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Summary. For matrix functions f we investigate how to compute a matrix-vector
product f(A)b without explicitly computing f(A). A general method is described
that applies quadrature to the matrix version of the Cauchy integral theorem. Meth-
ods specific to the logarithm, based on quadrature, and fractional matrix powers,
based on solution of an ordinary differential equation initial value problem, are also
presented

1 Introduction

A large literature exists on methods for computing functions f(A) of a square
matrix A, ranging from methods for general f to those that exploit properties
of particular functions. In this work we consider the problem of computing
y = f(A)b, for a given matrix A and vector b. Our aim is to develop methods
that require less computation than forming f(A) and then multiplying into b.

Motivation for this problem comes from various sources, but particularly
from lattice quantum chromodynamics (QCD) computations in chemistry and
physics; see [6], [17] and elsewhere in this proceedings. Here, f(A)b must
be computed for functions such as f(A) = A(A∗A)−1/2, with A very large,
sparse, complex and Hermitian. Applications arising in the numerical solution
of stochastic differential equations are described in [1], with f(A) = A1/2 and
A symmetric positive definite. More generally, it might be desired to compute
just a single column of f(A), in which case b can be taken to be a unit
vector ei. We mention that Bai, Fahey and Golub [2] treat the problem of
computing upper and lower bounds for a quadratic form uT f(A)v, principally
for symmetric positive definite A.

We treat general nonsymmetric A and assume that factorization of A is
feasible. While our methods are not directly applicable to very large, sparse
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A, they should be useful in implementing methods specialized to such A. For
example, in the QCD application the Lanczos-based method of [17, Sec. 4.6]
requires the computation of T−1/2e1, where T is symmetric tridiagonal, while
techniques applying to general f and sparse A and leading to dense subprob-
lems are described by Van Der Vorst [18].

2 Rational approximations

A rational approximation r(A) = q(A)−1p(A) ≈ f(A), where p and q are poly-
nomials, can be applied directly to the f(A)b problem to give y = f(A)b ≈
r(A)b as the solution of q(A)y = p(A)b. Forming q(A) is undesirable, so if
this formulation is used then iterative methods requiring only matrix-vector
products must be used to solve the linear system [18]. It may also be possible
to express r(A) in linear partial fraction form, so that y can be computed by
solving a sequence of linear systems involving A but not higher powers (an
example is given in the next section). The issues here are largely in construc-
tion of the approximation r(A), and hence are not particular to the f(A)b
problem. See Golub and Van Loan [8, Chap. 11] for a summary of various
rational approximation methods.

3 Matrix logarithm

We consider first the principal logarithm of a matrix A ∈ C
n×n with no

eigenvalues on R
− (the closed negative real axis). This logarithm is denoted

by log A and is the unique matrix Y such that exp(Y ) = A and the eigenvalues
of Y have imaginary parts lying strictly between −π and π. We will exploit
the following integral representation, which is given, for example, by Wouk
[19].

Theorem 1. For A ∈ C
n×n with no eigenvalues on R

−,

log
(
s(A − I) + I

)
=

∫ s

0

(A − I)
[
t(A − I) + I

]−1
dt,

and hence

log A =

∫ 1

0

(A − I)
[
t(A − I) + I

]−1
dt. (1)

Proof. It suffices to prove the result for diagonalizable A [11, Thm. 6.2.27
(2)], and hence it suffices to show that

log(s(x − 1) + 1) =

∫ s

0

(x − 1)
[
t(x − 1) + 1

]−1
dt

for x ∈ C lying off R
−; this latter equality is immediate.
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The use of quadrature to approximate the integral (1) is investigated by
Dieci, Morini and Papini [5]. Quadrature is also directly applicable to our
f(A)b problem. We can apply a quadrature rule

∫ 1

0

g(t) dt ≈

m∑

k=1

ckg(tk) (2)

to (1) to obtain

(log A) b ≈

(
m∑

k=1

ck

[
tk(A − I) + I

]−1

)
(A − I)b. (3)

Unlike when quadrature is used to approximate log A itself, computational
savings accrue from reducing A to a simpler form prior to the evaluation.
Since A is a general matrix we compute the Hessenberg reduction

A = QHQT , (4)

where Q is orthogonal and H is upper Hessenberg, and evaluate

(log A) b ≈ Q

m∑

k=1

ck

[
tk(H − I) + I

]−1
d, d = QT (A − I)b, (5)

where the Hessenberg linear systems are solved by Gaussian elimination with
partial pivoting (GEPP). The computation of (4) (with Q maintained in fac-
tored form) and the evaluation of (5) cost (10/3)n3 + 2mn2 flops, whereas
evaluation from (3) using GEPP to solve the linear systems costs (2/3)mn3

flops; thus unless m <
∼ 5 the Hessenberg reduction approach is the more ef-

ficient for large n. If m is so large that m >
∼ 32n then it is more efficient to

employ a (real) Schur decomposition.
Gaussian quadrature is a particularly interesting possibility in (2). It

is shown by Dieci, Morini and Papini [5, Thm. 4.3] that applying the m
point Gauss-Legendre quadrature rule to (1) produces the rational function
rm(A − I), where rm(x) is the [m/m] Padé approximant to log(1 + x), the
numerator and denominator of which are polynomials in x of degree m. Padé
approximants to log(I +X) are a powerful tool whose use is explored in detail
in [3], [10]. These approximations are normally used only for ‖X‖ < 1, and
under this condition Kenney and Laub [13] show that the error in the matrix
approximation is bounded by the error in a corresponding scalar approxima-
tion:

‖rm(X) − log(I + X)‖ ≤ |rm(−‖X‖) − log(1 − ‖X‖)|; (6)

the norm here is any subordinate matrix norm. The well known formula for
the error in Gaussian quadrature provides an exact expression for the error
rm(X)− log(I + X). As shown in [5, Cor. 4.4] this expression can be written
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as a power series in X when ‖X‖ < 1. Both these approaches provide error
bounds for the approximation of (log A) b.

We note that in the case where A is symmetric positive definite, the
method of Lu [14] for computing log(A) that uses Padé approximants is readily
adapted to compute (log A)b. That method places no restrictions on ‖I −A‖2

but it strongly relies on the symmetry and definiteness of A.
In the inverse scaling and squaring method for computing log A [3], re-

peated square roots are used to bring A close to I, with subsequent use of

the identity log A = 2k log A1/2k

. Unfortunately, since each square root re-
quires O(n3) flops, this approach is not attractive in the context of computing
(log A) b.

When ‖I − A‖ > 1, we do not have a convenient bound for the error
in the m-point Gauss-Legendre approximation to (log A) b. While it follows
from standard results on the convergence of Gaussian quadrature [4] that the
error in our approximation converges to zero as m → ∞, we cannot predict in
advance the value of m needed. Therefore for ‖I−A‖ > 1 adaptive quadrature
is the most attractive option.

We report numerical experiments for four problems:

A = eye(64) + 0.5 urandn(64), b = urandn(64,1),
A = eye(64) + 0.9 urandn(64), b = urandn(64,1),
A = gallery(’parter’,64), b = urandn(64,1),
A = gallery(’pascal’,8), b = urandn(8,1),

where we have used MATLAB notation. In addition, urandn(m,n) denotes
an m× n matrix formed by first drawing the entries from the normal N(0, 1)
distribution and then scaling the matrix to have unit 2-norm. The Parter
matrix is mildly nonnormal, with eigenvalues lying in the right half-plane on
a curve shaped like a “U” rotated anticlockwise through 90 degrees. The Pascal
matrix is symmetric positive definite, with eigenvalues ranging in magnitude
from 10−4 to 103.

We computed y = log(A)b using a modification of the MATLAB adaptive
quadrature routine quadl, which is based on a 4-point Gauss-Lobatto rule
together with a 7-point Kronrod extension [7]. Our modification allows the
integration of vector functions. We employ the Hessenberg reduction as in
(5). We also computed the m-point Gauss-Legendre approximation, using the
smallest m such that the upper bound in (6) was less than the tolerance when
‖I − A‖2 < 1, or else by trying m = 1, 2, 3 . . . successively until the absolute
error ‖ log(A)b− ŷ‖2 was no larger than the tolerance. Three different absolute
error tolerances tol were used. The results are reported in Tables 1–4, in which
“g evals” denotes the value of m in (5) that quadl effectively uses.

We see from the results that Gauss-Legendre quadrature with an appro-
priate choice of m is more efficient than the modified quadl in every case. This
is not surprising in view of the optimality properties of Gaussian quadrature,
and also because adaptive quadrature incurs an overhead in ensuring that
an error criterion is satisfied [15]. The inefficiency of adaptive quadrature is



Computing f(A)b for Matrix Functions f 5

particularly notable in Table 1, where at least 18 function evaluations are
always required and a much more accurate result than necessary is returned.
Recall, however that unless ‖I − A‖2 > 1 we have no way of choosing m for
the Gauss-Legendre approximation automatically. We also observe that the
error bound (6) provides a rather pessimistic bound for the (log A) b error in
Table 2.

Table 1. Results for A = eye(64)+0.5 urandn(64), b = urandn(64,1). ‖I −A‖2 =
0.5, ‖ log(A)‖2 = 5.3e-1.

Adaptive quadrature Gauss-Legendre

tol g evals Abs. err. m Abs. err. Upper bound in (6)

1e-3 18 1.2e-13 2 7.9e-6 8.4e-4
1e-6 18 1.2e-13 4 1.1e-10 7.6e-7
1e-9 18 1.2e-13 6 4.1e-15 6.7e-10

Table 2. Results for A = eye(64)+0.9 urandn(64), b = urandn(64,1). ‖I −A‖2 =
0.9, ‖ log(A)‖2 = 1.0.

Adaptive quadrature Gauss-Legendre

tol g evals Abs. err. m Abs. err. Upper bound in (6)

1e-3 18 5.6e-10 7 9.7e-13 3.2e-4
1e-6 18 5.6e-10 12 3.1e-15 4.7e-7
1e-9 18 5.6e-10 17 3.1e-15 6.8e-10

Table 3. Results for A = gallery(’parter’,64), b = urandn(64,1). ‖I − A‖2 =
3.2, ‖ log(A)‖2 = 1.9.

Adaptive quadrature Gauss-Legendre

tol g evals Abs. err. m Abs. err.

1e-3 48 1.6e-4 8 5.2e-6
1e-6 48 1.4e-10 10 2.5e-7
1e-9 138 1.6e-13 14 5.2e-10

4 Matrix powers

To compute the action of an arbitrary matrix power on a vector we identify
an initial value ODE problem whose solution is the required vector.
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Table 4. Results for A = gallery(’pascal’,8), b = urandn(64,1). ‖I − A‖2 =
4.5e3, ‖ log(A)‖2 = 8.4.

Adaptive quadrature Gauss-Legendre

tol g evals Abs. err. m Abs. err.

1e-3 198 1.1e-5 128 1.0e-3
1e-6 468 2.8e-10 245 1.0e-6
1e-9 1158 5.7e-14 362 9.8e-10

Note that for a positive integer p and A having no eigenvalues on R
−,

A1/p denotes the principal pth root: the pth root whose eigenvalues lie in
the segment { z : −π/p < arg(z) < π/p }. For other fractional α, Aα can be
defined as exp(α log A).

Theorem 2. For A ∈ C
n×n with no eigenvalues on R

− and α ∈ R, the initial

value ODE problem.

dy

dt
= α(A − I)

[
t(A − I) + I

]−1
y, y(0) = b, 0 ≤ t ≤ 1, (7)

has a unique solution y(t) =
[
t(A − I) + I

]α
b, and hence y(1) = Aαb.

Proof. The existence of a unique solution follows from the fact that the
ODE satisfies a Lipschitz condition with Lipschitz constant sup0≤t≤1 ‖(A −

I)
[
t(A − I) + I

]−1
‖ < ∞. It is easy to check that y(t) is this solution.

This result is obtained by Allen, Baglama and Boyd [1] in the case α = 1/2
and A symmetric positive definite. They propose using an ODE initial value
solver to compute x(1) = A1/2b.

Applying an ODE solver is the approach we consider here also. The initial
value problem can potentially be stiff, depending on α, the matrix A, and
the requested accuracy, so some care is needed in choosing a solver. Again, a
Hessenberg reduction of A can be used to reduce the cost of evaluating the
differential equation.

We report an experiment with the data A = gallery(’parter’,64),
b = urandn(64,1), as used in the previous section, with α = −1/2 and
α = 2/5. We solved the ODE initial value problem with MATLAB’s ode45

function [9, Chap. 12], obtaining the results shown in Table 5; here, tol is
the relative error tolerance, and the absolute error tolerance in the function’s
mixed absolute/relative error test was set to 10−3tol. It is clear from the
displayed numbers of successful steps and failed attempts to make a step that
ode45 found the problems relatively easy.

5 General f : Cauchy integral theorem

For general f we can represent y = f(A)b using the matrix version of the
Cauchy integral theorem:
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Table 5. Results for A = gallery(’parter’,64), b = randn(64,1).

f(A) tol Succ. steps Fail. atts ODE evals Rel. err

A−1/2 1e-3 12 0 73 3.5e-8
1e-6 14 0 85 6.0e-9
1e-9 40 0 241 7.7e-12

A2/5 1e-3 15 0 79 2.8e-8
1e-6 16 0 91 2.4e-9
1e-9 54 0 325 1.8e-12

y =
1

2πi

∫

Γ

f(z)(zI − A)−1b dz, (8)

where f is analytic inside a closed contour Γ that encloses the eigenvalues of
A. We take for the contour Γ a circle with centre α and radius β,

Γ : z − α = βeiθ, 0 ≤ θ ≤ 2π, (9)

and then approximate the integral using the repeated trapezium rule. Using
dz = iβeiθdθ = idθ(z(θ) − α), and writing the integrand in (8) as g(z), we
obtain ∫

Γ

g(z)dz = i

∫ 2π

0

(z(θ) − α)g(z(θ)) dθ. (10)

The integral in (10) is a periodic function of θ with period 2π. Applying the
n-point repeated trapezium rule to (10) gives

∫

Γ

g(z) dz ≈
2πi

n

n−1∑

k=0

(zk − α)g(zk),

where zk − α = βe2πki/n, that is, z0, . . . , zn are equally spaced points on the
contour Γ (note that since Γ is a circle we have z0 = zn). When A is real
and we take α real it suffices to use just the zk in the upper half-plane and
then take the real part of the result. When applied to periodic functions the
repeated trapezium rule can produce far more accurate results than might be
expected from the traditional error estimate [4]

∫ b

a

f(x)dx − Tn(f) = −
(b − a)3

12n2
f ′′(ξ), a < ξ < b,

where Tn(f) denotes the n-point repeated trapezium rule for the function f .
The following theorem can be shown using the Euler-Maclaurin formula.

Theorem 3 ([4, p. 137]). Let f(x) have period 2π and be of class C2k+1(−∞,∞)
with |f (2k+1)(x)| ≤ M . Then

∣∣∣∣
∫ 2π

0

f(x) dx − Tn(f)

∣∣∣∣ ≤
4πM ζ(2k + 1)

n2k+1
,



8 Philip I. Davies and Nicholas J. Higham

where ζ(k) =
∑∞

j=1 j−k is the Riemann zeta function.

We want to apply Theorem 3 to the integral (10)

∫ 2π

0

h(θ) dθ :=
1

2π

∫ 2π

0

(z(θ) − α)f
(
z(θ)

)(
z(θ)I − A

)−1
b dθ (11)

where z(θ) = α + βeiθ. The integrand is continuously differentiable so we
can choose any k in Theorem 3. We need to consider the derivatives of the
integrand in (11), which have the form

h(k)(θ) =
ik

2π

k∑

j=0

(z(θ) − α)j+1

j∑

i=0

cijkf (j−i)(z(θ))(z(θ)I − A)−(1+i)b, (12)

for certain constants cijk.

Several terms in (12) can make |h(2k+1)(θ)| large and therefore make the
error bound in Theorem 3 large. First, we have the term (z(θ)−α)j+1 where
0 ≤ j ≤ 2k + 1. The term z(θ) − α has absolute value equal to the radius of
the contour, β. Therefore |h(2k+1)(θ)| is proportional to β2k+2 and the error
bound for the repeated trapezium rule will be proportional to β(β/n)2k+1. As
the contour needs to enclose all the eigenvalues of A, β needs to be large for a
matrix with a large spread of eigenvalues. Therefore a large number of points
are required to make the error bound small. Second, we have the powers of
the resolvent, (z(θ)I −A)−(1+i), where 0 ≤ i ≤ 2k+1. These powers will have
a similar effect to β on |h(2k+1)(θ)| and therefore on the error bound. These
terms can be large if the contour passes too close to the eigenvalues of A; even
if the contour keeps well away from the eigenvalues, the terms can be large
for a highly nonnormal matrix, as is clear from the theory of pseudospectra
[16]. A large resolvent can also make rounding errors in the evaluation of the
integrand degrade the computed result, depending on the required accuracy.
Third, the derivatives of f(z) can be large: for example, for the square root
function near z = 0. Finally, the constants cijk in (12) grow quickly with k. In
summary, despite the attractive form of the bound in Theorem 3, rapid decay
of the error with n is not guaranteed.

We give two examples to illustrate the performance of the repeated trapez-
ium rule applied to (10). As in the previous sections, we use a Hessenberg
reduction of A to reduce the cost of the function evaluations. We consider the
computation of y = A1/2b. Our first example is generated in MATLAB by

A = randn(20)/sqrt(20) + 2*eye(20); b = randn(20,1)

We took α = 2 and β = 1.4 in (9), so that the contour does not closely
approach any eigenvalue. From Table 6 we can see that the trapezium rule
converges rapidly as the number of points increases. This is predicted by the
theory since

• β, the radius of the contour, and ‖(z(θ)I − A)−1‖ are small,
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• Γ does not go near the origin, and therefore f (k)(z) remains of moderate
size.

Our second example involves the Pascal matrix of dimensions 4 and 5.
The Pascal matrix is symmetric positive definite and has a mix of small and
large eigenvalues. As noted above we would like to choose the contour so that
it does not go too near the eigenvalues of A and also does not go near the
negative real axis, on which the principal square root function is not defined.
As a compromise between these conflicting requirements we choose for Γ the
circle with centre (λmin + λmax)/2 and radius λmax/2. The results in Table 7
show that the increases in β and ‖(z(θ)I−A)−1‖ and the proximity of Γ to the
origin cause a big increase in the number of points required for convergence
of the repeated trapezium rule. When we repeated the same experiment using
the 6 × 6 Pascal matrix we found that we required over 1 million points to
achieve a relative error of 7.0 × 10−5.

Our conclusion is that the repeated trapezium rule applied to the Cauchy
integral formula can be an efficient way to compute f(A)b, but the technique
is restricted to matrices that are not too nonnormal and whose eigenvalues can
be enclosed within a circle of relatively small radius that does not approach
singularities of the derivatives of f too closely. We note that Kassam and
Trefethen [12] successfully apply the repeated trapezium rule to the Cauchy
integral formula to compute certain matrix coefficients in a numerical integra-
tion scheme for PDEs, their motivation being accuracy (through avoidance of
cancellation) rather than efficiency.

Table 6. Results for A = randn(20)/sqrt(20) + 2*eye(20), b = randn(20,1),
α = 2, β = 1.4.

No. points 8 16 32 64 128

Rel. err. 3.0e-2 1.0e-3 1.4e-6 3.0e-12 2.1e-15

Table 7. Results for A = gallery(’pascal’,n), b = randn(n,1).

n = 4, α = 13.17, β = 13.15 n = 5, α = 46.15, β = 46.14

No. points Rel. err. No. points Rel. err.

29 1.5e-1 212 1.6e+0
210 5.0e-2 213 6.1e-1
211 9.4e-3 214 1.7e-1
212 4.6e-4 215 2.2e-2
213 1.2e-6 216 4.5e-4
214 8.9e-12 217 2.0e-7
214 3.8e-15 218 9.9e-14
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