrary to the c&€g2R), the stable regions are far from the line
8, = t— 6 corresponding t®nq4(R R) relative equilibria.

e Forn =2 and 3 there is also a stable region with the two rings in the same hemisphere and
close to each other. This includes the stabig(R) andCg,(R) relative equilibria discussed in
Section 3.2.

¢ Note also that fom < 6, there exist stable relative equilibria (for some values)oin any
neighbourhood 0of6y, 81) = (0,0), that is with the two rings close to the North pole.

e A study of the sign ok shows that when 3 n < 6 the relative equilibria withkk < 0 are
all unstable. However fon = 2 there exist relative equilibria witk positive in the stable
region corresponding to the two rings both being relatively close to the@gbat in opposite
hemispheres.

e The tetrahedral equilibrium with all 4 vortices identical is Lyapounov stadohel, in Fig. 8.1
(with n = 2) lies at the point where the two stable regions meet the two unstable regions o
the Dog(R,R)-locus. The analogous point with= 3 corresponds to the stable equilibrium
consisting of 6 identical vortices lying at the vertices of an octahe@gn).
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Figure 8.1: Stability results fdZ,, (R, R) relative equilibria. The curves plotted are stability
frontiers: on one side the relative equilibria are Lyapunov stable (Shkewh the other side
they are linearly unstable (U). For> 7, it seems likely that the relative equilibria are all
unstable.
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