
Stability of Relative Equilibria of Point Vortices
on the Sphere

Laurent-Polz, Frederic and Montaldi,
James and Roberts, Mark

2005

MIMS EPrint: 2005.28

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


Stability of Relative Equilibria of Point Vortices on the Sphere

Fréd́eric Laurent-Polz, James Montaldi, Mark Roberts

January 25, 2005

Abstract

We describe the linear and nonlinear stability and instability of certain configurations of point
vortices on the sphere forming relative equilibria. These configurations consist of up to two rings,
with and without polar vortices. Such configurations have dihedral symmetry, and the symmetry
is used both to block diagonalize the relevant matrices and to distinguish the subspaces on which
their eigenvalues need to be calculated.

1 Introduction

Since the work of Helmholtz [H] systems of point vortices on the plane have been studied as finite-
dimensional approximations to vorticity dynamics in ideal fluids. For a generalsurvey of patterns of
point vortices see [ANSTV]. Point vortex systems on the sphere, introduced by Bogomolov [B77],
provide simple models for the dynamics of concentrated regions of vorticity, such as cyclones and hur-
ricanes, in planetary atmospheres. In this paper we consider a non-rotating sphere, since the rotation
of the sphere induces a non-uniform background vorticity which makes the whole system infinite-
dimensional.

As in the planar case, the equations governing the motion ofN point vortices on a sphere are
Hamiltonian [B77] and this property has been used to study them from a number of different view-
points. Phase space reduction shows that the three vortex problem is completely integrable on both
the plane and the sphere: the motion of three vortices of arbitrary vorticity ona sphere is studied
in [KN98]. The stabilities of some of the relative equilibria described in [KN98] are computed in
[PM98] and numerical simulations are presented in [MPS99]. The existence of relative equilibria
of N vortices is treated in [LMR01], and the nonlinear stability of a latitudinal ring ofN identical
vorticities is computed in [BC03], and independently in the present paper. In fact the linear stability
results of such as ring obtained by [PD93] coincide with the Lyapunov stability results. The stability
of a ring of vortices on the sphere together with a central polar vortex is studied in [CMS03], and
again independently in the present paper, though with different methods (and different results!). The
existence and nonlinear stability of relative equilibria ofN vortices of vorticity+1 together withN
vortices of vorticity−1 are studied in [LP02]. It has also been proved in [LP] that relative equilibria
formed of latitudinal rings of identical vortices for the non-rotating spherepersist to relative equilibria
when the sphere rotates. However, the question of stability becomes much more delicate: for motions
that are not relative equilibria, the vorticity of a point vortex is no longer preserved as it interacts with
the background vorticity, and the problem becomes fundamentally infinite-dimensional. In [Ku04]
Kurakin studies the stability of equilibrium configurations of identical vorticesplaced at the vertices
of regular polyhedra; he finds that the tetrahedron, octahedron and icosahedron are stable, while the
other two are unstable. Finally, studies of periodic orbits of point vortices on the sphere can be found
in [ST, To01, LPth, LP04].
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Our study of the stability of relative equilibria is based on the symmetries of the system, and
especially the isotropy subgroups of the relative equilibria. The Hamiltonian isinvariant under ro-
tations and reflections of the sphere and permutations of identical vortices.However, some of these
symmetries (eg reflections) are not symmetries of the equations of motion: they are time-reversing
symmetries. From Noether’s theorem, the rotational symmetry provides three conserved quantities,
the components of the momentum mapΦ : P → R

3 whereP is the phase space.
Relative equilibria are dynamical trajectories that are generated by the action of a 1-parameter

subgroup of the symmetry group. More intuitively, they correspond hereto motions of the point
vortices which are stationary in a steadily rotating frame. In other words, themotion of a relative
equilibrium corresponds to a rigid rotation ofN point vortices about some axis (which we always
take to be thez-axis). In the same way as equilibria are critical points of the HamiltonianH, relative
equilibria are critical points of the restrictions ofH to the level setsΦ−1(µ). Section 2 is devoted
to a description of the system of point vortices on the sphere, and to an outline of stability theory
for relative equilibria. The appropriate concept of stability for relative equilibria of Hamiltonian
system is Lyapunov stabilitymodulo a subgroup. The stability study is realized using on one hand
theenergy-momentum method[Pa92, Or98] which consists of computing the eigenvalues of a certain
Hessian, and leads tononlinearstability results, and on the other hand a linear study computing the
eigenvalues of the linearization of the equations of motion. To both these ends, we block-diagonalize
these matrices using a suitable basis, thesymmetry adapted basis(Section 3), which makes use of the
specific dihedral symmetry of the relative equilibrium. This is equivalent to noting that the matrices
(or certain submatrices) arecirculant, as noticed in [CMS03]. However, the symmetry is also used
to apply the energy-momentum method as it helps distinguish on which subspaces computations are
needed.

The remaining five sections each treat one of five different types of relative equilibria, consisting of
rings of identical vortices together with possible vortices at the poles, whose existence were proved in
[LMR01]. The notation for the different configurations is taken from thesame source and is described
at the end of the introduction. We now outline the main stability results.

We begin in Section 4 by computing the stability of the relative equilibria consisting of a single
ring of identical vortices, a configuration denotedCnv(R) (Figure 1.1(a)). We show in Theorem 4.2
that forn≥ 7, they are unstable for all co-latitudes of the ring, while forn < 7 there exist ranges of
Lyapunov stability when the ring is near a pole. These results are not new [PD93, BC03], but serve to
demonstrate the method used in later sections.

In Section 5, we study the stability of the relative equilibriaCnv(R, p) (Figure 1.1(b)) which are
configurations formed of a ring ofn identical vortices together with a polar vortex. Forn≥ 7 they are
all unstable if the vorticityκ of the polar vortex has opposite sign to that of the ring. However if the
vorticities have the same sign then for each co-latitude of the ring there exists arange ofκ for which
the relative equilibrium is Lyapunov stable. Adding polar vortices can thereforestabilizethe unstable
pure ring relative equilibria. The detailed results are contained in Theorem5.2, its corollary and the
following discussion. Our results are consistent with those of [CMS03] (aside from an error in their
Figure 7 where the wrong curves are plotted), though the present methods are stronger as they give
more regions of stability than obtained in [CMS03]—see Remark 5.4.

In Section 6 we obtain analytic (in)stability criteria for the relative equilibriaCnv(R,2p) which are
configurations formed of a ring ofn identical vortices together withtwo polar vortices, but only with
respect to certain modes (ℓ ≥ 2). As in the case of a single polar vortex, the two polar vortices play
the role of control parameters for the stability. The details are contained in Theorem 6.2. A numerical
investigation is needed for the remaining (ℓ = 1) mode in order to provide stability criteria; this is
being pursued separately.
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Figure 1.1: TheCnv(R) andCnv(R, p) relative equilibria.
(Cnv(R,2p) has a vortex at the South pole as well.)

Finally, in Sections 7 and 8 we investigate configurations formed of two rings of arbitrary vor-
ticities (each ring, as always, consisting of identical vortices). In [LMR01] it was shown that two
rings ofn vortices can be relative equilibria if and only if they are either aligned or staggered. These
two arrangements are denotedCnv(2R) andCnv(R,R′) respectively (see Figure 1.2). Here we show
that for almost all pairs of ring latitudes there is a unique ratio of the ring vorticities for which these
configurations are relative equilibria. Numerical computations of their stabilities suggest that these
relative equilibria can only be stable ifn≤ 6, and in the aligned case the two rings must be close to
opposite poles, and hence have opposite vorticities. In some cases, staggered rings may also be stable
when in the same hemisphere.

In principle the method applies to larger numbers of rings but the algebraic problem of diagonaliz-
ing the matrices in general becomes intractable; however numerical studies for particular (numerical)
values of the vorticities in the rings would be feasible.

Symmetry group notation All possible symmetry types of configurations of point vortices on the
sphere were classified in [LMR01]. The symmetry group of the system is ofthe form O(3)×S, where
S is a group of permutations, and a particular configuration with symmetry, or isotropy, subgroup
Σ < O(3)×S is denotedΓ(A), whereΓ is the projection ofΣ to O(3) andA represents the wayΣ
permutes the point vortices. The classicalScḧonflies-Eyringnotation for subgroups of O(3) is used.

In this paper we single out configurations consisting of concentric rings of identical vortices, with
the same number of vortices in each ring, and with possible polar vortices. These configurations have
cyclic symmetry (in the “horizontal plane”), and the Schönflies-Eyring notation for this subgroup of
O(3) isCn < SO(3). In fact we only consider the cases where the rings are either aligned (the vortices
lie on the same longitudes) or staggered (they lie on intermediate longitudes, outof phase byπ/n). In
this case the symmetry group is the largerdihedralgroupCnv (n being the number of vortices in each
ring, andv denoting the fact that there are vertical planes of reflection). For suchconfigurations, we
writeCnv(k1R,k2R′,kpp) to mean that there arekr = k1+k2 rings andkp polar vortices. The difference
betweenR andR′ is that thek1 rings R are aligned and thek2 ringsR′ are staggered with respect to
the first (and so aligned with each other). Of coursekp = 0,1 or 2.
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Figure 1.2: Configurations of typesCnv(2R) (2 aligned rings) andCnv(R,R′) (2 staggered
rings). (Heren = 4 of course.)

2 Point vortices on the sphere and stability theory

In this section we briefly recall that the system of point vortices on a sphere is an-body Hamiltonian
system with symmetry and we review the stability theory for relative equilibria.

2.1 Point vortices

Considern point vorticesx1, . . . ,xn ∈ S2 with vorticitiesκ1, . . . ,κn ∈ R. Let θi ,φi be respectively the
co-latitude and the longitude of the vortexxi . The dynamical system is Hamiltonian with Hamiltonian
given by

H = −∑
i< j

κiκ j ln(1−cosθi cosθ j −sinθi sinθ j cos(φi −φ j))

and conjugate variables given byqi =
√

|κi |cosθi andpi = sign(κi)
√

|κi |φi .
The phase space isP = {(x1, . . . ,xn)∈ S2×·· ·×S2 | xi 6= x j if i 6= j} endowed with the symplectic

form ω = ∑i κi sinθi dθi ∧dφi . The Hamiltonian vector fieldXH satisfiesω( · ,XH(x)) = dHx. If we
considerS2 as a subset ofR3, so the vorticesx j ∈ R

3, then we obtain

ẋi = XH(x)i = ∑
j, j 6=i

κ j
x j ×xi

1−xi ·x j
, i = 1, . . . ,N, (2.1)

H = −∑
i< j

κiκ j ln(‖xi −x j‖2/2).

It follows thatH is invariant under the action of O(3). The symplectic form is SO(3) invariant and so
XH is SO(3)-equivariant. The reflections in O(3) reverse the sign of the symplectic form and so are
time-reversing symmetries ofXH . MoreoverH, ω andXH are all invariant or equivariant with respect
to permutations of vortices with equal vorticity.

The rotational symmetry implies the existence of a momentum mapΦ : P → so(3)∗ ≃ R
3:

Φ(x) =
N

∑
j=1

κ jx j (x j ∈ S2 ⊂ R
3)
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which is conserved under the dynamics. In other words each of the threecomponents ofΦ(x) is a
conserved quantity.

2.2 Relative equilibria

A point xe ∈ P is a relative equilibrium if and only if there existsξ ∈ so(3) ≃ R
3 (the angular ve-

locity) such thatxe is a critical point of the functionHξ(x) = H(x)− 〈Φ(x),ξ〉, where the pairing
〈 , 〉 betweenR3 and its dual is identified with the canonical scalar product onR

3. Equivalently, rel-
ative equilibria are critical points of the restriction ofH to Φ−1(µ), since the level setΦ−1(µ) are
always non-singular for point vortex systems of more than two vortices. The functionHξ is called the
augmented Hamiltonian.

Since the momentum is conserved, we can choose a frame forR
3 such thatΦ is parallel to the

z-axis (provided the momentum is non-zero). It follows from the symmetry thatthe angular velocity
ξ ∈ R

3 is also parallel to thez-axis. We can therefore identifyξ andΦ with their z-components and
the augmented Hamiltonian becomes simplyHξ(x) = H(x)−ξΦ(x).

Let f : P → R be aK-invariant function withK a compact group. Recall that Fix(K) = {x ∈
P | g · x = x, ∀g ∈ K}. The Principle of Symmetric Criticality[P79] states that a critical point of
the restriction of aK-invariant function f to Fix(K) is a critical point of f . As a corollary, if the
Hamiltonian is invariant underK andxe is an isolated point in Fix(K)∩Φ−1(µ), thenxe is a relative
equilibrium. It follows in particular that all configurations of typeCnv(R), Cnv(R, p) (Figure 1.1), and
Cnv(R,2p) are relative equilibria: takeK such thatπ(K) = Cnv whereπ : O(3)×Sn → O(3) is the
cartesian projection.

Finally, one can show that ifxe is a relative equilibrium with angular velocityξ, thenHξ is a
Gxe-invariant function.

2.3 Stability theory

Stability is determined by the energy-momentum method together with an isotypic decomposition of
the symplectic slice. We recall the main points of the method.

Let xe∈P be a relative equilibrium,µ= Φ(xe), andξ its angular velocity. The energy-momentum
method consists of determining the symplectic slice

N = (so(3)µ ·xe)
⊥∩KerDΦ(xe)

transversal toso(3)µ ·xe, where

SO(3)µ = {g∈ SO(3) | Coadg ·µ= µ}

and then examining the definiteness of the restrictiond2Hξ|N (xe) of the Hessiand2Hξ(xe) to N . (In
practice we will representµ as a vector, in which case Coadgµ = gµ is just matrix multiplication.) If
K is a group acting on the phase space a relative equilibriumxe is said to beLyapunov stable modulo
K if for all K-invariant open neighbourhoodsV of K ·xe there is an open neighbourhoodU ⊆V of xe

which is invariant under the Hamiltonian dynamics. Theenergy-momentum theoremof Patrick [Pa92]
holds since SO(3) is compact, and so we have:

If d2Hξ|N (xe) is definite, then xe is Lyapunov stable moduloSO(3)µ.

For µ 6= 0, SO(3)µ is the set of rotations with axis〈µ〉, and so isomorphic to SO(2), while for µ = 0,
SO(3)µ = SO(3). If µ 6= 0 Lyapunov stability modulo SO(3)µ of a relative equilibrium with non-zero
angular velocity corresponds to the ordinary stability of the corresponding periodic orbit.
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The second step consists of performing an isotypic decomposition of the symplectic sliceN in
order to block diagonalized2Hξ|N (xe). Let V be a finite dimensional representation of a compact
Lie groupK. Recall that aK invariant subspaceW ⊂ V of K is said to beirreducible if W has no
properK invariant subspaces. SinceK is compact,V can be expressed as a direct sum of irreducible
representations:V = W1 ⊕ ·· · ⊕Wn. In general this is not unique. There are a finite number of
isomorphism classes of irreducible representations ofK in V, sayU1, . . . ,Uℓ. Let Vk (k = 1, . . . , ℓ)
be the sum of all irreducible representationsWj ⊂ V such thatWj is isomorphic toUk. ThenV =
V1 ⊕ ·· · ⊕Vℓ. This decomposition ofV is unique and is called theK-isotypic decompositionof V
[Se78]. By Schur’s Lemma, the matrix of aK-equivariant linear mapf : V → V block diagonalizes
with respect to a basisB = {B1, . . . ,Bl} whereBk is a basis ofVk, each block corresponding to a
subspaceVk. The basisB is called asymmetry adapted basis.

Let G denote the group of all symmetries ofH andXH andGχ the subgroup consisting of time-
preserving symmetries. In the case ofN identical vortices we haveG= O(3)×SN andGχ = SO(3)×
SN. SinceHξ is a Gxe-invariant function,d2Hξ|N (xe) is Gxe-equivariant as a matrix. Moreover the
symplectic sliceN is aGxe-invariant subspace and so we can implement aGxe-isotypic decomposi-
tion of N to block diagonalized2Hξ|N (xe). This block diagonalization ofd2Hξ|N (xe) simplifies the
computation of its eigenvalues, and hence its definiteness. If it is definite thenthe relative equilibrium
is Lyapunov stability modulo SO(3)µ.

If d2Hξ|N (xe) is not definite then we study the spectral stability ofxe. In particular we examine
the eigenvalues ofLN , the matrix of the linearized system on the symplectic slice, that isLN =
JNd2Hξ|N (xe), whereJ−1

N
is the matrix ofω|N . The matrixLN is Gχ

xe-equivariant and so we perform
a Gχ

xe-isotypic decomposition ofN to obtain a block diagonalization ofLN , and so to determine the
spectral stability ofxe. In particular, ifLN has eigenvalues with non-zero real part, thenxe is linearly
unstable. Note that the block diagonalization ofd2Hξ|N (xe) refines that ofLN sinceGχ

xe ⊂ Gxe.
Throughout this paper,Lyapunov stablewill meanLyapunov stable moduloSO(2) unless specified

otherwise, andµ= Φ(xe) will denote the momentum of the configurationxe. We will assume in most
of the results that the relative equilibrium has a non-zero momentum. It is straightforward to check that
almost all points of typeCnv(R,kpp) have a non-zero momentum, so this is not a strong assumption
for that case. This statement is also true forCnv(2R) andCnv(R,R′) relative equilibria, as we shall see.

3 Symmetry adapted bases for rings and poles

In this section we give the ingredients needed to determine the symmetry adaptedbases for the sym-
plectic slice at the configurations described above, that is those of typeCnv(k1R,k2R′,kpp). In the first
subsection we give a general symmetry adapted basis for the tangent spaceTxeP to the phase space
at such a configuration, and express the derivative of the momentum map and tangent space to the
group orbit in this basis. In the following two subsections we describe the isotypic decomposition of
TxeP, first for a single ring and then in general. Recall that the isotropy subgroup is always a dihedral
groupCnv and that the irreducible representations of this group are of dimension 1 or2. The actual
symmetry adapted bases of the symplectic slices will be given case-by-casein the following sections.
We do not give the proof of the results in the first subsection, since they can be easily deduced from
the proofs of Propositions 4.1, 4.2, 4.3, 4.4 in [LP02].
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3.1 Description of the symplectic slice

Let xe be aCnv(k1R,k2R′,kpp) configuration. Letkr = k1 +k2 be the total number of rings. The total
number of vortices is thenN = nkr +kp. We suppose the vorticities in each of thekr rings areκ j for
j = 1, . . . ,kr while the vorticities of the possible polar vortices areκN for the North pole andκS for the
South pole. In this paper we only considerkr = 1 or 2, but here we describe the more general case.

For each ringj = 1, . . . ,kr let s= 1, . . . ,n label the vortices in the ring in cyclic order, and define
tangent vectors inTxeP by

α(ℓ)
j,θ + iβ(ℓ)

j,θ = ∑n
s=1exp(2iπℓs/n+ iℓφ0

j )δθ j,s

α(ℓ)
j,φ + iβ(ℓ)

j,φ = ∑n
s=1exp(2iπℓs/n+ iℓφ0

j )δφ j,s

(3.1)

whereℓ = 0, . . . ,n−1, i =
√
−1 andφ0

j = 0 orπ/n depending on whether thej th ring of vortices is of

typeR or R′. Note thatβ(ℓ)
j,θ,β

(ℓ)
j,φ vanish forℓ = 0 andn/2 (for n even). For each polej = 1, . . . ,kp we

also have tangent vectorsδx j andδy j .
The tangent vectors defined in the last paragraph are almost canonical,in the sense that

ω
(

α(ℓ)
j,θ,α

(ℓ)
j,φ

)

=

{

nsinθ j κ j if ℓ = 0,n/2
1
2nsinθ j κ j otherwise

ω
(

β(ℓ)
j,θ,β

(ℓ)
j,φ

)

= 1
2nsinθ j κ j

ω(δx j ,δy j) = sign(zj)κ j ,

while the other pairings vanish.
In order to compute a specific basis for the symplectic slice it is necessary to have expressions for

the derivative of the momentum map and the tangent space to the group orbit at a Cnv(k1R,k2R′,kpp)
configuration. These expressions are given in the next two propositions. SinceCnv refers to fixed
vertical reflection planes, the values ofφ0

j in (3.1) above can be taken to be:

φ0
j =

{

0 if j = 1. . .k1

π/n if j = (k1 +1) . . .kr

wherekr = k1 +k2 is the total number of rings.

Proposition 3.1 At aCnv(k1R,k2R′,kpp) configuration, the differential of the momentum map is given
by,

dΦ(δx,δy,α,β)

= ∑
j polar

κ j(δx j + iδy j)+
kr

∑
j=1

κ j cosθ j(α
(1)
j,θ + iβ(1)

j,θ)+ i
kr

∑
j=1

κ j sinθ j(α
(1)
j,φ + iβ(1)

j,φ)

⊕

−
kr

∑
j=1

κ j sinθ jα
(0)
j,θ

where the direct sum corresponds to theCnv-invariant decomposition ofso(3)∗ as a direct sum of a
plane and the lineFix(Cnv,so(3)∗) (the “z-axis”).
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Proposition 3.2 Let xe be a Cnv(k1R,k2R′,kpp) configuration, and µ= Φ(xe). If µ 6= 0, then the
tangent space to the orbitso(3)µ ·xe is generated by the vector

kr

∑
j=1

α(0)
j,φ.

If µ = 0, thenso(3)µ ·xe = so(3) ·xe and is generated by the three vectors:

kr

∑
j=1

i
(

α(1)
j,θ + iβ(1)

j,θ

)

−cosθ j sinθ j

(

α(1)
j,φ + iβ(1)

j,φ

)

+ i ∑
j polar

sign(zj)(δx j + iδy j)

kr

∑
j=1

α(0)
j,φ

where one must take the real and imaginary parts of the first line.

3.2 A single ring

Let xe be aCnv(R,kpp) configuration, that is a single ring together withkp polar vortices where, of

course,kp = 0,1 or 2. Since there is only one ring, we writeα(ℓ)
θ ,β(ℓ)

θ ,α(ℓ)
φ ,β(ℓ)

φ instead ofα(ℓ)
1,θ,β

(ℓ)
1,θ,α

(ℓ)
1,φ,β

(ℓ)
1,φ

in order to lighten the formulae.

The irreducible representations (subspaces) of dimension1 of the action of Gxe on TxeP are:

〈

α(0)
θ

〉

,
〈

α(0)
φ

〉

if n is odd,

while they are
〈

α(0)
θ

〉

,
〈

α(0)
φ

〉

,
〈

α(n/2)
θ

〉

,
〈

α(n/2)
φ

〉

if n is even.

Of these, only
〈

α(n/2)
θ

〉

and
〈

α(n/2)
φ

〉

lie in the symplectic slice. Moreover,
〈

α(n/2)
θ

〉

and
〈

α(n/2)
φ

〉

are

Gχ
xe-isomorphic representations, but not Gxe-isomorphic representations.

The following spaces are irreducible representations of dimension2 of the action of Gxe on TxeP:

〈

α(ℓ)
θ ,β(ℓ)

θ

〉

,
〈

α(ℓ)
φ ,β(ℓ)

φ

〉

,1≤ ℓ ≤ n−1, ℓ 6= n/2,
〈

δx j ,δy j
〉

, j = 1, . . . ,kp.

The representations
〈

α(1)
θ ,β(1)

θ

〉

,
〈

α(1)
φ ,β(1)

φ

〉

,
〈

δx j ,δy j
〉

do not lie in the symplectic slice, while the

others do. Moreover,
〈

α(1)
θ ,β(1)

θ

〉

,
〈

α(1)
φ ,β(1)

φ

〉

, and
〈

δx j ,δy j
〉

are Gχ
xe-isomorphic representations.

3.3 General case

In the general case wherexe is a Cnv(k1R,k2R′,kpp) configuration (kp = 0,1 or 2), we have the fol-
lowing decomposition.
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The subspaces
〈

α(0)
j,θ

〉

,
〈

α(0)
j,φ

〉

, j = 1, . . . ,kr are Gxe-irreducible representations of dimension1 and

are Gχ
xe-isomorphic representations. If n is even, then we have2kr additional Gxe-irreducible repre-

sentations
〈

α(n/2)
j,θ

〉

,
〈

α(n/2)
j,φ

〉

, j = 1, . . . ,kr

which are Gχ
xe-isomorphic.

The subspaces
〈

α(ℓ)
j,θ,β

(ℓ)
j,θ

〉

,
〈

α(ℓ)
j,φ,β

(ℓ)
j,φ

〉

, j = 1, . . . ,kr , 1 ≤ ℓ ≤ n− 1, ℓ 6= n/2 and 〈δxr ,δyr〉 , r =

1, . . . ,kp are Gxe-irreducible representations of dimension2. Moreover, the subspaces
〈

α(1)
j,θ,β

(1)
j,θ

〉

,
〈

α(1)
j,φ,β

(1)
j,φ

〉

, 〈δxr ,δyr〉 ,

( j = 1, . . . ,kr , r = 1, . . . ,kp) are Gχ
xe-isomorphic representations.

The difficulty in the case of several rings is that usually the subspaces listed above do not lie in the
symplectic slice. One needs therefore to find linear combinations of the abovevectors that do lie in the
symplectic slice, and such that theirreducibleandisomorphismproperties of the representations are
preserved. We will give the symmetry adapted bases for the cases of two rings without polar vortices,
that isCnv(2R) andCnv(R,R′) configurations, in the last two sections.

4 A ring of identical vortices: Cnv(R)

The linear stability ofCnv(R) relative equilibria was determined by Polvani and Dritschel in [PD93].
Recently, Boatto and Cabral [BC03] studied their Lyapunov stability and found that the two types of
stability coincide: whenever the relative equilibrium fails to be Lyapunov stable the linearization of
XH has real eigenvalues. In this section, we give another proof using the geometric method of this
paper.

For n vortices of unit vorticity the Hamiltonian is

H(θ j ,φ j) = − ∑
j<k

ln(1−sinθ j sinθk cos(φ j −φk)−cosθ j cosθk)

and the augmented Hamiltonian isHξ = H −ξ∑ j cosθ j .
Let xe be aCnv(R) relative equilibrium andθ0 the co-latitude of the ring. The angular velocity of

xe is

ξ =
(n−1)cosθ0

sin2 θ0
,

sinceHξ has a critical point there and
∂Hξ
∂θ j

(xe) = (n−1)cosθ0−ξsin2 θ0
sinθ0

.

The second derivatives ofH at the relative equilibrium are:

∂2H
∂θ2

j
= − (n−1)(n−5)

6sin2 θ0

∂2H
∂θ j ∂θk

= 1
2sin2 θ0 sin2(π( j−k)/n)

∂2H
∂θ j ∂φ j

= 0 ∂2H
∂θ j ∂φk

= 0

∂2H
∂φ2

j
= ∑n−1

r=1
1

2sin2(rπ/n)
∂2H

∂φ j ∂φk
= − 1

2sin2(π( j−k)/n)
.

We note that∑n−1
r=1 1/sin2(πr/n) = 1

3(n2−1) [H75].
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Notation. In order to harmonize the statements of the results betweenneven andnodd, we introduce
the following notation: letη(ℓ)

1 ,η(ℓ)
2 ,η(ℓ)

3 ,η(ℓ)
4 be objects defined for all 2≤ ℓ ≤

[

n−1
2

]

, where[m] is

the integer part ofm∈ N, and onlyη(ℓ)
1 ,η(ℓ)

2 for ℓ = n/2 whenn is even. Then define

{

η(ℓ)
1 ,η(ℓ)

2 ,η(ℓ)
3 ,η(ℓ)

4 | 2≤ ℓ ≤ [n/2]
}∗

to be
{

for evenn :
{

η(ℓ)
1 ,η(ℓ)

2 ,η(ℓ)
3 ,η(ℓ)

4 | 2≤ ℓ ≤ n
2 −1

}

∪
{

η(n/2)
1 ,η(n/2)

2

}

for oddn : {η(ℓ)
1 ,η(ℓ)

2 ,η(ℓ)
3 ,η(ℓ)

4 | 2≤ ℓ ≤ [n/2]}.
(4.1)

Using this notation, the following proposition gives the symmetry adapted basis for aCnv(R) config-
uration.

Proposition 4.1 Assume µ6= 0. With respect to the following basis for the symplectic sliceN at xe,
(

e1, e2,
{

α(ℓ)
θ ,α(ℓ)

φ ,β(ℓ)
θ ,β(ℓ)

φ | 2≤ ℓ ≤ [n/2]
}∗)

where
e1 = sinθ0 α(1)

θ +cosθ0 β(1)
φ

e2 = sinθ0 β(1)
θ −cosθ0 α(1)

φ

the Hessian d2Hξ|N (xe) block diagonalizes in1×1 blocks, and LN block diagonalizes in2×2 blocks.

Proof. It is straightforward to check that the vectors above do form a basis forthe symplectic slice
atxe thanks to Propositions 3.1 and 3.2.

The Hessiand2Hξ|N (xe) and the linearizationLN are bothGχ
xe-invariant. Assumen odd. It follows

from Section 3.2 and Schur’s Lemma (see the introduction) thatd2Hξ|N (xe) andLN both block diago-

nalize into 4×4 blocks and one 2×2 block corresponding to the subspacesVℓ =
〈

α(ℓ)
θ ,β(ℓ)

θ ,α(ℓ)
φ ,β(ℓ)

φ

〉

and〈e1,e2〉, respectively. See the proof of Theorem 4.5 of [LP02] for a detailed proof of a similar
assertion.

Now fix ℓ and denote bys an anti-symplectic (time-reversing) element ofGxe. For examples
could be the reflectiony 7→ −y together with an order two permutation ofSn. The restriction ofHξ

to Vℓ is Z2[s]-invariant. Moreover
〈

α(ℓ)
θ ,β(ℓ)

φ

〉

and
〈

β(ℓ)
θ ,α(ℓ)

φ

〉

are non-isomorphic irreducible repre-

sentation ofZ2[s] on Vℓ. Henced2Hξ|N (xe) block diagonalizes into 2×2 blocks which correspond

to subspaces
〈

α(ℓ)
θ ,β(ℓ)

φ

〉

,
〈

β(ℓ)
θ ,α(ℓ)

φ

〉

, and〈e1,e2〉. This result does not depend on the details of the

Hamiltonian, only its symmetries. However taking in account its particular form, one can improve the
block diagonalization. Indeed one has

d2Hξ(xe) · (α(ℓ)
θ ,β(ℓ)

φ ) = d2Hξ(xe) · (β(ℓ)
θ ,α(ℓ)

φ ) = 0

andd2Hξ(xe) · (e1,e2) = 0 which gives the desired diagonalization of the Hessian.
The particular form of the symplectic form also enables us to improve the diagonalization ofLN .

Among the basis vectors ofVℓ, only ω(α(ℓ)
θ ,α(ℓ)

φ ) andω(β(ℓ)
θ ,β(ℓ)

φ ) do not vanish, and so the restriction

of ω to Vℓ block diagonalizes into two 2×2 blocks which correspond to the subspaces
〈

α(ℓ)
θ ,α(ℓ)

φ

〉

and
〈

β(ℓ)
θ ,β(ℓ)

φ

〉

. The block diagonalization ofLN then follows fromLN = JNd2Hξ|N (xe).
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The casen even is very similar, except that there is an additional 2×2 block in theGχ
xe-isotypic

decomposition, and leads to the same result. 2

The block diagonalization ofd2Hξ|N (xe) andLN enable us to find formulae for their eigenvalues,
and thus to conclude criteria for both Lyapunov and linear stability.

Theorem 4.2 The stability of a ring of n identical vortices depends on n and the co-latitudeθ0 as
follows:

n=2 is Lyapunov stable at all latitudes;

n=3 is Lyapunov stable at all latitudes;

n=4 is Lyapunov stable ifcos2 θ0 > 1/3, and linearly unstable if the inequality is reversed;

n=5 is Lyapunov stable ifcos2 θ0 > 1/2, and linearly unstable if the inequality is reversed;

n=6 is Lyapunov stable ifcos2 θ0 > 4/5, and linearly unstable if the inequality is reversed;

n≥7 is always (linearly) unstable.

Proof. Any arrangement of two vortices is a relative equilibrium [KN98]. When perturbing such a
relative equilibrium, we obtain a new relative equilibrium close to the first. Thusany relative equilib-
rium of two vortices is Lyapunov stable modulo SO(2) (modulo SO(3) if µ= 0).

Hence assumen≥ 3. We first study Lyapunov stability. Suppose further thatµ 6= 0 and so the ring
is not equatorial. A simple calculation shows thatd2Hξ(xe) · (β(ℓ)

θ ,β(ℓ)
θ ) = d2Hξ(xe) · (α(ℓ)

θ ,α(ℓ)
θ ) and

d2Hξ(xe) · (β(ℓ)
φ ,β(ℓ)

φ ) = d2Hξ(xe) · (α(ℓ)
φ ,α(ℓ)

φ ). Hence it follows from Proposition 4.1 that

d2Hξ|N (xe) = diag
(

λ1,λ1,{λ(ℓ)
θ ,λ(ℓ)

φ ,λ(ℓ)
θ ,λ(ℓ)

φ | 2≤ ℓ ≤ [n/2]}∗
)

(recall notation from (4.1)) where

λ1 = sin2 θ0λ(1)
θ +cos2 θ0λ(1)

φ ,

λ(ℓ)
θ = d2Hξ(xe) · (α(ℓ)

θ ,α(ℓ)
θ ),

λ(ℓ)
φ = d2Hξ(xe) · (α(ℓ)

φ ,α(ℓ)
φ ).

Thanks to the following formula [H75] (p.271)

n−1

∑
j=1

cos(2πℓ j/n)

sin2(π j/n)
=

1
3
(n2−1)−2ℓ(n− ℓ),

we find after some computations thatλ(ℓ)
φ = nℓ(n− ℓ)/2 and

λ(ℓ)
θ =

n

2sin2 θ0

[

−(ℓ−1)(n− ℓ−1)+(n−1)cos2 θ0
]

.

The eigenvaluesλ(ℓ)
φ are all positive andλ1 = n(n− 1)cos2 θ0 > 0, thus the relative equilibrium is

Lyapunov stable (modulo SO(2)) if (n−1)cos2 θ0 > (ℓ−1)(n− ℓ−1) for all ℓ = 2, . . . , [n/2], that is
if cos2 θ0 > ([n/2]−1)(n− [n/2]−1)/(n−1). This gives the desired values.
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We now turn to linear stability. It follows from Proposition 4.1 and the block diagonalization of
d2Hξ|N (xe) that

LN = diag

(

(

0 −λ1

λ1 0

)

,

{(

0 −λ(ℓ)
φ

λ(ℓ)
θ 0

)

,

(

0 −λ(ℓ)
φ

λ(ℓ)
θ 0

)

| 2≤ ℓ ≤ [n/2]

}∗)

where the blocks are given up to a strictly positive scalar factor. The eigenvalues ofLN are therefore

±iλ1,

{

±i
√

λ(ℓ)
θ λ(ℓ)

φ | 2≤ ℓ ≤ [n/2]

}

,

(up to a positive factor) and so the relative equilibrium is linearly unstable ifλ(ℓ)
θ > 0 for someℓ, that

is if

cos2 θ0 <
1

n−1

([n
2

]

−1
)

([

n+1
2

]

−1

)

.

In particular this inequality is satisfied ifθ0 = π/2 andn > 3.
When the ring is equatorial, one hasθ0 = π/2 andµ= 0. In particularλ1 = 0. This is because the

symplectic slice is smaller (Gµ=0 = SO(3)): it follows from Proposition 3.2 that we have to remove
the vectorse1, e2 from the basis forµ 6= 0 (that is to removeλ1 from the previous eigenvalue study). It
follows that theCnv equatorial relative equilibria are linearly unstable forn > 3, and Lyapunov stable
(modulo SO(3)) for n = 3. 2

The proof shows that the ‘critical mode’ for stability isℓ = [n/2]. For n ≥ 7 a ring is always
unstable to this mode, while for 4≤ n ≤ 6 the ring first loses stability to this mode as it moves
closer to the equator. This loss of stability is accompanied by a pitchfork bifurcation to a pair of
staggered rings whenn = 4 or 6 (i.e. to typesC2v(R,R′) andC3v(R,R′) respectively, in the notation
of [LMR01]). In the casen = 5 the bifurcation is transcritical to an “equatorial” vortex and two pairs
that are reflections of each other in that equator (ie typeCh(2R,E) in [LMR01]). The bifurcations for
n = 4 and 5 are illustrated in Figures 7 and 8 of [LMR01] respectively.

5 A ring and a polar vortex: Cnv(R, p)

We assume that the polar vortex lies at the North pole and its vorticity isκ, while the remaining
n vortices are all identical with vortex strength 1 and lie in a ring. The relative equilibrium is of
symmetry typeCnv(R, p) and denotedxe. In this case, the Hamiltonian is given by

H = Hr +Hp

whereHr is the ring Hamiltonian given in the previous section and

Hp(x,y,θi ,φi) = −κ
n

∑
j=1

ln
(

1−xsinθ j cosφ j −ysinθ j sinφ j −
√

1−x2−y2cosθ j

)

,

is the Hamiltonian responsible for the interaction of the pole and the ring.
In this case

Hξ = H −ξ

(

∑
j

cosθ j +κ
√

1−x2−y2

)
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and the relative equilibrium atx = y = 0, θ j = θ0, φ j = 2π j/n has angular velocity

ξ =
(n−1)cosθ0 +κ(1+cosθ0)

sin2 θ0

since
∂Hξ
∂θ j

(xe) = − (n−1)cosθ0+κ(1+cosθ0)−ξsin2 θ0
sinθ0

must vanish.

The second derivatives at the relative equilibrium ofH can be derived from those forHr given in
the previous section, together with:

∂2Hp

∂θ2
j

= κ
1−cosθ0

∂2Hp

∂x2 = nκ
2 =

∂2Hp

∂y2

∂2Hp

∂x∂θ j
= −κcos(2π j/n)

1−cosθ0

∂2Hp

∂y∂θ j
= −κsin(2π j/n)

1−cosθ0

∂2Hp

∂x∂φ j
= −κsinθ0 sin(2π j/n)

1−cosθ0

∂2Hp

∂y∂φ j
= κsinθ0 cos(2π j/n)

1−cosθ0
,

while the other second derivatives all vanish. Here we have used that∑cos2(2π j/n) = n/2 for n > 2,
but forn = 2 the sum is 2. Thus forn = 2, one obtains

∂2Hp

∂x2 = 2κ
1−cosθ0

∂2Hp

∂y2 = − 2κcosθ0
1−cosθ0

.

The following proposition gives the symmetry adapted basis forCnv(R, p) relative equilibria.

Proposition 5.1 Let n≥ 3 and µ6= 0. With respect to the following basis for the symplectic slice:
(

e1,e2,e3,e4,
{

α(ℓ)
θ ,α(ℓ)

φ ,β(ℓ)
θ ,β(ℓ)

φ | 2≤ ℓ ≤ [n/2]
}∗)

where
e1 = cosθ0 β(1)

θ −sinθ0 α(1)
φ −ncos(2θ0)/(2κ) δyn

e2 = sinθ0 α(1)
θ +cosθ0 β(1)

φ

e3 = cosθ0 α(1)
θ +sinθ0 β(1)

φ −ncos(2θ0)/(2κ) δxn

e4 = sinθ0 β(1)
θ −cosθ0 α(1)

φ

the Hessian d2Hξ|N (xe) block diagonalizes into1× 1 blocks and two2× 2 blocks, and LN block
diagonalizes into2×2 blocks and one4×4 block.

Proof. The proof is similar to the proof of Proposition 4.1. 2

These block diagonalizations enable us to prove the following stability theoremfor n ≥ 4, illus-
trated by Figures 5.2 and 5.1. The casesn = 2 and 3 are treated afterwards.

Theorem 5.2 A Cnv(R, p) relative equilibrium with n≥ 4 and µ6= 0
(i) is spectrally unstable if and only if

κ < κ0 or 8aκ > (nsin2 θ0 +4(n−1)cosθ0)
2,

(ii) is Lyapunov stable if

κ > κ0 and aκ(κ+ncosθ0)(κ−κ1) < 0,
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where
a = (ncosθ0−n+2)(1+cosθ0)

2

κ1 = (n−1)cosθ0 (nsin2 θ0 +2(n−1)cosθ0)/a

κ0 = (cn− (n−1)(1+cos2 θ0))/(1+cosθ0)
2

cn =

{

n2/4 if n is even,
(n2−1)/4 if n is odd.

(5.1)

Proof. We first study the Lyapunov stability. Following the beginning of the proof ofTheorem 4.2,
we obtain from Proposition 5.1 that

d2Hξ|N (xe) = diag(A,A,D)

whereD = diag({λ(ℓ)
θ ,λ(ℓ)

φ ,λ(ℓ)
θ ,λ(ℓ)

φ | 2≤ ℓ ≤ [n/2]}∗),

A =

(

q11 q12

q12 q22

)

and
λ(ℓ)

θ = d2Hξ(xe) · (α(ℓ)
θ ,α(ℓ)

θ )

λ(ℓ)
φ = d2Hξ(xe) · (α(ℓ)

φ ,α(ℓ)
φ )

q11 = d2Hξ(xe) · (e1,e1)
q12 = d2Hξ(xe) · (e1,e2)
q22 = d2Hξ(xe) · (e2,e2).

Note thatD exists only forn ≥ 4. From the previous section one hasλ(ℓ)
φ = nℓ(n− ℓ)/2 and some

additional computations give

λ(ℓ)
θ =

n

2sin2 θ0

[

−(ℓ−1)(n− ℓ−1)+(n−1)cos2 θ0 +κ(1+cosθ0)
2] .

The eigenvaluesλ(ℓ)
φ are all positive, thusD is definite if−(ℓ−1)(n− ℓ−1)+(n−1)cos2 θ0+κ(1+

cosθ0)
2 > 0 for all ℓ = 2, . . . , [n/2], that is if κ > (([n/2]−1)(n− [n/2]−1)− (n−1)cos2 θ0)/(1+

cosθ0)
2 which corresponds toκ > κ0.

The relative equilibrium is therefore Lyapunov stable ifA is positive definite, that is ifq11q22−
q2

12 > 0 andq11+q22 > 0. Some lengthy computations give

q11q22−q2
12 = −n2 cos2 2θ0

κ2 sin2 θ0
aκ(κ+ncosθ0)(κ−κ1)

q22 = n
2(1+cosθ0)2 (κ−κ2)

wherea,κ1 are given in the theorem andκ2 = −2(n−1)cos2 θ0/(1+cosθ0)
2. Now we show that if

q11q22−q2
12 > 0 andκ > κ0, thenq11+q22 > 0: we haveq22(q11+q22) > 0 sinceq11q22−q2

12 > 0,
andq22 > 0 sinceκ > κ0 > κ2, henceq11+q22 > 0. We proved therefore thatCnv(R, p) is Lyapunov
stable ifκ > κ0 andaκ(κ+ncosθ0)(κ−κ1) < 0.

We now study the spectral stability of the relative equilibrium. It follows from Proposition 5.1 and
the block diagonalization ofd2Hξ|N (xe) that

LN = diag

(

AL,

{(

0 −λ(ℓ)
φ

λ(ℓ)
θ 0

)

,

(

0 −λ(ℓ)
φ

λ(ℓ)
θ 0

)

| 2≤ ℓ ≤ [n/2]

}∗)
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where the blocks are given up to a positive scalar factor and

AL =









0 0 a b
0 0 c d
−a −b 0 0
−c −d 0 0









,















a = βq11− γq12

b = βq12− γq22

c = αq12− γq11

d = αq22− γq12

and
α = ω(e1,e3) = ncosθ0sin2 θ0−n2cos2(2θ0)/(4κ)

β = ω(e2,e4) = ncosθ0sin2 θ0

γ = ω(e1,e4) = ω(e2,e3) = nsinθ0/2.

The eigenvalues (up to a positive factor) ofLN are therefore

± 1√
2

√

σ±
√

ν ,

{

±i
√

λ(ℓ)
θ λ(ℓ)

φ | 2≤ ℓ ≤ [n/2]

}∗

whereν = a4 + 4a2bc− 2a2d2 + 4bcd2 + d4 + 8adbc and σ = −a2 − 2bc− d2. The eigenvalues

±i
√

λ(ℓ)
θ λ(ℓ)

φ are all purely imaginary if and only ifκ > κ0. After some lengthy but straightforward
computations we obtain that

ν = n10

212κ4 (1+u)2(2u2−1)8(κ+nu)4(1−u)2

×
[

−8(1+u)2(nu+2−n)κ+(nu2−4(n−1)u−n)2
]

σ = − n4

26κ2 (2u2−1)4(κ+nu)2

×
[

−4(1+u)2(nu+2−n)κ+n2u4−4n(n−1)u3+
+2(3n2−8n+4)u2 +4n(n−1)u+n2

]

whereu = cosθ0. One can check that ifν ≥ 0, then
√

ν + σ ≤ 0 and the eigenvalues are purely
imaginary. Ifν < 0, then the eigenvalues have a non-zero real part. Thus the eigenvalues±

√

σ±√
ν

are purely imaginary if and only ifν ≥ 0 which is equivalent to 8aκ ≤ (nsin2 θ0 +4(n−1)cosθ0)
2.
2

A spectrally stable relative equilibrium for which the Hessiand2Hξ|N (xe) is not definite is said to
beelliptic. Note that in principle an elliptic relative equilibrium may be Lyapunov stable, but if there
are more than 4 vortices then it is expected to be unstable as a result of Arnold diffusion. Moreover
an elliptic relative equilibrium typically becomes linearly unstable when some dissipation is added to
the system [DR02]; however adding dissipation to the point vortex system would have more profound
effects, such as spreading of vorticity into vortex patches.

Corollary 5.3 A Cnv(R, p) relative equilibrium with n≥ 4 and µ6= 0 is elliptic if and only if

κ ≥ κ0, aκ(κ+ncosθ0)(κ−κ1) ≥ 0 and 8aκ ≤ (nsin2 θ0 +4(n−1)cosθ0)
2,

where a,κ0 andκ1 are given in (5.1).

Discussion of results for n≥ 4 See Figure 5.1.

• If the sign of the vorticity of the polar vortex is opposite to that of the ring then there are stable
configurations withκ < 0 only forn≤ 6. Conversely configurations withn≤ 6 andθ0 close to
π, ie with the ring close to the opposite pole, are Lyapunov stable for allκ < 0.
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Figure 5.1: Bifurcation diagrams forCnv(R, p) relative equilibria. The bifurcation diagrams
for n ≥ 7 are similar to that forn = 8, while those forn = 4 and 6 are similar to that for
n = 5. The circles represent the eigenvalues of the modeℓ = 1, while the crosses represent
those of the mode[n/2]. The dark regions correspond to Lyapunov stable relative equilibria,
the light grey regions to elliptic ones (notice the sliver of light grey near the upper left hand
corner of both diagrams: these are not drawn to scale as they are too smallto appear at this
scale—cf. Fig 5.2,n = 3, where it is drawn to scale) while the white areas correspond to
unstable relative equilibria. Stability is modulo SO(2) rotations about the vertical axis, or
modulo all rotations ifµ= 0—see text.
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• The region of Lyapunov stability is larger when the vorticities of the pole and the ring have the
same sign (κ > 0). The stability frontiers in the upper-left corners of Figure 5.1 go the infinity
whenθ0 goes to arccos(1−2/n). It follows that forn≥ 4 andθ0 > arccos(1−2/n), the relative
equilibria are Lyapunov stable for all sufficiently largeκ. Thus, a ring of vortices is stabilized
by a polar vortex with a sufficiently large vorticity of the same sign as the vortices in the ring.
Note that for 4≤ n ≤ 6 andκ positive, but sufficiently small, a ring near the opposite pole is
only elliptic and may not be Lyapunov stable.

• The limiting stability results forθ0 = 0, ie when the ring is close to the polar vortex, coincide
with the stability of a planarn-ring plus a central vortex, see [CS99] and [LP]. This is also true
for n = 2 andn = 3.

• One of the main stability boundaries corresponds to the mode[n/2] and is analogous to the sta-
bility boundary for a single ring. Whenn is even stability is probably lost through a pitchfork
bifurcation to a relative equilibrium of typeC n

2v(R,R′, p) consisting of two staggeredn2-rings
and a pole as(κ,θ0) passes through this boundary. Whenn is odd there is an analogous tran-
scritical bifurcation to relative equilibria with only a single reflectional symmetrywhich fixes
two vortices and permutes the others. These are denoted byCh(

n−1
2 R,2E) in [LMR01]. A nice

illustration in the casen = 3 can be found in Figure 8 of [CMS03].

• The other stability boundary corresponds to the mode 1. Stability is lost through a Hamiltonian-
Hopf bifurcation: two pairs of imaginary eigenvalues ‘collide’ and leave theimaginary axis. For
a detailed description of the bifurcations that can be expected in this case see [vM85].

• Note that it also happens that pairs ofℓ = 1 eigenvalues pass through zero without leaving the
imaginary axis. In this case the relative equilibrium changes from being Lyapunov stable to
elliptic or vice versa and these stability changes are accompanied by bifurcations.

• Finally we note that whenκ crosses zero eigenvalues change sign without crossing zero due to
the fact that the symplectic form becomes degenerate forκ = 0.

Discussion of the case n = 3 See Figure 5.2.

We assume in this discussion that the relative equilibria have non-zero momentum. Forn = 3, by the
proof of Theorem 5.2 we haved2Hξ|N (xe) = diag(A,A) andLN = AL. HenceC3v(R, p) is Lyapunov
stable ifaκ(κ+3cosθ0)(κ−κ1) < 0, and spectrally unstable if and only if

8aκ > (3sin2 θ0 +8cosθ0)
2,

wherea = (3cosθ0−1)(1+ cosθ0)
2 as in Theorem 5.2. These results are illustrated in Figure 5.2.

Notice that a polar vortexdestabilizesa 3-ring if either the polar vortex is in the same hemisphere
as the ring and has a sufficiently strong vorticity of the same sign as the ring, or the polar vortex
has the opposite sign vorticity and the ring lies in an interval containingθ0 = 2π/3 that grows as the
magnitude of the polar vorticity increases. Outside these regions there is a patchwork of regimes in
which the relative equilibrium is either Lyapunov stable or elliptic.

The transition point whereµ = ξ = 0 andκ = 1 (and cos(θ0) = −1/3) corresponds to the stable
equilibrium consisting of 4 identical vortices placed at the vertices of a regular tetrahedron [PM98,
LMR01, Ku04].
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Figure 5.2: Bifurcation diagrams forC3v(R, p) andC2v(R, p) relative equilibria; the polar
vortex of strengthκ is at the North pole. The darker grey regions are where the relative
equilibrium is Lyapunov stable, the pale grey regions are elliptic regions andthe white
regions are those where there is a real eigenvalue (spectrally unstable relative equilibria).
Notice the narrow sliver of an elliptic region in the top left-hand portion of the diagram for
n = 3. Stability is modulo SO(2) about the polar axis, or modulo SO(3) whenµ = 0 (see
text). The circles represent the eigenvalues of the modeℓ = 1.
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Discussion of the case n = 2 See Figure 5.2.

TheC2v(R, p) relative equilibria are isosceles triangles lying on a great circle, and forθ0 = 2π/3 the
triangle becomes equilateral. We again discuss the stability of those with non-zero momenta. Indeed,
any 3-vortex configuration with zero momentum is a relative equilibrium since the reduced space is
just a point, and is consequently also Lyapunov stable relative to SO(3) [Pa92].

For n = 2 the symmetry adapted basis is(κδθ1− κδθ2−2cosθ0 δx,κδφ1− κδφ2−2sinθ0 δy).
Following the proof of Theorem 5.2 we obtain after some straightforward computations thatC2v(R, p)
is Lyapunov stable if

(1+2cosθ0)[(1+cosθ0)
2κ+cosθ0(2+3cosθ0)] < 0,

and spectrally unstable if the inequality is reversed. See Figure 5.2.

• There are two stable regions. Forθ0 < 2π/3 the relative equilibria are stable provided the polar
vorticity is less than a certainθ0 dependent critical value, while forθ0 > 2π/3 they are stable
for all polar vorticities greater than a critical value. Asθ0 → π this value goes to−∞.

• For θ0 = π/2, where the 2-ring is equatorial and the isosceles triangle is right-angled,they are
stable if and only ifκ < 0. This is in agreement with [PM98, Theorem III.3], withΓ1 = Γ2 = 1,
andΓ3 = κ.

• The restricted three vortex problemThe range of stability whenκ = 0 does not coincide with
the range of stability for a single ring. Indeed theC2v(R) relative equilibria are Lyapunov stable
for all co-latitudes (see Theorem 4.2) whileC2v(R, p) is unstable forκ = 0 andθ0 ∈ (0,π/2).
This means that if we place apassive traceror ghost vortexat the North pole and a ring of two
vortices in the Northern hemisphere, then the passive tracer will be unstable.

Remark 5.4 The stability ofCnv(R, p) relative equilibria has also been studied in [CMS03]. How-
ever our method differs significantly from theirs in that we consider the definiteness of the Hessian
d2Hξ|N (xe) on the 2n dimensional symplectic slice, while in [CMS03] the authors determine condi-
tions for the Hessian to be definite on the whole 2(n+ 1) dimensional tangent space. The result is
that we prove the relative equilibria to be Lyapunov stable in a larger regionof the parameter space.
Notice in particular that forn ≤ 6 our results say that a positive vorticityn-ring near the south pole
is Lyapunov stable if the north pole has either negative or sufficiently positive vorticity. However in
[CMS03] only the case of negative north polar vorticity is shown to be Lyapunov stable. In this paper
we also give criteria for when the relative equilibria areunstableby considering the eigenvalues of the
linearizationLN .

6 Stability of a ring and two polar vortices: Cnv(R,2p)

In this section we consider a relative equilibriumxe of symmetry typeCnv(R,2p); that is configurations
formed of a ring ofn vortices of strength 1, together with two polar vorticespN, pS of strengthsκN,
κS respectively at the North and South poles. We assume without loss of generality that the ring lies
in the Northern hemisphere.

We obtain analytic (in)stability criteria for the relative equilibria with respect to the ℓ ≥ 2 modes,
which of course give sufficient conditions for genuine instability. A numerical investigation is needed
for theℓ = 1 mode and hence to provide stability criteria; this is being pursued separately.
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The Hamiltonian is given by

H = Hr +HpN +HpS +HNS

whereHr is given in Section 4 and

HpN = −κN ∑n
i=1 κi ln(1−sinθi cosφi xN −sinθi sinφi yN −

√

1−x2
N −y2

N cosθi)

HpS = −κS∑n
i=1 κi ln(1−sinθi cosφi xS−sinθi sinφi yS+

√

1−x2
S−y2

Scosθi)

HNS = −κNκSln(1−xNxS−yNyS+
√

1−x2
N −y2

N

√

1−x2
S−y2

S),

and the augmented Hamiltonian is:

Hξ = H −ξ

(

n

∑
i=1

κi cosθi +κN

√

1−x2
N −y2

N −κS

√

1−x2
S−y2

S

)

.

The angular velocity of the relative equilibrium atxN = yN = xS = yS = 0, θ j = θ0, φ j = 2π j/n
has angular velocity

ξ =
(n−1)cosθ0 +κN(1+cosθ0)−κS(1−cosθ0)

sin2 θ0
.

The second derivatives ofH at the relative equilibrium can be derived from those forHr (Section
4), those forHp (Section 5), together with:

∂2HNS

∂x2
N

=
∂2HNS

∂y2
N

=
∂2HNS

∂x2
S

=
∂2HNS

∂y2
S

=
∂2HNS

∂xN∂xS
=

∂2HNS

∂yN∂yS
= κNκS/2

while the other second derivatives ofHNS vanish.
As in the previous sections, we can choose a symmetry adapted basis of the symplectic slice such

that the matricesd2Hξ|N (xe) andLN block diagonalize.

Proposition 6.1 Let n≥ 3 and µ6= 0. In the following basis for the symplectic slice,

(

e1,e2,e3,e4,e5,e6,
{

α(ℓ)
θ ,α(ℓ)

φ ,β(ℓ)
θ ,β(ℓ)

φ | 2≤ ℓ ≤ [n/2]
}∗)

where
e1 = cosθ0 β(1)

θ −sinθ0 α(1)
φ −ncos(2θ0)/(2κN) δyN

e2 = cosθ0 β(1)
θ −sinθ0 α(1)

φ −ncos(2θ0)/(2κS) δyS

e3 = sinθ0 α(1)
θ +cosθ0 β(1)

φ

e4 = cosθ0 α(1)
θ +sinθ0 β(1)

φ −ncos(2θ0)/(2κN) δxN

e5 = cosθ0 α(1)
θ +sinθ0 β(1)

φ −ncos(2θ0)/(2κS) δxS

e6 = sinθ0 β(1)
θ −cosθ0 α(1)

φ

the Hessian d2Hξ|N (xe) block diagonalizes into1× 1 blocks and two3× 3 blocks, and LN block
diagonalizes into2×2 blocks and one6×6 block.
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Proof. The proof is similar to that for a single ring (see Section 3.2 and Proposition 4.1). 2

The modeℓ = 1 gives a 3× 3 block from which, unfortunately, we can not derive a useful for-
mula for stability analogous to that for a single polar vortex. However, we can derive formulae for
the stability of the other modes, and thereby obtain the following sufficient condition for instability,
illustrated by Figures 6.1 and 6.2.

Theorem 6.2 A Cnv(R,2p) relative equilibrium with n≥ 4 and µ6= 0 is linearly unstable if

κN(1+cosθ0)
2 +κS(1−cosθ0)

2 < cn− (n−1)(1+cos2 θ0),

where

cn =

{

n2/4 if n is even,
(n2−1)/4 if n is odd,

and is stable with respect to theℓ ≥ 2 modes if this inequality is reversed.
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Figure 6.1: The relative equilibriaCnv(R,2p) in the Northern hemisphere are unstable ‘be-
low’ this ruled surface in(θ0,κS,κN)-space, shown in the figure forn= 4. Above the surface
the relative equilibrium is stable with respect to all theℓ ≥ 2 modes.

Proof. The proof is similar to that for Theorem 5.2. Following the notations of the proof of Theorem
5.2, we haveλ(ℓ)

φ = nℓ(n− ℓ)/2 and

λ(ℓ)
θ =

n

2sin2 θ0

[

−(ℓ−1)(n− ℓ−1)+(n−1)cos2 θ0 +κN(1+cosθ0)
2 +κS(1−cosθ0)

2] .

The relative equilibrium is linearly unstable if there existsℓ ≥ 2, such thatλ(ℓ)
θ < 0. Since the highest

λ(ℓ)
θ is for ℓ = [n/2], the relative equilibrium is linearly unstable if

−([n/2]−1)(n− [n/2]−1)+(n−1)cos2 θ0 +κN(1+cosθ0)
2 +κS(1−cosθ0)

2 < 0,
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and is stable with respect to theℓ ≥ 2 modes if this inequality is reversed. This gives the desired
criterion. 2

Stability of the ℓ ≥ 2 modes From the theorem we can deduce the following results about the
(in)stability of theCnv(R,2p) relative equilibria with respect to theℓ ≥ 2 modes. These modes only
occur forn≥ 4. We continue to assume the ring lies in the Northern hemisphere.

• In the limiting case as the ring converges to the North pole (θ0 = 0), for all values ofκS the
relative equilibria are linearly unstable ifκN < 1

4(cn−2n+2). This agrees with the instability
of a ring and single pole when ‘κ < κ0’ in Proposition 5.2.

• At the opposite extreme, when the ring is at the equator (θ0 = π/2) they are linearly unstable
if κN + κS < cn−n+ 1. The right hand side of this inequality is non-negative for all positive
integersn, and so the ‘equatorial’Cnv(R,2p) relative equilibria are unstable if the total polar
vorticity has opposite sign to that of the ring. IfκN + κS > 0 then the critical ratio of the total
polar vorticity to the total ring vorticity needed to stabilize theℓ ≥ 2 modes grows linearly with
n.

• For all n≥ 4 the relative equilibria are unstable for all latitudes in the Northern hemisphere if
κN < 1

4(cn−2n+2) andκN +κS < cn−n+1. In particular, forn≥ 7 the relative equilibria are
unstable for allθ0 if κN < 0 andκS < 0.

κS

κN

n=4

n=8

n=10

Unstable near
North pole

Unstable at all
latitudes

Unstable near
equator

Figure 6.2: Schematic diagram showing the instabilities of theCnv(R,2p) configurations
due to theℓ ≥ 2 modes: (a) The shaded regions depict the values of the polar vorticities for
whichall the relative equilibria in the Northern hemisphere are unstable: the darkestregion
representsn = 4, the nextn = 8 and the lightestn = 10. (b) demonstrates that above each
shaded region of (a) the corresponding relative equilibria near the North pole are unstable,
while to the right it is the relative equilibria near the equator which are unstable.

To determine whether there are in factstablerelative equilibria it is necessary to evaluate the eigen-
values arising from theℓ = 1 mode. This is work in progress, and preliminary numerical investigation
suggests:
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• For all n and for all sufficiently large and positive polar vorticities there are ranges of θ0 with
elliptic relative equilibria;

• For allnand forκN sufficiently positive andκS< 0 there are Lyapounov stable relative equilibria
in the Northern hemisphere.

7 Stability of two aligned rings: Cnv(2R)

In this section we consider relative equilibriaxe of symmetry typeCnv(2R), that is configurations
formed of two ‘aligned’ rings ofn vortices each. We can assume without loss of generality that the
vorticities of the vortices in the first and second ring are 1 andκ, respectively, and we denote their
co-latitudes byθ0 and θ1. We can also assume that the ring of vorticity 1 and co-latitudeθ0 lies
in the Northern hemisphere,θ0 ∈ (0,π/2]. The first question to answer is,for which values of the
parameters(θ0,θ1,κ) is the configurationCnv(2R) a relative equilibrium?It was shown in [LMR01]
(p. 126) that for givenκ > 0 and eachµ with |µ| < n|1+ κ| there is at least one solution for(θ0,θ1)
with ncosθ0 +nκcosθ1 = µ and withθ0 < θ1 and at least one withθ1 < θ0. We now make this more
precise.

The fixed point set Fix(Gxe) is parametrized byx := cosθ0 and y := cosθ1. Denote byF̃ the
restriction of a functionF to Fix(Gxe). The Hamiltonian can be split in such a way that

H = H11+κH12+κ2H22

whereH11,H12,H22 do not depend onκ, H̃11 does not depend ony andH̃22 does not depend onx. The
following proposition shows that for almost every pair(θ0,θ1) there exists a uniqueκ such that the
Cnv(2R) configuration with parameters(θ0,θ1,κ) is a relative equilibrium.

Proposition 7.1 Let xe be aCnv(2R) configuration with parameters(θ0,θ1,κ).

1. There exists a uniqueκ ∈ R
∗ such that xe is a relative equilibrium if and only if both the follow-

ing conditions hold:

(

∂H̃12

∂y
− ∂H̃11

∂x

)

(cosθ0,cosθ1) 6= 0,

(

∂H̃22

∂y
− ∂H̃12

∂x

)

(cosθ0,cosθ1) 6= 0.

2. The configuration xe is a relative equilibrium for allκ ∈ R
∗ in the degenerate case when both

the following conditions hold:

(

∂H̃12

∂y
− ∂H̃11

∂x

)

(cosθ0,cosθ1) = 0,

(

∂H̃22

∂y
− ∂H̃12

∂x

)

(cosθ0,cosθ1) = 0.

3. In both cases the angular velocityξ of xe satisfies

ξ =
1
n

(

∂H̃11

∂x
(xe)+κ

∂H̃12

∂x
(xe)

)

.

In particular, if in addition∂xH̃11(xe) and ∂xH̃12(xe) are non-zero, then there exists a unique
κ ∈ R

∗ such thatξ = 0 and so xe is an equilibrium.
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Proof. SinceH + ξΦ is aGxe-invariant function (see Section 2) the Principle of Symmetric Criti-
cality [P79] implies thatxe is a relative equilibrium if and only if it is a critical point of̃H + ξΦ̃. It
follows from Φ̃ = n(x+κy) thatd(H̃ +ξΦ̃)(xe) = 0 is equivalent to the pair of equations:

κ
(

∂H̃22

∂y
(xe)−

∂H̃12

∂x
(xe)

)

+
∂H̃12

∂y
(xe)−

∂H̃11

∂x
(xe) = 0

ξ =
1
n

(

∂H̃11

∂x
(xe)+κ

∂H̃12

∂x
(xe)

)

.

The proposition follows easily from these. 2

For example, in the casen = 4 the degenerate case occurs when the two rings form the vertices of
a cube. Hence for any values of the vorticities of the two rings the “cube configuration” is a relative
equilibrium. However among this family of relative equilibria only one is an equilibrium, namely
the one for which the two rings have the same vorticities,κ = 1, which corresponds to theOh( f )
equilibrium [LMR01], a cube formed of identical vortices. See Figure 7.1.

Forθ1 = π−θ0, the configuration has an extra symmetry and its symmetry type isDnh(2R). Such a
configuration is a relative equilibrium ifκ =−1, the two rings have opposite vorticities. The existence
and stability of such relative equilibria were studied in [LP02].

With the help of the discussion of Section 3.3, we performed aGxe-invariant isotypic decom-
position and found that the symmetry adapted basis for the symplectic slice at aCnv(2R) relative
equilibrium withn≥ 3 andµ 6= 0 is

(

e1,e2,e3,e4,e5,e6,e7,e8,B2,B3, . . . ,B[n/2]

)

where
e1 = α(0)

0,φ −α(0)
1,φ

e2 = κsinθ1 α(0)
0,θ −sinθ0 α(0)

1,θ

e3 = sinθ0 sinθ1 (κcosθ1 α(1)
0,θ +cosθ0 α(1)

1,θ)

+cosθ0 cosθ1 (κsinθ1 β(1)
0,φ +sinθ0 β(1)

1,φ)

e4 = κcosθ1 α(1)
0,θ −cosθ0 α(1)

1,θ

e5 = κsinθ1 β(1)
0,φ −sinθ0 β(1)

1,φ

e6 = sinθ0 sinθ1 (κcosθ1 β(1)
0,θ +cosθ0 β(1)

1,θ)

−cosθ0 cosθ1 (κsinθ1 α(1)
0,φ +sinθ0 α(1)

1,φ)

e7 = κcosθ1 β(1)
0,θ −cosθ0 β(1)

1,θ

e8 = κsinθ1 α(1)
0,φ −sinθ0 α(1)

1,φ

and,
Bℓ =

{

α(ℓ)
0,θ, α(ℓ)

1,θ, β(ℓ)
0,φ, β(ℓ)

1,φ, α(ℓ)
0,φ, α(ℓ)

1,φ, β(ℓ)
0,θ, β(ℓ)

1,θ

}

for 2≤ ℓ < [n/2]

Bn/2 =
{

α(n/2)
0,θ , α(n/2)

1,θ , α(n/2)
0,φ , α(n/2)

1,φ

}

.

The adapted basis forn = 2 is simply(e1,e2,e4,e8).

Remark. Almost allCnv(2R) relative equilibria have a non-zero momentum. Indeedµ= 0 iff x+κy=
0, and from the expression ofκ one can show that this last equation defines an algebraic curve in
variables(x,y) ∈ [0,1)× (−1,1) ≃ FixCnv.
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Figure 7.1: Sign ofκ for Cnv(2R) relative equilibria. The degenerate case occurs where the
curvesκ = 0 andκ = ∞ intersect. The figure is forn = 4, but is similar for other values of
n. The only region of stability lies at the bottom right hand corner [??], corresponding to
the rings lying far apart in opposite hemispheres, and contained in the region κ < 0.

With respect to this basisd2Hξ|N (xe) block diagonalises into: two 1×1 blocks forℓ = 0, two 3×3
blocks forℓ = 1, two 4×4 blocks for each ofℓ = 2. . . [(n−1)/2]), together with two 2×2 blocks for
ℓ = n/2 whenn is even. The linearisationLN block diagonalises into half as many blocks of twice
the size. In order to calculate the stability of the relative equilibria, we ran a MAPLE programme
to compute numerically the eigenvalues of each of the blocks ofd2Hξ|N (xe) andLN . The results
are summarized forn = 2. . .6 in Figure 7.2. Figure 7.1 shows how the sign ofκ varies for relative
equilibria with different values ofθ0 andθ1.

Discussion of results

• The numerical results suggest strongly that the relative equilibriaCnv(2R) are never stable if the
two rings lie in the same hemisphere (Figure 7.2) or have the same sign vorticity (Figure 7.1).

• The stable configurations are forθ0 close to 0 andθ1 close toπ, so the ring of vorticity 1 is
close to the North pole and the other ring is close to the South pole with a vorticity close to−1.
Thus the two rings ‘look like’ two polar vortices. It is well known that any configuration of two
vortices is Lyapunov stable.

• As n increases the region of stability decreases in size. Numerical experiments with n ≥ 7
suggest that in these cases the relative equilibria are never stable.

• Forn= 2, 4 and 6 stability is first lost by a pair of imaginary eigenvalues of theℓ = n/2 block of
LN passing through 0 and becoming real. Forn= 3 and 5 close to theDnh(2R) relative equilibria
a pair of imaginary eigenvalues of theℓ = (n−1)/2 block passes through 0 but remains on the
imaginary axis, so the stability changes from Lyapunov to elliptic. This imaginarypair then
collides with another pair, and all move off the imaginary axis to form a complex quadruple and
create instability. It seems likely that this behaviour also occurs away from theDnh(2R) relative
equilibria, but in a region too small to be seen in the figure.
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Figure 7.2: Stability results forCnv(2R) relative equilibria. The curve plotted for eachn is
the stability frontier: on one side the relative equilibria are Lyapunov stable (S), while on
the other side they are linearly unstable (U), with a gap of elliptic stability (E) between the
two in the odd case. Forn≥ 7, it seems likely that the relative equilibria are all unstable.

8 Stability of two staggered rings: Cnv(R,R′)

In this section we consider relative equilibria formed of two rings ofn vortices each of strengths 1
andκ and co-latitudeθ0 andθ1 respectively. They differ from those of the previous section in that
the rings here are “staggered”, that is they rotated relative to each otherwith an offset ofπ/n. Their
symmetry type isCnv(R,R′). As in the previous section we can assume without loss of generality that
the ring of vorticity 1 and co-latitudeθ0 lies in the Northern hemisphere.

An analogue of Proposition 7.1 also holds forCnv(R,R′) configurations: for almost every pair
(θ0,θ1) there exists a uniqueκ such that the correspondingCnv(R,R′) configuration is a relative equi-
librium. With the notation of the previous section, in the non-degenerate case the angular velocity and
κ satisfy

κ = −(∂xH̃11−∂yH̃12)/(∂yH̃22−∂xH̃12)(xe),
ξ = n−1(∂xH̃11+κ∂xH̃12)(xe).

There exist also degenerate cases. Whenθ1 = θ0 the configuration forms a single ring with 2n vortices
with κ = 1: all the vortices have the same vorticity. These are the relative equilibria oftypeC2nv(R)
studied in Section 3.2. Forθ1 = π− θ0, the configuration has an extra symmetry and its symmetry
type isDnd(R,R′). In this caseκ = −1, the two rings have opposite vorticities. The existence and
stability of such relative equilibria were studied in [LP02].
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With the help of the discussion of Section 3.3, we found that a symmetry adaptedbasis for the
symplectic slice at aCnv(R,R′) relative equilibrium withn≥ 3 andµ 6= 0 is given by:

(

e1,e2,e3,e4,e5,e6,e7,e8,B2,B3, . . . ,B[n/2]

)

for n odd, while forn even one is given by:

(e1,e2,e3,e4,e5,e6,e7,e8,{Bℓ | 2≤ ℓ ≤ n/2−1} ,

α(n/2)
0,θ −α(n/2)

1,θ ,α(n/2)
0,φ −α(n/2)

1,φ ,β(n/2)
1,θ ,β(n/2)

1,φ

)

,

where the expressions ofe1, . . . ,e8 and Bℓ remain as in the previous section. The corresponding
symmetry adapted basis forn = 2 is simply(e1,e2,e3,e6). As in the previous section, it can readily
be seen that almost allCnv(R,R′) relative equilibria have non-zero momenta.

As for the aligned rings, we ran a MAPLE programme to determine the stability of the relative
equilibria. The results are summarized in Figure 8.1 forn = 2. . .6.

Discussion of results

• Numerical experiments suggest that stable relative equilibria only exist forn≤ 6.

• For n = 5 and 6 the relative equilibriaCnv(R,R′) are stable only if the two rings lie in the same
hemisphere but are sufficiently far apart.

• For n ≤ 4 these stable regions extend to include relative equilibria with the rings in different
hemispheres. However, contrary to the caseCnv(2R), the stable regions are far from the line
θ1 = π−θ0 corresponding toDnd(R,R′) relative equilibria.

• For n = 2 and 3 there is also a stable region with the two rings in the same hemisphere and
close to each other. This includes the stableC4v(R) andC6v(R) relative equilibria discussed in
Section 3.2.

• Note also that forn ≤ 6, there exist stable relative equilibria (for some values ofκ) in any
neighbourhood of(θ0,θ1) = (0,0), that is with the two rings close to the North pole.

• A study of the sign ofκ shows that when 3≤ n ≤ 6 the relative equilibria withκ < 0 are
all unstable. However forn = 2 there exist relative equilibria withκ positive in the stable
region corresponding to the two rings both being relatively close to the equator, but in opposite
hemispheres.

• The tetrahedral equilibrium with all 4 vortices identical is Lyapounov stable,and in Fig. 8.1
(with n = 2) lies at the point where the two stable regions meet the two unstable regions on
the D2d(R,R′)-locus. The analogous point withn = 3 corresponds to the stable equilibrium
consisting of 6 identical vortices lying at the vertices of an octahedronOh(v).
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Figure 8.1: Stability results forCnv(R,R′) relative equilibria. The curves plotted are stability
frontiers: on one side the relative equilibria are Lyapunov stable (S), while on the other side
they are linearly unstable (U). Forn ≥ 7, it seems likely that the relative equilibria are all
unstable.
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[Se78] J-P. Serre,Repŕesentations lińeaires des groupes finis.Hermann, 1978.

[ST] A. Soulière and T. Tokieda, Periodic motions of vortices on surfaceswith symmetry.J. Fluid Mech.460
(2002) 83–92.

[To01] T. Tokieda, Tourbillons dansants.CR Acad. Sci. Paris, Série I 333 (2001), 943-946.
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