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Abstract. We present a chart of structured backward errors for approximate eigenpairs of
singly and doubly structured eigenvalue problems. We aim to give, wherever possible, formulae that
are inexpensive to compute so that they can be used routinely in practice. We identify a number of
problems for which the structured backward error is within a factor

√
2 of the unstructured backward

error. This paper collects, unifies, and extends existing work on this subject.
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1. Introduction. Bunse-Gerstner, Byers, and Mehrmann [8] present a chart of
numerical methods for structured eigenvalue problems for which the matrices have
more than one of the properties defined as follows:

A ∈ C
m×m is A ∈ R

m×m is

Hermitian if A∗ = A, symmetric if AT = A,
skew-Hermitian if A∗ = −A, skew-symmetric if AT = −A,
unitary if A∗A = I, orthogonal if ATA = I,
conjugate symplectic if symplectic if

m = 2n and A∗JA = J , m = 2n and ATJA = J ,
Hamiltonian if J-symmetric if

m = 2n and (JA) = (JA)∗, m = 2n and (JA) = (JA)T ,
skew-Hamiltonian if J-skew symmetric if

m = 2n and (JA) = −(JA)∗, m = 2n and (JA) = −(JA)T ,

where J = [ 0
−In

In
0 ], In being the n×n identity matrix. Structured eigenvalue problems

occur in numerous applications and we refer to [8] for a list of them and pointers to the
relevant literature. In this paper we present a chart of computable backward errors
for approximate eigenpairs and condition numbers for simple eigenvalues of matrices
having one or two of these special structures.

The importance of condition numbers for characterizing the sensitivity of solutions
to problems and backward errors for assessing the stability and quality of numerical
algorithms is widely appreciated. A backward error of an approximate eigenpair
(x, λ) of a matrix A is a measure of the smallest perturbation E such that (A+E)x =
λx. This backward error has two main uses. First, it can be used to determine if
(x, λ) solves a nearby problem by comparing the backward error with the size of any
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uncertainties in the data matrix A. Second, a bound on the forward error can be
obtained in terms of the backward error and an appropriate condition number.

A natural definition of the normwise backward error of an approximate eigenpair
(x, λ) is

η(x, λ) = min
{
α−1‖E‖ : (A+ E)x = λx

}
,(1.1)

where α is a positive parameter that allows freedom in how the perturbations are
measured and ‖·‖ denotes any vector norm and the corresponding subordinate matrix
norm. Deif [9] derived the explicit expression for the 2-norm (also valid for any
subordinate norm and the Frobenius norm),

η(x, λ) = α−1‖(A− λI)x‖/‖x‖,
showing that the normwise backward error is a scaled residual. Also of interest is the
backward error of a set of approximate eigenpairs (xj , λj)

k
j=1, which we collect into

matrices Xk = [x1, x2, . . . , xk] and Λk = diag(λ1, λ2, . . . , λk). For a measure of the
backward error we use the natural generalization of (1.1),

η(Xk,Λk) = min
{
α−1‖E‖ : (A+ E)Xk = XkΛk

}
,(1.2)

for which an explicit expression is available for any unitarily invariant norm if rank(Xk) =
k [26, Thm. 2.4.2],

η(Xk,Λk) = α−1‖RkX
+
k ‖,(1.3)

where Rk = XkΛk −AXk is the residual matrix and X
+
k is the pseudoinverse of Xk.

The measure η is not entirely appropriate for our structured eigenvalue problems,
as it does not respect any structure in A. Similar remarks can be made about con-
dition numbers. Standard condition numbers are derived without requiring that per-
turbations preserve structure. As a consequence, standard condition numbers usually
exceed the actual condition number for an eigenvalue problem subject to structured
perturbation. In the last few years, efforts have been concentrated on deriving new
structure-preserving algorithms for the solution of structured eigenvalue problems for
both the dense case [1], [4], [12], [14], [23] and the large and sparse case [2], [3], [5],
[21], to cite just a few articles. It is therefore of interest to develop backward errors
and condition numbers that fully respect the inherent structure of these problems.

Let A ∈ CK ⊂ K
m×m (K = C or R) be a singly or doubly structured matrix, where

CK is the set of matrices having the structure of interest. We extend the definition of
the normwise backward error for a set of eigenpairs (Xk,Λk) in (1.2) to the structured
case by

ηK(Xk,Λk) = min
{
α−1‖E‖F : (A+ E)Xk = XkΛk, A+ E ∈ CK

}
.(1.4)

The contribution of this work is to unify and extend explicit expressions of backward
errors for singly and doubly structured eigenproblems. These expressions allow struc-
tured backward errors to be computed more efficiently than if (1.4) were treated as a
general nonlinear optimization problem.

In section 2 we recall some basic properties of the structured matrices under
consideration and give some useful lemmas. We recall in the first part of section
3 that for linear structures a Kronecker product approach can be used to rewrite
the minimization problem in (1.4) in terms of the minimal 2-norm solution to an
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Table 2.1
Eigenvalue properties of the singly structured matrices A ∈ Cm×m under consideration.

Class of matrices Eigenvalues Class of matrices Eigenvalues

A∗ = A real eigenvalues AT = A arbitrary

A∗ = −A purely imaginary AT = −A 0 and/or pairs µ, −µ, (µ �= 0)
A∗A = I |µ| = 1 ATA = I ±1 and/or pairs µ, 1/µ, (µ2 �= 1)
A∗JA = J pairs µ, 1/µ̄ AT JA = J pairs µ, 1/µ

(JA) = (JA)∗ pairs µ,−µ̄ (JA) = (JA)T pairs µ,−µ

(JA) = −(JA)∗ pairs µ, µ̄ (JA) = −(JA)T double eigenvalues

underdetermined system. The dimension of the underdetermined system may make
the computation of backward error expensive. Fortunately, there are particular classes
of linear structured problems for which we can characterize the set of solutions to
the constraints in (1.4) and identify the solution of minimal Frobenius norm. This
yields backward error formulae that are cheaper to compute and easier to analyze and
understand than with the Kronecker product approach. As a result we show that, in
some instances, forcing the backward error matrix to have a particular structure has
little effect on its norm.

Backward errors for eigenproblems with nonlinear structure are harder to derive.
Sun [25] characterizes the complete set of solutions to the constraints in (1.4) for
the class of unitary matrices and derives a structured backward error for this class
of problems. We use his approach and extend it to the classes of Hermitian unitary,
symplectic unitary, and symmetric orthogonal matrices. Many problems remain open.
Following the presentation in [8], we give in the second part of section 3 a chart of
structured backward errors. For each class of matrices, we either recall an existing
known explicit formula for the structured backward error, or derive a new explicit
formula, or identify obtaining such a formula as an open problem. We aim to provide
formulae that are cheap to compute so that they can be used in the course of a
computation. We identify several cases in which the structured backward error is
within a factor

√
2 of the unstructured backward error. For completeness, we recall

in section 4 how to compute structured condition numbers of simple eigenvalues of
matrices depending linearly on a set of parameters.

2. Basics.

2.1. Background material and definitions. We summarize in Table 2.1 the
properties of the eigenvalues of the singly structured matrices considered in this paper.
If the matrix is real, then its spectrum is symmetric with respect to the real axis.
For doubly structured matrices the eigenvalue properties combine. For example, the
eigenvalues of a real Hamiltonian matrix come in quadruples (λ, λ̄,−λ,−λ̄) if Re(λ) 	=
0, and the eigenvalues of a Hermitian Hamiltonian matrix come in pairs (λ,−λ) with
λ real.For A ∈ C

m×k with m ≥ k, there exists a matrix U ∈ C
m×k with orthonormal

columns, and a unique Hermitian positive semidefinite matrix H ∈ C
k×k, such that

A = UH. This is called the polar decomposition of A.
For a Hermitian matrix A, we define sign(A) by sign(A) = Q sign(D)Q∗, where

A = QDQ∗ is the eigendecomposition of A with Q∗Q = I, sign(D) = diag(sign(di)),
and sign(0) = 1.
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We define the symplectic quasi-QR factorization of a 2n× k matrix A by

A = QT, T =

[
T1

T2

]
,

where Q is unitary conjugate symplectic, T1 ∈ C
n×k is upper trapezoidal, and T2 ∈

C
n×k is strictly upper trapezoidal. This factorization is discussed in [7, Cor. 4.5(ii)]
and [27].

We make frequent use of the following lemmas.
Lemma 2.1. Let A ∈ C

m×m, Y1 ∈ C
m×k,m ≥ k, and Y = [Y1, Y2] be unitary and

let B ∈ C
k×k. Then

‖Y1B −AY1‖2
F = ‖B − Y ∗

1 AY1‖2
F + ‖Y ∗

2 AY1‖2
F .

Proof. The proof is immediate using Y1Y
∗
1 + Y2Y

∗
2 = I and

Y1B −AY1 = Y

[
B − Y ∗

1 AY1

−Y ∗
2 AY1

]
.

Lemma 2.2 ([25, Lem. 2.4]). Let A ∈ C
m×m be unitary, Y1 ∈ C

m×k with 2k ≤ m,
Y = [Y1, Y2] be unitary, and let H1 and H2 be the Hermitian polar factors of Y ∗

1 AY1

and Y ∗
2 AY2, respectively. Then for any unitarily invariant norm,

‖I −H1‖ = ‖I −H2‖ and ‖Y ∗
1 AY2‖ = ‖Y ∗

2 AY1‖.
Proof. By the CS decomposition [22] there are unitary matrices U = diag(U1, U2)

and V = diag(V1, V2) with U1, V1 ∈ C
k×k such that

U∗Y ∗AY V =

C −S 0
S C 0
0 0 I

 ,
where C, S are k× k diagonal matrices with nonnegative diagonal elements and C2+
S2 = I. Then

Y ∗
1 AY1 = U1CV

∗
1 , Y ∗

2 AY2 = U2

[
C 0
0 I

]
V ∗

2

so that H1 = V1CV
∗
1 and H2 = V2 diag(C, I)V

∗
2 . Hence, ‖I − H2‖ = ‖I − C‖ =

‖I −H1‖. The second equality follows from

Y ∗
2 AY1 = U2

[
S
0

]
V1, Y ∗

1 AY2 = U1 [−S 0 ]V2.

2.2. Structured matrix problems. Before deriving structured backward er-
rors, we need some results on the following structured matrix problem: Given a class
of structured matrices CK ⊂ K

m×m, where K = C or R, characterize
1. pairs of matrices Y,B ∈ K

m×k for which there exists a matrix A ∈ CK such
that AY = B;

2. the set SCK
= {A ∈ CK : AY = B}.

The lemmas in this section give a solution to this problem for several classes of
structured matrices and give, whenever possible, the optimal solution Aopt defined by

‖Aopt‖F = min{‖A‖F : A ∈ SCK
}.
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First, we need to set the notation. Define the full and reduced singular value
decompositions of Y by

Y = U

[
ΣY 0
0 0

]
V ∗ = U1ΣY V

∗
1 ,(2.1)

where U = [U1, U2] and V = [V1, V2] are unitary with U1 ∈ K
m×r, V1 ∈ K

k×r, and
ΣY = diag(σ1, . . . , σr), σi > 0, i = 1: r, r = rank(Y ). In what follows, Y

+ denotes the
pseudoinverse of Y , PY = Y Y + = U1U

∗
1 is the orthogonal projector onto range(Y ),

and P⊥
Y = I − PY .

The first result is from [24, Lem. 1.4] and concerns the class of Hermitian matrices
when K = C and the class of symmetric matrices when K = R. We give the proof for
completeness.
Lemma 2.3. Let Y,B ∈ K

m×k, m ≥ k, be given and let

CK = {A ∈ K
m×m : A = A∗}.

Then SCK
	= ∅ if and only if BPY ∗ = B and PYBY

+ ∈ CK, and if SCK
	= ∅, then

SCK
= {BY + + (BY +)∗P⊥

Y + P⊥
Y HP

⊥
Y : H ∈ CK},

Aopt = BY + + (BY +)∗P⊥
Y .

Proof. Substituting (2.1) for Y in AY = B and letting

U∗AU = Ã =

[
Ã11 Ã12

Ã21 Ã22

]
, U∗BV =

[
B̃11 B̃12

B̃21 B̃22

]
,(2.2)

with Ã11, B̃11 ∈ K
r×r, we obtain[

Ã11ΣY 0
Ã21ΣY 0

]
=

[
B̃11 B̃12

B̃21 B̃22

]
.(2.3)

Hence, solutions to AY = B exist if and only if

U∗BV =
[
B̃11 0
B̃21 0

]
, (B̃11Σ

−1
Y )∗ = B̃11Σ

−1
Y .

The first condition is equivalent to

B = U

[
B̃11 0
B̃21 0

]
V ∗ = [U1 U2 ]

[
U∗

1BV1 0
U∗

2BV1 0

] [
V ∗

1

V2

]
= BV1V

∗
1 = BY +Y = BPY ∗ .

The second condition is equivalent to (PYBY
+)∗ = PYBY

+.

We now prove that SCK
= S̃CK

, where S̃CK
= {BY + + (BY +)∗P⊥

Y + P⊥
Y HP

⊥
Y :

H ∈ CK}. First, we assume that A ∈ SCK
	= ∅. Then from (2.3) we have

A = U

[
B̃11Σ

−1
Y Σ−1

Y B̃∗
21

B̃21Σ
−1
Y Ã22

]
U∗

= U1U
∗
1BV1Σ

−1
Y U∗

1 + U2U
∗
2BV1Σ

−1
Y U∗

1 + U1Σ
−1
Y V ∗

1 B
∗U2U

∗
2 + U2U

∗
2AU2U

∗
2

= BV1Σ
−1
Y U∗

1 + Y +∗B∗(I − U1U
∗
1 ) + (I − U1U

∗
1 )A(I − U1U

∗
1 )

= BY + + (BY +)∗P⊥
Y + P⊥

Y AP
⊥
Y
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so that A ∈ S̃CK
and SCK

⊂ S̃CK
. Now it is easy to verify that if BPY ∗ = B and

PYBY
+ is Hermitian, then any A ∈ S̃CK

satisfies AY = B and A∗ = A so that

S̃CK
⊂ SCK

, which completes the proof of the first part of the lemma.
For the second part, we have

‖A‖2
F = ‖Ã‖2

F

=

∥∥∥∥[ B̃11Σ
−1
Y

B̃21Σ
−1
Y

]∥∥∥∥2

F

+ ‖ [ B̃11Σ
−1
Y Σ−1

Y B̃∗
21

] ‖2
F − ‖B̃11Σ

−1
Y ‖2

F + ‖Ã22‖2
F

= 2‖BY +‖2
F − ‖U∗

1BV1Σ
−1
Y ‖2

F + ‖Ã22‖2
F .

Hence ‖A‖F is minimized by setting Ã22 = 0, which implies P⊥
Y AP

⊥
Y = 0. The

expression for Aopt follows.
The result of Lemma 2.3 can be extended to other classes of matrices.
Lemma 2.4. Let Y,B ∈ K

m×k, m ≥ k, be given.
1. Let CK = {A ∈ K

m×m : A = −A∗}. Then SCK
	= ∅ if and only BPY ∗ = B

and PYBY
+ = −(PYBY

+)∗, and if SCK
	= ∅, then

SCK
= {BY + − (BY +)∗P⊥

Y + P⊥
Y HP

⊥
Y : H ∈ CK},

Aopt = BY + − (BY +)∗P⊥
Y .

2. Let CC = {A ∈ C
m×m : A = AT }. Then SCC

	= ∅ if and only BPY ∗ = B and
PYBY

+ = (PYBY
+)T , and if SCC

	= ∅, then

SCC
= {BY + + (BY +)TP⊥

Y + P⊥
Y
HP⊥

Y : H ∈ CC},
Aopt = BY + + (BY +)TP⊥

Y .

3. Let CC = {A ∈ C
m×m : A = −AT }. Then SCC

	= ∅ if and only BPY ∗ = B
and PYBY

+ = −(PYBY
+)T , and if SCC

	= ∅, then

SCC
= {BY + − (BY +)TP⊥

Y + P⊥
Y
HP⊥

Y : H ∈ CC},
Aopt = BY + − (BY +)TP⊥

Y .

Proof. All these results are proved in a similar way to Lemma 2.3. For the
symmetric or skew-symmetric case, the matrices Ã and B̃ in (2.2) are defined by

Ã = UTAU and B̃ = UTBV .
Note that Lemma 2.3 solves the Hamiltonian structured matrix problem since

JA is Hermitian, and for similar reasons Lemma 2.4 solves the skew-Hamiltonian,
J-symmetric, and J-skew-symmetric structured matrix problems.

In the next lemma, we extend a result of Kahan, Parlett, and Jiang [19]. Here,
Y and X do not have to have orthonormal columns, we do not require X∗Y to be
nonsingular, and Y and X may have different ranks.
Lemma 2.5. Let Y,X,B,C ∈ K

m×k, m ≥ k, be given with rank(Y ) = r and
rank(X) = s, and let SK = {A ∈ K

m×m : AY = B, A∗X = C}. If C∗Y = X∗B,
then

SK = {BY + + (CX+)∗P⊥
Y + P⊥

XHP
⊥
Y , H ∈ K

m×m}
= {(C∗X+)∗ + P⊥

XBY
+ + P⊥

XHP
⊥
Y , H ∈ K

m×m},
Aopt = BY + + (CX+)∗P⊥

Y = (C∗X+)∗ + P⊥
XBY

+.
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Proof. Let S̃1
K
= {BY + + (CX+)∗P⊥

Y + P⊥
XHP

⊥
Y , H ∈ K

m×m} and S̃2
K
=

{(C∗X+)∗ + P⊥
XBY

+ + P⊥
XHP

⊥
Y , H ∈ K

m×m}. First, we assume that A ∈ SK. Let

Y = U

[
ΣY 0
0 0

]
V ∗ = U1ΣY V

∗
1 , X =W

[
ΣX 0
0 0

]
Z∗ =W1ΣXZ

∗
1

be the full and reduced singular value decompositions of Y and X, U = [U1, U2],
W = [W1,W2] with U1 ∈ K

m×r, W1 ∈ K
m×s. Partition V = [V1, V2] and Z = [Z1, Z2]

accordingly to U and W and let

Ã =W ∗AU =
[
Ã11 Ã12

Ã21 Ã22

]
.

Then

Ã11 =W ∗
1AU1 =W ∗

1BV1Σ
−1
Y = Σ−1

X Z∗
1C

∗U1, Ã12 =W ∗
1AU2 = Σ

−1
X Z∗

1C
∗U2,

Ã21 =W ∗
2AU1 =W ∗

2BV1Σ
−1
Y , Ã22 =W ∗

2AU2.

Now,

A =WÃU∗ =W1Ã11U
∗
1 +W1Ã12U

∗
2 +W2Ã21U

∗
1 +W2Ã22U

∗
2 .

Then replacing Ã11, Ã12, and Ã21 by the expressions above yields, for Ã11 =W ∗
1BV1Σ

−1
Y ,

A = BY + + (CX+)∗P⊥
Y + P⊥

XAP
⊥
Y ,

and for Ã11 = Σ
−1
X Z∗

1C
∗U1,

A = (C∗X+)∗ + P⊥
XBY

+ + P⊥
XAP

⊥
Y .

Hence SK ⊂ S̃1
K
and SK ⊂ S̃2

K
. It is easy to verify that if C∗Y = X∗B, then any

A ∈ S̃1
K
and any A ∈ S̃2

K
satisfy AY = B and A∗X = C so that S̃1

K
= SK = S̃2

K
.

We have

‖A‖2
F = ‖Ã‖2

F

=

∥∥∥∥[ Ã11

Ã21

]∥∥∥∥2

F

+ ‖ [ Ã11 Ã12

] ‖2
F − ‖Ã11‖2

F + ‖Ã22‖2
F

= ‖BV1Σ
−1
Y ‖2

F + ‖Σ−1
X Z∗

1C
∗‖2

F − ‖W ∗
1BV1Σ

−1
Y ‖2

F + ‖Ã22‖2
F .

Hence ‖A‖F is minimized by setting Ã22 = 0, which implies P⊥
XAP

⊥
Y = 0, and the

expressions for Aopt follow.
This last result is from [25, Lem. 2.2]. We give the proof for completeness.
Lemma 2.6. Let Y,B ∈ K

m×k, m ≥ k, be given and let CK = {A ∈ K
m×m :

A∗A = I}. Then, SCK
	= ∅ if and only if Y ∗Y = B∗B, and if SCK

	= ∅, then

SCK
= {BY + +QP⊥

Y : Q ∈ CK, QPY = PBQ}.
Proof. If SCK

	= ∅, then Y ∗Y = B∗B. Now assume that Y ∗Y = B∗B. Substitut-
ing Y by (2.1) into Y ∗Y = B∗B gives BV2 = 0 and BV1 = Q1Σ, where Q1 ∈ K

m×r

with Q∗
1Q1 = I. Hence

B = Q

[
Σ 0
0 0

]
V ∗,
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where Q = [Q1, Q2] is unitary. Then A = QU∗ ∈ SCK
and therefore SCK

	= ∅.
Let S̃CK

= {BY + + Q(I − Y Y +) : Q∗Q = I, QPY = PBQ}. First, we assume
that A ∈ SCK

. We can rewrite A as A = BY + + A(I − Y Y +). Note that since A

is unitary, Y + = (A∗B)+ = B+A. Also, APY = BY + = PBA so that A ∈ S̃CK
and

SCK
⊂ S̃CK

.

Assume that A ∈ S̃CK
. Hence A = BY + + QP⊥

Y for some unitary Q such that
QY Y + = BB+Q. From AY = B, Y + = B+A, and Y Y + = (Y Y +)∗ it is easy to
show that Y +Y = B+B. We have

A∗A = ((BY +)∗ + (I − PY )Q
∗)(BY + +Q(I − PY ))

= (BY +)∗BY + + (BY +)∗Q(I − PY ) + (I − PY )Q
∗BY + + I − PY .

First,

(BY +)∗BY + = Y +∗B∗BY + = Y +∗Y ∗Y Y ∗ = (Y Y +)∗(Y Y +) = PY ,

and second,(
(BY +)∗Q(I − PY )

)∗
= (I − PY )Q

∗BY + = Q∗(I − PB)BY
+ = 0.

Hence A∗A = PY + 0 + 0 + I − PY = I. Also AY = BY +Y + Q(I − Y Y +)Y =

BB+B = B so that A ∈ SCK
and S̃CK

⊂ SCK
, which completes the proof.

3. Structured normwise backward errors.

3.1. Kronecker product approach. Assume that A depends linearly on t ≤
m2 free parameters and that every element of A is a multiple of a single parameter. We
write this dependence as A = A[p] with p ∈ K

t. Higham and Higham [15], [16] extend
the notion of componentwise backward error to allow dependence of the perturbations
on a set of parameters, and they define structured componentwise backward errors.
We use their approach to rewrite the constraint A + E ∈ CK in (1.4) as A + E =
A[p+∆p] or, equivalently, E = E[∆p], where∆p is a t-vector of perturbed parameters.
Note that if any sparsity of A is included in the structure, then E will have the same
sparsity as A.

Applying the vec operator (which stacks the columns of a matrix into one long
vector) to the constraints in (1.4) gives

(XT
k ⊗ Im) vec(E) = vec(Rk), vec(E) = B∆p,(3.1)

where ⊗ denotes the Kronecker product, B ∈ K
m2×t is of full rank, and Rk is the

residual matrix. We refer to Lancaster and Tismenetsky [20, Chap. 12] for properties
of the vec operator and the Kronecker product. Let D be a diagonal matrix such that

‖E‖F = ‖D∆p‖2,

and let y = D∆p, Mk = (X
T
k ⊗ Im)BD

−1 ∈ K
km×t, and sk = vec(Rk). Then we can

rewrite (3.1) as the linear system Mky = sk and therefore

ηK(Xk,Λk) = α−1 min
y∈Kt

{‖y‖2 : Mky = sk
}
.

This shows that the structured normwise backward error is given in terms of the min-
imal 2-norm solution to an overdetermined system if t < km or an underdetermined
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system otherwise. There may be no solution to the system ifMk is rank deficient or if
the system is overdetermined. If the system is underdetermined and consistent, then
the minimal 2-norm solution is given in terms of the pseudoinverse by y =M+

k sk. In
this case

ηK(Xk,Λk) = α−1‖M+
k sk‖2.(3.2)

When the data A,Xk,Λk are all real, then ∆p is automatically real. In certain
circumstances it is appropriate to restrict∆p to be real even though the data A,Xk,Λk

are complex. This happens when the constraints on A’s structure involve conjugation
of its coefficients or, in the case of real structured backward error, when A is real and
λ or x is complex. In these cases, the backward error derivation must be modified
by taking real and imaginary parts in the constraint (A+ E)x = λx to obtain a real
system of equations. For example, consider a 2 × 2 skew-Hermitian matrix E and
a single eigenpair (x, λ) (k = 1). Taking real and imaginary parts in the constraint
Ex = r yields

[F,G]

[
Re(x) Im(x)
− Im(x) Re(x)

]
= [Re(r), Im(r)],

where F = Re(E) is skew-symmetric and G = Im(E) is symmetric. The 2× 2 skew-
Hermitian E can be parameterized by

E =

[
0 −∆p1

∆p1 0

]
+ i

[
∆p2 ∆p3

∆p3 ∆p4

]
, ∆pj ∈ R, j = 1: 4,

so that

vec([F,G]) =



0 0 0 0
1 0 0 0
−1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1




∆p1

∆p2

∆p3

∆p4

 := B∆p.

In this case, M1 in (3.2) is given by

M1 =

([
Re(x) Im(x)
− Im(x) Re(x)

]T
⊗ I2

)
BD−1 ∈ R

4×4,

with D = diag([‖b1‖1, . . . , ‖b4‖1]) = diag([2, 1, 2, 1]) and with bj being the jth column
of B.

Generally, the size of Mk makes the computation of ηK(Xk,Λk) expensive. Thus
(3.2) is not a formula we would evaluate routinely in the course of solving a prob-
lem. Nevertheless, it is useful as a tool when testing the stability of newly developed
structure-preserving algorithms, as shown in [27], or to illustrate instability of well-
known algorithms.

As we shall see in the next section, for certain classes of structured matrices
it is possible to express the structured backward error in a form that is much less
expensive to evaluate than (3.2). We also consider some nonlinear structures that are
not covered by this Kronecker product approach.



886 FRANÇOISE TISSEUR

3.2. A chart of structured backward errors. This section provides a chart
of structured backward errors for a set of approximate eigenpairs (xj , λj)

k
j=1 for the

singly and doubly structured matrices under consideration. We aim to give, whenever
possible, formulae that are cheap to compute so that they can be used routinely in
practice. We give an expression for Eopt, the solution of minimal Frobenius norm
to the constraints in (1.4). We assume that for each class of problems the set of
eigenvalues {λj}kj=1 satisfies the relevant eigenvalue properties listed in Table 2.1,
since otherwise ηK(Xk,Λk) =∞. For the structured backward error to exist, we may
also need to impose some restrictions on Xk.

The first chart, in Table 3.1, covers the complex case, and the second chart, in
Table 3.3, covers the real case. They both list structured backward errors that may be
applied to the corresponding structured eigenvalue problems. Question marks indicate
cases for which explicit expressions for the structured backward errors are not yet
known. An X or X indicates that an explicit expression for ηK(Xk,Λk) exists. The
symbol X emphasizes that the structured backward error is at most a factor

√
2 larger

than the corresponding unstructured backward error (never smaller). Finally, entries
marked with ⊗ indicate that an explicit expression for ηK(Xk,Λk) is obtained via the
Kronecker product approach described in section 3.1 (which we recall is applicable
to linear structure only). Table 3.2 provides the block structure of the corresponding
doubly structured matrices together with the matrix properties of the blocks and is
useful in forming the matrix B in (3.1).

In the following, “W-trick”1 refers to the unitary similarity transformation

W ∗AW =
1

2

[
A11 +A22 + i(A12 −A21) A11 −A22 − i(A12 +A21)
A11 −A22 + i(A12 +A21) A11 +A22 − i(A12 −A21)

]
,

where W = 2−
1
2 [ IiI

I
−iI ] and A = [

A11

A21

A12

A22
] ∈ K

2n×2n. We define

Yk =

[
Yk,1
Yk,2

]
:=W ∗Xk and Sk =

[
Sk,1

Sk,2

]
:=W ∗Rk.

The superscript (i, j) in η
(i,j)
K

refers to the class of matrices in position (i, j) of the
complex chart if K = C and of the real chart if K = R. Recall that Rk = XkΛk−AXk.

3.2.1. Complex chart (K = C).

Position (1,1): C(1,1)
C

= {A ∈ C
m×m : A∗ = A} is the class of Hermitian

matrices. First, we assume that Xk has orthonormal columns,
2 since otherwise

η
(1,1)
C

(Xk,Λk) = ∞. We have X+
k = X∗

k so that RkPX∗
k
= Rk and PXk

RkX
∗
k =

XkΛkX
∗
k −XkX

∗
kAXkX

∗
k is Hermitian. Hence, from Lemma 2.3 the optimal solution

to the constraints in (1.4) is given by

Eopt = RkX
∗
k + (XkR

∗
k)P

⊥
Xk

so that

η
(1,1)
C

(Xk,Λk) = α−1
√
trace(E∗

optEopt) = α−1
√
2‖Rk‖2

F − ‖X∗
kRk‖2

F ,

1The term “X-trick” is used in [8]. We use W-trick to avoid confusion with our notation.
2In practice, if Xk has columns that are close to being orthonormal, then one can replace them

by the unitary factor of either its QR factorization or its polar decomposition.
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A
C
K
W
A
R
D
E
R
R
O
R
S
F
O
R
S
T
R
U
C
T
U
R
E
D
E
IG
E
N
P
R
O
B
L
E
M
S

887

Table 3.1
Summary of the structured backward errors.

1 2 3 4 5 6 7 8 9 10 11 12

A∗ = A A∗ = −A A∗A = I A∗JA = J JA = (JA)∗ JA = −(JA)∗ AT = A AT = −A ATA = I AT JA = J JA = (JA)T JA = −(JA)T

1 A∗ = A X ∅ X ? X X X X ? ? ⊗ ⊗
2 A∗ = −A X X ? X X X X ? ? ⊗ ⊗
3 A∗A = I X X ? ? ? ? ? ? ? ?

4 A∗JA = J ? ? ? ? ? ? ? ? ?

5 JA = (JA)∗ X ∅ ⊗ ⊗ ? ? X X

6 JA = −JA∗ X ⊗ ⊗ ? ? X X

7 AT = A X ∅ ? ? X X

8 AT = −A X ? ? X X

9 ATA = I ? ? ? ?

10 AT JA = J ? ? ?

11 JA = (JA)T X ∅
12 JA = −(JA)T X

X: explicit expression for ηC(Xk,Λk) is available and within a factor
√
2 of the unstructured backward error.

X: explicit expression for ηC(Xk,Λk) is available.
?: no explicit expression known for ηC(Xk,Λk).
∅: no nontrivial matrices with the prescribed pair of structures.
⊗: expression available from Kronecker product approach. See Table 3.2 for the block structure of the matrices.
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Table 3.2
Block structure and block property of some doubly structured matrices.

(JA) = (JA)∗ (JA) = −(JA)∗

AT = A

[
A1 A2

Ā2 −Ā1

]
,

A1 = AT
1

Ā2 = AT
2

[
A1 A2

−Ā2 Ā1

]
,

A1 = AT
1

AT
2 = −Ā2

AT = −A

[
A1 A2

−Ā2 Ā1

]
,

A1 = −AT
1

A2 = A∗
2

[
A1 A2

Ā2 −Ā1

]
,

A1 = −AT
1

A2 = −A∗
2

(JA) = (JA)T (JA) = −(JA)T

A∗ = A

[
A1 A2

A∗
2 −AT

1

]
,

A1 = A∗
1

A2 = AT
2

[
A1 A2

−Ā2 Ā1

]
,

A1 = A∗
1

A2 = −AT
2

A∗ = −A

[
A1 A2

−A∗
2 −AT

1

]
,

A1 = −A∗
1

A2 = AT
2

[
A1 A2

−A∗
2 AT

1

]
,

A1 = −A∗
1

A2 = −AT
2

where the second equality follows after some algebra. The expression for η
(1,1)
C

(Xk,Λk)
was obtained in [26, Thm. 2.5.9]. If η(Xk,Λk) denotes the unstructured backward er-
ror in (1.3), then

η(Xk,Λk) ≤ η
(1,1)
C

(Xk,Λk) ≤
√
2 η(Xk,Λk).

The first inequality is due to the fact that the class of admissible perturbations is larger
for the unstructured case than for the structured case. These inequalities show, as for
the structured backward error for Hermitian linear systems [6], [18, Prob. 7.12], that
forcing the backward error matrix to be Hermitian has little effect on its norm. Note
that for a single eigenpair (x, λ) with x of unit 2-norm and r = (λI − A)x being the
residual, Eopt is given by

Eopt = rx∗ + xr∗ − (r∗x)xx∗,
which is a well-known result in the fields of nonlinear equations and optimization [10],
[11, p. 171] and numerical linear algebra [6], [19]. In this case,

η
(1,1)
C

(x, λ) = α−1
√
2‖r‖2

2 − (λ− x∗Ax)2.

Position (1,3): C(1,3)
C

= {A ∈ C
m×m : A∗ = A, A∗A = I} is the class of

Hermitian unitary matrices. We assume that the columns of Xk are orthonormal
and that Λk = diag(±1). The derivation of ηC is along the same lines as that for
the class of unitary matrices (see position (3,3)) but with an extra constraint in the
minimization problem. Therefore, we give just an outline and refer to position (3,3)

for a detailed derivation. Let X = [Xk, X̃] be unitary. From (3.5) below we have that

α2η
(1,3)
C

(Xk,Λk)
2 = ‖R‖2

F + min
Z̃∗Z̃=I

Z̃∗=Z̃

‖X̃Z̃ −AX̃‖2
F

= ‖R‖2
F + ‖X∗

kAX̃‖2
F + min

Z̃∗Z̃=I

Z̃∗=Z̃

‖Z̃ − X̃∗AX̃‖2
F ,(3.3)
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where the second equality is obtained using Lemma 2.1. The minimization problem
in (3.3) is a nearness problem whose solution is given in terms of sign(X̃∗AX̃) by [17]

min
Z̃∗Z̃=I

Z̃∗=Z̃

‖Z̃ − X̃∗AX̃‖F = ‖ sign(X̃∗AX̃)− X̃∗AX̃‖F .

Let UkHk and ŨH̃ be the polar decompositions ofX∗
kAXk and X̃

∗AX̃, respectively. If
X̃∗AX̃ = QDQ∗ is the eigendecomposition of X̃∗AX̃ with Q unitary and D real diag-
onal, then X̃∗AX̃ = Q sign(D)Q∗Q|D|Q∗ = sign(X̃∗AX̃)Q|D|Q∗ with sign(X̃∗AX̃)
unitary and Q|D|Q∗ Hermitian positive definite. Hence, we have Ũ = sign(X̃∗AX̃)
and H̃ = Q|D|Q∗ so that

‖ sign(X̃∗AX̃)− X̃∗AX̃‖F = ‖Ũ − ŨH̃‖F = ‖I − H̃‖F .

By Lemmas 2.2 and 2.1 we have

‖I − H̃‖2
F = ‖I −Hk‖2

F = ‖Uk −X∗
kAXk‖2

F = ‖XkUk −AXk‖2
F − ‖X∗

kAX̃‖2
F .

Then replacing the minimization problem in (3.3) by the above expression yields

η
(1,3)
C

(Xk,Λk) = α−1
√
‖Rk‖2

F + ‖XkUk −AXk‖2
F .

Note that η
(1,3)
C

(Xk,Λk) = η
(3,3)
C

(Xk,Λk), where (3, 3) refers to the class of unitary
matrices. Let η(Xk,Λk) be the unstructured backward error. Then, as in position
(3,3), we have

η(Xk,Λk) ≤ η
(1,3)
C

(Xk,Λk) ≤
√
2 η(Xk,Λk),

showing that forcing A+E to be Hermitian and unitary has little effect on its norm.

Position (1,5): C(1,5)
C

= {A ∈ C
2n×2n : A∗ = A, JA = (JA)∗} is the class

of Hermitian Hamiltonian matrices. Note that A ∈ CC has the form [A1

A2

A2

−A1
] with

A1 = A∗
1 and A2 = A∗

2 and that the W-trick gives

W ∗AW =

[
0 Ã
Ã∗ 0

]
, Ã = A1 − iA2.

Hence, using the W-trick, the constraints in (1.4) can be rewritten as

ẼYk,2 = Sk,1, Ẽ∗Yk,1 = Sk,2, Ẽ = E1 − iE2 ∈ C
n×n,

because E is transformed in the same way as A. If S∗
k,2Yk,2 = Y ∗

k,1Sk,1, then

η
(1,5)
C

(Xk,Λk) =

√
2

α
‖Eopt‖F , Ẽopt = Sk,1Y

+
k,2 + (Sk,2Y

+
k,1)

∗P⊥
Yk,2

,

using Lemma 2.5.
Note that if Xk and Λk are such that X

∗
kXk = I, X∗

kJXk = J and JΛk = (JΛk)
∗

is Hamiltonian, then we can show that the assumption S∗
k,2Yk,2 = Y ∗

k,1Sk,1 is satisfied.

Position (1,6): C(1,6)
C

= {A ∈ C
2n×2n : A∗ = A, JA = −(JA)∗} is the class

of Hermitian skew-Hamiltonian matrices. Note that A ∈ CC has the form [ A1

−A2

A2

A1
]
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with A1 = A∗
1 and A2 = −A∗

2 and that the W-trick diagonalizes A, Ã = W ∗AW =

diag(Ã1, Ã2), where Ã1 = A1 + iA2 and Ã2 = A1 − iA2 are Hermitian. Hence, the
2n×2n skew-Hermitian problem can be reduced to two n×n Hermitian eigenproblems
that can be solved independently. We refer to position (1,1) for the corresponding
backward error.

Positions (1,7), (1,8): A ∈ C
m×m, A∗ = A, and AT = A (or AT = −A) imply

that A is real symmetric (or iA is real skew-symmetric). Hence

η
(1,7)
C

(Xk,Λk) = η
(1,1)
R

(Xk,Λk), η
(1,8)
C

(Xk,Λk) = η
(2,2)
R

(Xk, iΛk).

Positions (2, k), k = 2: 12: Each of these classes consists of matrices which
are the scalar i times matrices in the corresponding classes in row 1. Hence

η
(2,2)
C

(Xk,Λk) = η
(1,1)
C

(Xk, iΛk), η
(2,3)
C

(Xk,Λk) = η
(1,3)
C

(Xk, iΛk),

η
(2,5)
C

(Xk,Λk) = η
(1,6)
C

(Xk, iΛk), η
(2,6)
C

(Xk,Λk) = η
(1,5)
C

(Xk, iΛk),

η
(2,7)
C

(Xk,Λk) = η
(1,7)
C

(Xk, iΛk), η
(2,8)
C

(Xk,Λk) = η
(1,8)
C

(Xk, iΛk).

Position (3,3): C(3,3)
C

= {A ∈ C
m×m : A∗A = I} is the class of unitary matrices.

We use Sun’s approach [25] to derive ηC(Xk,Λk). First, we assume that the columns
of Xk are orthonormal. As X

∗
kXk = (XkΛk)

∗XkΛk = Ik, then from Lemma 2.6,
solutions of (A+ E)Xk = XkΛk with A+ E unitary exist and have the form

A+ E = XkΛkX
∗
k +Q(I −XkX

∗
k)(3.4)

with Q ∈ C(3,3)
C

such that QXkX
∗
k = XkX

∗
kQ. Substituting XkX

∗
k = X diag(Ik, 0)X

∗,
where X = [Xk, X̃] is unitary, into QXkX

∗
k = XkX

∗
kQ, yields

X∗QX diag(Ik, 0) = diag(Ik, 0)X∗QX

which implies X̃∗QXk = 0 and X
∗
kQX̃ = 0 or, equivalently,

Q = X

[
Zk 0
0 Z̃

]
X∗, Z = diag(Zk, Z̃) ∈ C(3,3)

C
.

Hence, from (3.4)

E = XkΛkX
∗
k + X̃Z̃X̃∗ −A = [(XkΛk −AXk), (X̃Z̃ −AX̃)]X∗

so that

α2η
(3,3)
C

(Xk,Λk)
2 = ‖R‖2

F + min
Z̃∗Z̃=I

‖X̃Z̃ −AX̃‖2
F .(3.5)

Let UkHk and ŨH̃ be the polar decompositions of X∗
kAXk and X̃

∗AX̃, respectively.
The minimization problem in (3.5) is a well-known Procrustes problem [13, p. 149]
whose solution is given by

min
Z̃∗Z̃=I

‖X̃Z̃ −AX̃‖2
F = ‖X̃Ũ −AX̃‖2

F .

By applying Lemma 2.1, then Lemma 2.2, and finally Lemma 2.1 again, we have

‖X̃Ũ −AX̃‖2
F = ‖X∗

kAX̃‖2
F + ‖Ũ − X̃∗AX̃‖2

F

= ‖X̃∗AXk‖2
F + ‖Uk −X∗

kAXk‖2
F

= ‖XkUk −AXk‖2
F .
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Hence

η
(3,3)
C

(Xk,Λk) = α−1
√
‖Rk‖2

F + ‖XkUk −AXk‖2
F ≤ α−1

√
2 ‖Rk‖F =

√
2 η(Xk,Λk),

where the inequality follows from

‖XkUk −AXk‖F = min
Z∗

k
Zk=I

‖XkZk −AXk‖F ≤ ‖XkΛk −AXk‖F = ‖Rk‖F .

This is another example in which forcing the backward error matrix to be unitary has
little effect on its norm.

Position (3,4): C(3,4)
C

= {A ∈ C
2n×2n : A∗A = I, A∗JA = J} is the class

of symplectic unitary matrices. Matrices in this class have the form A = [A1

A2

−A2

A1
]

and are diagonalized by the W-trick, W ∗AW = diag(Ã1, Ã2) with Ã1 = A1 − iA2,

Ã2 = A1+iA2 unitary. Hence, the 2n×2n original eigenvalue problem can be reduced
to two n× n unitary eigenproblems that can be solved independently. Position (3,3)
provides an explicit expression of the corresponding structured backward error.

Position (5,5): C(5,5)
C

= {A ∈ C
2n×2n : JA = (JA)∗} is the class of Hamilto-

nian matrices. The constraints in (1.4) can be rewritten as JEXk = JRk with JE
Hermitian. If

JRkPX∗
k
= JRk and PXk

(JRk)X
+
k is Hermitian,(3.6)

then

η
(5,5)
C

(Xk,Λk) = α−1‖Eopt‖F with Eopt = RkX
+
k + (JRkX

+
k J)

∗P⊥
Xk

using Lemma 2.3.
For a single approximate eigenpair (x, λ), the assumptions in (3.6) are always

satisfied and, for x of unit 2-norm,

η
(5,5)
C

(x, λ) = α−1
√
2‖r‖2

2 − ‖x∗Jr‖2
2 ≤

√
2 η(x, λ).

Hence, for a single eigenpair, forcing the backward error matrix to be Hamiltonian
has little effect on its norm.

For a set of k approximate eigenpairs (Xk,Λk), if Λk is Hamiltonian, which implies

that k = 2r is even and Λk = diag(Λ̃r, Λ̃
∗
r), and if X

∗
kJXk = J with Xk of full

rank, then we can show that the assumptions in (3.6) are satisfied and therefore

η
(5,5)
C

(Xk,Λk) is guaranteed to be finite.

Position (5,11): C(5,11)
C

= {A ∈ C
2n×2n : JA = (JA)∗, JA = (JA)T }. Matri-

ces in this class are real and therefore

η
(5,11)
C

(Xk,Λk) = η
(5,5)
R

(Xk,Λk),

where η
(5,5)
R

refer to position (5,5) of the real chart (see Table 3.3).

Position (5,12): C(5,12)
C

= {A ∈ C
2n×2n : JA = (JA)∗, JA = −(JA)T }.

A ∈ CC implies that (iA) is real and satisfies (J(iA)) = (J(iA))
T . Hence

η
(5,12)
C

(Xk,Λk) = η
(5,5)
R

(Xk, iΛk).

Positions (6, j), j = 6: 12: Each of these classes consists of matrices which are
the scalar i times matrices in the corresponding classes in row 5.
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Position (7,7): C(7,7)
C

= {A ∈ C
m×m : AT = A} is the class of complex

symmetric matrices. From Lemma 2.4 if RkX
+
k Xk = Rk and X̄kX̄k

+
RkX

+
k =

(X̄kX̄k
+
RkX

+
k )

T , then

η
(7,7)
C

(Xk,Λk) = α−1‖Eopt‖F with Eopt = RkX
+
k + (RkX

+
k )

TP⊥
Xk
.

Position (7,11): C(7,11)
C

= {A ∈ C
m×m : AT = A, JA = (JA)T }. Matrices in

this class have the form [A1

A2

A2

−A1
] with A1, A2 complex symmetric. The W-trick gives

W ∗AW =

[
0 Ã1

Ã2 0

]
, Ã1 = ÃT

1 , Ã2 = ÃT
2 .

Hence using the W-trick, the constraints in (1.4) can be rewritten as

Ẽ1Yk,2 = Sk,1, Ẽ2Yk,1 = Sk,2, Ẽ1 = ẼT
1 , Ẽ2 = ẼT

2 ∈ C
n×n.(3.7)

If Sk,1PY ∗
k,2
= Sk,1 and Sk,2PY ∗

k,1
= Sk,2, and if PY k,2

Sk,1Y
+
k,2 and PY k,1

Sk,2Y
+
k,1 are

complex symmetric, then

η
(7,11)
C

(Xk,Λk) = α−1
√
‖Ẽ1opt‖2

F + ‖Ẽ2opt‖2
F ,

where, using Lemma 2.4,

Ẽ1opt = Sk,1Y
+
k,2 + (Sk,1Y

+
k,2)

TP⊥
Yk,2

, Ẽ1opt = Sk,2Y
+
k,1 + (Sk,2Y

+
k,1)

TP⊥
Yk,1

.

Position (7,12): C(7,12)
C

= {A ∈ C
m×m : AT = A, JA = −(JA)T }. Matrices in

this class have the form [A1

A2

−A2

A1
] with A1 complex symmetric and A2 complex skew-

symmetric, and they are diagonalized by the W-trick, W ∗AW = diag(Ã1, Ã
T
1 ). Then

the 2n × 2n original eigenvalue problem is reduced to one n × n eigenproblem with
Ã1 of no particular structure. Hence, one can use the formula for the unstructured
backward error in (1.3).

Position (8,8): C(8,8)
C

= {A ∈ C
m×m : AT = −A} is the class of complex

skew-symmetric matrices. From Lemma 2.4, if RkX
+
k Xk = Rk and XkX

+

k RkX
+
k =

−(XkX
+

k RkX
+
k )

T , then the optimal solution to the constraints in (1.4) is given by

Eopt = RkX
+
k − (RkX

+
k )

TP⊥
Xk

and then

η
(8,8)
C

(Xk,Λk) = α−1‖Eopt‖F .

Position (8,11): C(8,11)
C

= {A ∈ C
m×m : AT = −A, JA = (JA)T }. Matrices

in this class have the form [ A1

−A2

A2

A1
] with AT

1 = −A1 and AT
2 = −A2. They are

diagonalized by the W-trick, W ∗AW = diag(Ã1, Ã2) with Ã1, Ã2 complex skew-
symmetric. Hence, the 2n × 2n original eigenvalue problem can be reduced to two
n×n complex skew-symmetric eigenvalue problems that can be solved independently.
We refer to position (8,8) for an explicit expression of the corresponding structured
backward error.
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Table 3.3
Summary of the structured backward errors for real matrices.

1 2 3 4 5 6

AT = A AT = −A ATA = I AT JA = J JA = (JA)T JA = −(JA)T

1 AT = A X ∅ X ? S,⊗ S,⊗
2 AT = −A X ? ? S,⊗ ⊗
3 ATA = I X ? ? ?

4 AT JA = J ? ? ?

5 JA = (JA)T X ∅
6 JA = −(JA)T X

X: explicit expression for ηR(Xk,Λk) is available and within a factor
√
2

of the unstructured backward error.
X: explicit expression for ηR(Xk,Λk) is available.
S: explicit backward error available for a single eigenpair (x, λ).
?: no explicit backward error known.
∅: no nontrivial matrices with the prescribed pair of structures.
⊗: expression available from Kronecker product approach.
See Table 3.2 for the block structure of the matrices.

Position (8,12): C(8,12)
C

= {A ∈ C
2n×2n : AT = −A, JA = −(JA)T }. Matrices

in this class have the form [A1

A2

A2

−A1
] with A1, A2 complex skew-symmetric. Using the

W-trick, the constraints in (1.4) become

Ẽ1Yk,2 = Sk,1, Ẽ2Yk,1 = Sk,2, ẼT
1 = −Ẽ1, Ẽ

T
2 = −Ẽ2 ∈ C

n×n

with Ẽ1 = E1−iE2 and Ẽ2 = E1+iE2. If the assumptions in Lemma 2.4 are satisfied,
then

η
(8,12)
C

(Xk,Λk) =
√

‖Sk,1Y
+
k,2 − (Sk,1Y

+
k,2)

TP⊥
Yk,2

‖2
F + ‖Sk,2Y

+
k,1 − (Sk,2Y

+
k,1)

TPY ⊥
k,1

‖2
F .

Position (11,11): C(11,11)
C

= {A ∈ C
2n×2n : JA = (JA)T } is the class of J-

symmetric Hamiltonian matrices. If RkPX∗
k
= Rk and PX̄k

JRkX
+
k = (PX̄k

JRkX
+
k )

T ,
then from Lemma 2.4

η
(11,11)
C

(Xk,Λk) = α−1‖JRkX
+
k + (JRkX

+
k )

TPX⊥
k
‖F .

Position (12,12): C(12,12)
C

= {A ∈ C
2n×2n : JA = −(JA)T } is the class of J-

symmetric Hamiltonian matrices. IfRkPX∗
k
= Rk and PX̄k

JRkX
+
k = −(PX̄k

JRkX
+
k )

T ,
then from Lemma 2.4

η
(12,12)
C

(Xk,Λk) = α−1‖JRkX
+
k − (JRkX

+
k )

TPX⊥
k
‖F .

3.2.2. Real chart (K = R). When the matrix of the structured eigenvalue
problem is real, it is natural to consider perturbation matrices E that are real, too.
This problem is addressed in this section and the results are summarized in Table 3.3.
The W-trick cannot be used since the transformation with W would send our real
problem to the complex space. We have to use the Kronecker product approach
instead.
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Position (1,1): C(1,1)
R

= {A ∈ R
m×m : AT = A} is the class of real symmetric

matrices. For Λk and Xk real and such that X
T
k Xk = I, we have X+

k = XT
k so that

RkPXT
k
= Rk and PXk

RkX
T
k = XkΛkX

T
k −XkX

T
k AXkX

T
k is symmetric. Hence, from

Lemma 2.3 applied with K = R the optimal solution to EXk = Rk with E
T = E is

given by

Eopt = RkX
T
k + (XkR

T
k )P

⊥
Xk

so that

η
(1,1)
R

(Xk,Λk) = α−1
√
trace(ET

optEopt) = α−1
√
2‖Rk‖2

F − ‖XT
k Rk‖2

F

and, as in the complex case,

η(Xk,Λk) ≤ η
(1,1)
R

(Xk,Λk) ≤
√
2 η(Xk,Λk).

Position (1,3): C(1,3)
R

= {A ∈ R
m×m : AT = A,ATA = I} is the class of

symmetric unitary matrices. As all the eigenvalues are ±1, we can take Xk real and
apply Lemma 2.6 with K = R. The derivation for the backward error for position
(1,2) of the complex chart remains valid in real arithmetic and, therefore,

η
(1,3)
R

(Xk,Λk) = α−1
√
‖R‖2

F + ‖XkUk −AXk‖2
F ,

where Uk is the orthogonal factor of the polar factorization of X
T
k AXk.

Positions (1,5): C(1,5)
R

= {A ∈ R
2n×2n : AT = A, JA = (JA)T } is the class of

symmetric Hamiltonian matrices. The backward error for this problem is considered
in [27], where it is shown that for a single eigenpair (x, λ) with x of unit 2-norm,

η
(1,5)
R

(x, λ) = α−1
√
2‖r‖2

2 + 2(e
T
2 Q

T r)2,

with e2 = [0, 1, 0, . . . , 0]
T , r = (λI−A)x, andQ the orthogonal factor in the symplectic

quasi-QR factorization of [x r]. For a set of eigenpairs, an explicit expression for

η
(1,5)
R

(Xk,Λk) is obtained through the Kronecker product approach.

Positions (1,6): C(1,6)
R

= {A ∈ R
2n×2n : AT = A, JA = −(JA)T } is the class of

symmetric skew-Hamiltonian matrices. The structured backward error for this class
of problems is also considered in [27], where it is shown that for a single eigenpair
(x, λ) with x of unit 2-norm,

η
(1,5)
R

(x, λ) = α−1

√
2‖r‖2

2 + 2(e
T
2 Q̃

T r)2,

with e2 = [0, 1, 0, . . . , 0]
T , r = (λI−A)x, and Q̃ the orthogonal factor in the symplectic

quasi-QR factorization of [Jx r]. For a set of eigenpairs, we need to use the Kronecker
product approach.

Position (2,2): C(2,2)
R

= {A ∈ R
m×m : AT = −A} is the class of real skew-

symmetric matrices. We assume that the spectrum of Λk is symmetric with respect to
the real axis and thatXk has orthonormal columns. There exists a k×k unitary matrix
N such that Yk = XkN ∈ R

m×k and Ωk = N∗ΛkN ∈ R
k×k is block diagonal with

1×1 blocks equal to 0 and 2×2 blocks of the form [ 0
ωi

−ωi

0 ]. We have η
(2,2)
R

(Xk,Λk) =
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η
(2,2)
R

(Yk,Ωk). Let R̃k = YkΩk − AYk. Since R̃kPY T
k
= R̃k and PYk

R̃kY
T
k is skew-

symmetric, Lemma 2.4 applies with K = R. The optimal solution to EYk = R̃k with
ET = −E is given by

Eopt = R̃kY
T
k + (YkR̃

T
k )P

⊥
Yk

so that

η
(2,2)
R

(Xk,Λk) = α−1

√
2‖R̃k‖2

F − ‖Y T
k R̃k‖2

F = α−1
√
2‖Rk‖2

F − ‖XT
k Rk‖2

F .

Hence η
(2,2)
R

(Xk,Λk) ≤
√
2 η(Xk,Λk), showing that forcing the backward error matrix

to be real skew-symmetric has little effect on its norm.

Positions (3,3): C(3,3)
R

= {A ∈ R
m×m : ATA = I} is the class of orthogonal

matrices. We assume that the spectrum of Λk is symmetric with respect to the real
axis and that Xk has orthonormal columns. There exists a unitary k × k matrix N
such that Yk = XkN ∈ R

m×k and Ωk = N∗ΛkN ∈ R
k×k is block diagonal with 1× 1

blocks equal to ±1 and 2 × 2 blocks of the form [ cos θ
− sin θ

sin θ
cos θ ], sin θ 	= 0. We have

η
(3,3)
R

(Xk,Λk) = η
(3,3)
R

(Yk,Ωk). With (Xk,Λk) replaced by (Yk,Ωk), the technique
described in position (3, 3) constructs a real solution Eopt of minimal Frobenius norm

to the constraints in (1.4). Finally, we end up with η
(3,3)
R

(Xk,Λk) = η
(3,3)
C

(Xk,Λk).

Positions (2,5): C(2,5)
R

= {A ∈ R
2n×2n : AT = −A, JA = (JA)T } is the class

of skew-symmetric Hamiltonian matrices. We assume that λ is purely imaginary and
x = [x1

x2
] with x2 = ±ix1 has unit 2-norm. It is shown in [27] that

η
(2,5)
R

(x, λ) = α−1
√
2‖s‖2

2 + 2(e
T
2 Q

T s)2,

where e2 = [0, 1, 0, . . . , 0]
T and Q is the orthogonal factor in the symplectic quasi-QR

factorization of [w s] = [ I −(A+ σiλI ] [ Re(x1)
−σ Im(x1)

] with σ = 1 if x2 = ix1 or σ = −1
otherwise. The computation of η

(2,5)
R

(x, λ) can be done in O(n2) operations. For a
set of eigenpairs, we refer to the Kronecker product approach.

Position (5,5): C(5,5)
R

= {A ∈ R
2n×2n : JA = (JA)T } is the class of Hamil-

tonian matrices. We assume that k ≤ n. The constraints in (1.4) can be rewrit-

ten as JEX̃2k = JR̃2k, JE = (JE)T , where X̃2k = [Re(Xk) Im(Xk)], R̃2k =
[Re(Rk) Im(Rk)]. If

R̃2kP
T

X̃2k
= R̃2k and P

X̃2k
JR̃2kX̃

T
2k = (PX̃2k

JR̃2kX̃
T
2k)

T ,

then η
(5,5)
R

(Xk,Λk) = α−1‖Eopt‖F where, using Lemma 2.3,
Eopt = R̃2kX̃

+
2k + J(R̃2kX̃

+
2k)

TJP⊥
X̃2k

∈ R
2n×2n.

Position (6,6): C(6,6)
R

= {A ∈ R
2n×2n : JA = −(JA)T } is the class of skew-

Hamiltonian matrices. We assume that k ≤ n. The constraints in (1.4) can be

rewritten as JEX̃2k = JR̃2k, JE = (JE)
T , where

X̃2k = [Re(Xk), Im(Xk)], R̃2k = [Re(Rk), Im(Rk)].

If R̃2kP
T

X̃2k

= R̃2k, and if PX̃2k
JR̃2kX̃

T
2k is skew-symmetric, then using Lemma 2.4 we

obtain

Eopt = R̃2kX̃
+
2k − J(R̃2kX̃

+
2k)

TJP⊥
X̃2k

and η
(6,6)
R

(Xk,Λk) = α−1‖Eopt‖F .
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4. Structured normwise condition numbers. The condition number char-
acterizes the sensitivity of solutions to problems. If λ is a simple, nonzero eigenvalue
of a singly or doubly structured matrix A ∈ CK, with corresponding right eigenvector
x and left eigenvector y, then a structured normwise condition number of λ can be
defined as follows:

κK(λ) := lim
ε→0

sup

{
|∆λ|
ε|λ| : (A+ E)(x+∆x) = (λ+∆λ)(x+∆x),(4.1)

A+ E ∈ CK, ‖E‖F ≤ εα

}
,

where α is a positive parameter. The forward error, condition number, and backward
error are related by the inequality (correct to first order in the backward error)

forward error ≤ condition number × backward error.

In this section, we consider only linear structure in A. Expanding the first con-
straint in (4.1) and premultiplying by y∗ lead to

∆λ =
y∗Ex
y∗x

+O(ε2).

To evaluate κK(λ) we need to obtain a sharp bound for the first term in this expansion.
If the structure is linear, then with the same notation as in section 3.1 we have

Ex = vec(Ex) = (xT ⊗ Im) vec(E) = (x
T ⊗ Im)B∆p =MD∆p,

where vec(E) = B∆p, M = (xT ⊗ Im)BD
−1, and D is such that ‖E‖F = ‖D∆p‖2.

Hence,

|y∗Ex| = ‖y∗MD∆p‖2 ≤ ‖y∗M‖2‖E‖F = ‖y∗M‖2‖D∆p‖2.

Equality is obtainable for a suitable ∆p because equality is always possible in the
Cauchy–Schwarz inequality. Therefore

κK(λ) = α
‖y∗M‖2

|λ||y∗x| .(4.2)
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