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Abstract

A plane sound wave is incident at an angle h upon an infinite array of rigid plates, equally spaced and lying along the y-
axis, where (x, y) are two-dimensional Cartesian coordinates. The boundary value problem is formulated into a matrix
Wiener–Hopf equation whose kernel is, when the plates and interstices are of equal length, decomposable into two factors
which commute and have algebraic behaviour at infinity. A closed form analytical solution is then obtained following the
usual Wiener–Hopf procedure and numerical results are given for various angles of incidence, as well as different spacings.
� 2006 Elsevier B.V. All rights reserved.
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1. Introductory remarks and background

There are numerous interesting physical problems in the fields of acoustics, electromagnetism, elasticity,
etc., which, when modelled mathematically, are exactly solvable by the Wiener–Hopf technique [1,6,12,25].
Since its invention in 1931 [24], the method has been used to tackle problems which have semi-infinite or infi-
nite geometries. For simple geometries the Wiener–Hopf technique leads to a scalar equation and, apart from
computational difficulties, this equation always has an exact solution [18]. However, for complex boundary
value problems, the procedure often leads to a matrix Wiener–Hopf equation. The crucial step in the solution
of such an equation is to decompose the so-called Wiener–Hopf kernel into a product of two factors with cer-
tain analyticity properties. Although it is possible to decompose scalar kernels with the help of Cauchy-type
integrals (see [18, pp. 11–16]), no procedure has yet been devised to exactly factorise general matrix kernels.
However, there is a special class of problems which, although reducable to matrix Wiener–Hopf equation
form, have kernels which nevertheless allow a commutative decomposition. Khrapkov [14] was the first to
offer an elegant explicit factorization scheme for such 2 by 2 Wiener–Hopf matrices. A generalization to com-
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mutative factorization of N by N matrices (N > 2) was offered by Jones [13] and very recently, for matrices of
relevance to diffraction theory, by Veitch and Abrahams [22].

This paper examines scattering of plane sound waves by an infinite grating composed of equally spaced rig-
id barriers, of length 2�a separated by gaps of length 2�b. The model is a classical problem in diffraction theory;
it was first investigated by Baldwin and Heins [9] who considered only normal incidence of electromagnetic
waves (with the electric vector polarized parallel to the edges of the strips) and interstice length equal to strip
width (i.e., �b ¼ �a). Weinstein [23], in an independent work, permitted the discrete incident wave angles
pn/(2�ak) where k is the incident wave angle and n is an integer. These special incident angles allowed both sets
of authors to obtain solutions via scalar Wiener–Hopf equations. In 1971, Lüneburg and Westpfahl [16] exam-
ined the model for arbitrary incidence angle and equal strip and gap lengths; their interesting approach was
function theoretic, reducing the problem to a singular integral of the first kind on a complicated contour. The
latter, perhaps rather surprisingly, was found to be exactly solvable after further conversion to two uncoupled
Riemann Hilbert Problems. Lüneburg and Westpfahl described their work as an ‘extension of Sommerfeld’s

heuristic method for the half-plane’ and it does indeed seem rather complex and detailed, lacking the straight-
forward approach of the Wiener–Hopf technique. The paper was contemperaneous with that by Khrapkov
[14], and so clearly the authors were unaware of its potential application to the present problem.1 Some years
later, in an interesting article, Achenbach and Li [7] reduced the problem to a singular integral equation and
then used Chebyshev polynomials to obtain a set of algebraic equations, from which they obtained the solu-
tion. Scarpetta and Sumbatyan [21] also reduced the problem to an integral equation of the first kind, and then
approximated the kernel to derive explicit results for the reflection and transmission coefficients. Other authors
who have investigated the planar grating problem are Dalyrmple and Martin [10] who again considered only
normal incidence and Porter and Evans [19] who allowed arbitrary oblique incidence angles and unequal spac-
ing. Both sets of authors employed eigenfunction expansion techniques to solve the problem.

The present article seeks to tackle the model problem described above by application of Fourier transforms
and then by reduction to a system of four Wiener–Hopf equations. The resultant matrix kernel, K(a) say,
belongs to a meromorphic class possessing the special property K(a) = Q(a)/D(a) with Q2(a) = D2(a)I, where
I is the identity matrix, Q(a) has entire elements and D(a) is its determinant. The authors have found a number
of other physical problems which reduce to the same, or similar, Wiener–Hopf form, and so a factorization
scheme for matrices of this type is likely to be of broad use. Here we report on an exact factorization in
the case when the strips and gaps are of identical length. The case of dissimilar a and b can be found in
the thesis by the first author [11].

The paper is organised as follows. In Section 2 we shall pose the boundary value problem of diffraction of
sound waves obliquely incident on an infinite plane grating composed of rigid plates with spacing dissimilar to
the interstices. Then, in Section 3 the problem will be reduced to a matrix Wiener–Hopf equation with its ker-
nel, K(a) say, having the above mentioned property (in the general case a 5 b). The factorisation of the matrix
kernel is discussed in the following Section 4, for the case of a grating composed of equal length gaps and
plates. The approach used here makes use of the Khrapkov-type matrices (see [14,3]) and decomposes the ker-
nel into two factors which are commutative and have appropriate algebraic behaviour in respective domains of
the complex-plane. After the exact decomposition is achieved, an analytical solution of the full boundary value
problem is determined in Section 5. In the final section we present numerical evaluations of the reflection and
transmission coefficients for various angles of incidence and varying gap spacing, and compare these with data
obtained by Porter and Evans [19].

2. The boundary value problem

It is required to deduce the two-dimensional scattering of plane sound waves by a diffraction grating com-
posed of an infinite array of rigid strips. Introducing Cartesian coordinates ð�x; �yÞ (overbar here and henceforth
denoting dimensional quantities), the strips of length 2�a are located on �x ¼ 0 between ��aþ 2nð�aþ �bÞ 6

1 It may be interesting for the reader to compare Lüneburg and Westpfahl’s approach with the ad hoc approach by Rawlins [20] on the
generalized Sommerfeld half-plane problem (i.e., different conditions on upper and lower faces), which can also be tackled by Khrapkov’s
factorization method [2].
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�y 6 �aþ 2nð�aþ �bÞ, n = �1, . . . , 0, 1, . . . ,1. Then, the sound can transmit through the gaps between the plates,
�x ¼ 0, �aþ 2nð�aþ �bÞ 6 �y 6 ��aþ 2ðnþ 1Þð�aþ �bÞ (see Fig. 1). For a compressible, inviscid fluid the acoustic
disturbances can be represented by a velocity potential Uð�x; �y; tÞ, where t is time; that is, the velocity field
is rUð�x; �y; tÞ and pressure fluctuations pð�x; �y; tÞ ¼ �q0

oU
ot ð�x; �y; tÞ where q0 is the mean fluid density. The

potential Uð�x; �y; tÞ satisfies the two-dimensional wave equation

r2U ¼ 1

c2

o
2U
ot2

; ð1Þ

in which c is the speed of propagation of waves in the fluid, and for simplicity the forcing is chosen as a plane
time-harmonic wave incident from x = +1 inclined at an angle h to the vertical:

Uincð�x; �y; tÞ ¼ RefAe�ik�x cos h�ik�y sin he�ixtg; 0 6 h < p=2: ð2Þ
Note that, because of the symmetry of the grating, there is no loss of generality in taking h to be positive and
to lie in the indicated range.

The scattered field, if the transient motions are neglected, may be written as the difference between the total
field and the incident potential in the form

RefUsð�x; �yÞe�ixtg ¼ Uð�x; �y; tÞ � Uincð�x; �y; tÞ: ð3Þ
Thus, the scattered potential Usð�x; �yÞ satisfies the reduced wave equation

o2Us

o�x2
þ o2Us

o�y2
þ k2Us ¼ 0; ð4Þ

in which k = x/c is the wavenumber, and on the rigid screens along �x ¼ 0, for which oU=o�x ¼ 0, the derivative
of the potential Us takes the value

oUs

o�x
ð0; �yÞ ¼ Aik cos he�ik�y sin h; ��aþ 2nð�aþ �bÞ 6 �y 6 �aþ 2nð�aþ �bÞ; n 2 N: ð5Þ

Between the rigid scatterers of the grating, the pressure and velocity must be continuous. Hence we require

oUs

o�x
ð0þ; �yÞ ¼ oUs

o�x
ð0�; �yÞ; Usð0þ; �yÞ ¼ Usð0�; �yÞ ð6Þ

on �aþ 2nð�aþ �bÞ 6 �y 6 ��aþ 2ðnþ 1Þð�aþ �bÞ, in which 0± means �x ¼ ��, � # 0. Further physical requirements
are finite pressure everywhere in the fluid (and in particular finite energy density at the plate edges) and purely
outgoing behaviour as j�xj ! 1 for the scattered field. With the above conditions, uniqueness of the scattered
potentials, and hence of the total sound field, is assumed in the usual manner.

To solve the boundary value problem it is helpful to exploit the periodicity of the geometry. Defining non-
dimensional Cartesian coordinates within each strip region �aþ 2ðn� 1Þð�aþ �bÞ 6 �y 6 �aþ 2nð�aþ �bÞ, as

x ¼ k�x; yn ¼ k½�y � 2ð�aþ �bÞn�; n ¼ �1; . . . ;�1; 0; 1; . . . ;1; ð7Þ
then in the nth strip the non-dimensional scattered potential may be written as

Fig. 1. A wave is incident at angle h. The diffraction grating composed of finite length rigid plates of length 2�a lying on y = 0.
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Unðx; ynÞ ¼
e2ðaþbÞin sin h

A
Usð�x; k�1yn þ 2ð�aþ �bÞnÞ; �a� 2b 6 yn 6 a; 8n; ð8Þ

where

a ¼ k�a; b ¼ k�b: ð9Þ
Hence Un(x, yn) satisfies the reduced wave equation

o
2Un

ox2
þ o

2Un

oy2
n

þ Un ¼ 0; �a� 2b 6 yn 6 a; ð10Þ

the boundary condition

oUn

ox
ð0; ynÞ ¼ i cos he�iyn sin h; �a 6 yn 6 a; ð11Þ

and the continuity requirements, (6),

oUn

ox
ð0þ; ynÞ ¼

oUn

ox
ð0�; ynÞ; Unð0þ; ynÞ ¼ Unð0�; ynÞ; �a� 2b 6 yn 6 �a: ð12Þ

Further, the scattered potential (and its derivatives) must, of course, be continuous across the fictitious
strip boundaries, which condition leads to a discontinuous boundary condition in Un owing to the expo-
nential factor on the right-hand side of (8). This yields, across the boundaries yn = ±a, the quasi-period-

icity requirement

Unþ1ðx; �a� 2bÞ ¼ e2ðaþbÞi sin hUnðx; þaÞ; 8n ð13Þ
and

oUnþ1

oyn

ðx; �a� 2bÞ ¼ e2ðaþbÞi sin h oUn

oyn

ðx; þaÞ; 8n: ð14Þ

It is clear that the model problem for Un(x, yn) is invarient under translations in y, i.e., yn! yn+m, for any
integers n and m, and hence we can write

Unðx; ynÞ � Uðx; yÞ; 8n: ð15Þ
Thus, the suffices can be dropped from the Un and yn variables appearing in Eqs. (8)–(12), and (13), (14)
become

Uðx;�a� 2bÞ ¼ e2ðaþbÞi sin hUðx;þaÞ; ð16Þ
oU
oy
ðx;�a� 2bÞ ¼ e2ðaþbÞi sin h oU

oy
ðx; þaÞ: ð17Þ

A further consideration of the geometry and forcing indicates that the potential is odd in x2, and so the con-
dition on the gap between the plates (12) is reduced simply to

Uð0; yÞ ¼ 0; �a� 2b 6 y 6 �a: ð18Þ

Hence, the boundary value problem is to be solved over a semi-infinite strip (x P 0, �a � 2b 6 y 6 a) and
consists of the governing equation (10), the boundary conditions (11), (18) and the quasi-periodicity, or
‘wrap-around’, conditions (16), (17). These, together with the requirements of finite pressure (finite U) at
the plate edges (x = 0, y = ±a), and outgoing waves as x! +1, ensure that a unique solution is obtainable.
In the following section the boundary value problem is reduced to a matrix Wiener–Hopf equation by means
of transform methods.

2 The odd x-behaviour of the scattered potential is easily seen by changing x to �x in the boundary conditions and governing equation,
noting that it remains the same except for a change in the sign of the forcing.
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3. Reduction to a matrix Wiener–Hopf equation

The physical problem discussed in the previous section was expressed as a boundary value problem in a
semi-infinite strip region, x P 0, �a � 2b 6 y 6 a. The boundary conditions on the end face, (11) and (18),
suggest the use of Fourier cosine and sine transforms in �a 6 y 6 a, �a � 2b 6 y 6 �a, respectively. Defining
the sine transform as

wsða; yÞ ¼ 2i

Z 1

0

Uðx; yÞ sin ax dx; �2b� a 6 y 6 �a; ð19Þ

then the governing equation (10) reduces to

d2ws

dy2
þ ð1� a2Þws ¼ 0 ð20Þ

due to the vanishing of the potential on x = 0 in this y region (and assuming suitable convergence of the inte-
gral at infinity, which is easily verified once the solution has been obtained). Note that the Fourier sine trans-
form, in the form defined herein, may be expressed as

wsða; yÞ ¼
Z 1

0

Uðx; yÞeiaxdx�
Z 1

0

Uðx; yÞe�iax dx: ð21Þ

The first integral on the right-hand side is a half-range Fourier transform, i.e., a transform with integrand zero
over negative x-values, and so must have no singularities in the upper-half of the a-plane (Noble, 1988). That
is, this integral function of a is analytic on and above the inverse contour path, Dþ say, and hence is writtenZ 1

0

Uðx; yÞeiax dx ¼ wþða; yÞ; ð22Þ

where the + denotes a function devoid of singularities in the upper half-plane and, as will be shown, of at
worst algebraic growth as jaj ! 1 in this region. Similarly, the second term on the right-hand side of (21)
is easily shown to be (noting the odd x behaviour of U)

w�ða; yÞ ¼ þ
Z 0

�1
Uðþx; yÞeiax dx ¼ �wþð�a; yÞ ð23Þ

which is singularity free, of algebraic growth at worse, in the lower half of the complex a-plane, D� say. Note
that the inverse transform

Uðx; yÞ ¼ 1

2p

Z
C

fwþða; yÞ � wþð�a; yÞge�iax da; �b� 2a 6 y 6 �a; ð24Þ

requires that C runs from a = �1 to +1 in a strip D which is defined as Dþ \D�; so clearly, there must be a
common strip of analyticity between Dþ and D� otherwise the path C is not defined. The precise choice of C
will be specified later (see Fig. 2).

Fig. 2. The shaded area is the common strip of analyticity. Strip of analyticity for the integration path.

286 B. Erbas�, I.D. Abrahams / Wave Motion 44 (2007) 282–303



In the region �a 6 y 6 a the boundary condition (11) suggests the application of the Fourier cosine
transform

wcða; yÞ ¼ 2

Z 1

0

Uðx; yÞ cos ax dx ¼ wþða; yÞ þ wþð�a; yÞ ð25Þ

which turns the governing equation into

d2wc

dy2
þ ð1� a2Þwc ¼ 2i cos he�iy sin h; �a 6 y 6 a: ð26Þ

Note that the inverse transform is

Uðx; yÞ ¼ 1

2p

Z
C

fwþða; yÞ þ wþð�a; yÞge�iax da; �a 6 y 6 a; ð27Þ

where C is the same contour as that to be chosen for the integral in (24). Now (20) and (26) are trivially solved
to yield

wþða; yÞ � wþð�a; yÞ ¼ AðaÞecðaÞy þ BðaÞe�cðaÞy ; �2b� a 6 y 6 �a; ð28Þ

and

wþða; yÞ þ wþð�a; yÞ ¼ CðaÞecðaÞy þ DðaÞe�cðaÞy þ 2i cos h
ðcos2 h� a2Þ e

�iy sin h; �a 6 y 6 a; ð29Þ

respectively, where c(a) = (1 � a2)1/2 is the ubiquitous square root function found in diffraction problems. In
fact, it will be revealed that the solution will not contain branch points at a = ±1, that is, only powers of c2(a)
occur (not unsurprisingly because this is essentially a ducted boundary value problem) and so there is no need
to specify the Riemann surface or location of the branch cuts etc. What is required is to specify that C passes
below any singularity at a = 1, or indeed at any point on the positive real axis (including that at a = cos h), and
above singularities occurring on the negative real line (including at a = �cos h). This choice of C is sufficient to
guarantee only outgoing or decaying waves at infinity.

Satisfaction of the governing equations and boundary conditions on the face x = 0 is ensured by (28), (29),
and so all that now remains is to impose continuity of potential (pressure) and its normal derivative (velocity)
across the line y = �a plus the quasi-periodicity conditions (16), (17). Writing

wþða;�aÞ ¼ tþðaÞ; dwþ

dy
ða;�aÞ ¼ sþðaÞ; ð30Þ

gives the continuity conditions on y = �a:

tþðaÞ � tþð�aÞ ¼ AðaÞe�cðaÞa þ BðaÞeþcðaÞa; ð31Þ

tþðaÞ þ tþð�aÞ ¼ CðaÞe�cðaÞa þ DðaÞeþcðaÞa þ 2i cos h
ðcos2 h� a2Þ e

ia sin h; ð32Þ

sþðaÞ � sþð�aÞ ¼ cðaÞAðaÞe�cðaÞa � cðaÞBðaÞeþcðaÞa; ð33Þ

sþðaÞ þ sþð�aÞ ¼ cðaÞCðaÞe�cðaÞa � cðaÞDðaÞeþcðaÞa þ 2 sin h cos h
ðcos2 h� a2Þ e

ia sin h: ð34Þ

Similarly, on y = a the transformed potential and its derivative are called

wþða; aÞ ¼ vþðaÞ; dwþ

dy
ða; aÞ ¼ uþðaÞ; ð35Þ

so that
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vþðaÞ þ vþð�aÞ ¼ CðaÞeþcðaÞa þ DðaÞe�cðaÞa þ 2i cos h
ðcos2 h� a2Þ e

�ia sin h; ð36Þ

uþðaÞ þ uþð�aÞ ¼ cðaÞCðaÞeþcðaÞa � cðaÞDðaÞe�cðaÞa þ 2 sin h cos h
ðcos2 h� a2Þ e

�ia sin h: ð37Þ

The quantities on y = �2b � a are related to those on y = a via the quasi-periodicity conditions (16), (17):

wþða;�2b� aÞ � wþð�a;�2b� aÞ ¼ e2ðaþbÞi sin hfvþðaÞ � vþð�aÞg
¼ AðaÞe�cðaÞð2bþaÞ þ BðaÞeþcðaÞð2bþaÞ; ð38Þ

dwþ

dy
ða;�2b� aÞ � dwþ

dy
ð�a;�2b� aÞ ¼ e2ðaþbÞi sin hfuþðaÞ � uþð�aÞg

¼ cðaÞAðaÞe�cðaÞð2bþaÞ � cðaÞBðaÞeþcðaÞð2bþaÞ: ð39Þ

Eqs. (31)–(34), (36)–(39) may be reduced to four by eliminating the unknown functions A(a), B(a), C(a), D(a).
These remaining equations can then be arranged into a single 4 · 4 matrix Wiener–Hopf equation after sub-
stantial manipulation. The details are given in Appendix A, and here the most convenient form is offered:

MðaÞtþðaÞ ¼ JMðaÞtþð�aÞ þ FðaÞ; ð40Þ

in which the unknown column vector is

tþðaÞ ¼ ðtþðaÞ; sþðaÞ; vþðaÞ; uþðaÞÞT; ð41Þ

the square matrix is

MðaÞ ¼

cosh cðaÞa 1
cðaÞ sinh cðaÞa � cosh cðaÞa 1

cðaÞ sinh cðaÞa
cðaÞ sinh cðaÞa cosh cðaÞa cðaÞ sinh cðaÞa � cosh cðaÞa

cosh cðaÞb � 1
cðaÞ sinh cðaÞb �eif cosh cðaÞb �eif 1

cðaÞ sinh cðaÞb
cðaÞ sinh cðaÞb � cosh cðaÞb eifcðaÞ sinh cðaÞb eif cosh cðaÞb

0
BBBB@

1
CCCCA ð42Þ

with

f ¼ 2ðaþ bÞ sin h; ð43Þ

J ¼

�1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA; ð44Þ

and the forcing term is

FðaÞ ¼ 2i cos h
ðcos2 h� a2Þ

�

eia sin h cosh cðaÞa� i sin h
cðaÞ sinh cðaÞa

� �
� e�ia sin h cosh cðaÞaþ i sin h

cðaÞ sinh cðaÞa
� �

eia sin hðcðaÞ sinh cðaÞa� i sin h cosh cðaÞaÞ þ e�ia sin hðcðaÞ sinh cðaÞaþ i sin h cosh cðaÞaÞ
0

0

0
BBBB@

1
CCCCA:

ð45Þ

Note that F(a) is entire, M(a) contains only zeros in its elements and not branch cuts, and it is insisted that
t+(±a) is analytic, and of at worst algebraic qrowth, in D�. The Wiener–Hopf kernel is

KðaÞ ¼ 1

DðaÞQðaÞ ¼M�1ðaÞJMðaÞ; ð46Þ
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where D(a) is the determinant of M(a) and takes the value

DðaÞ ¼ 2eif cosh½2ðaþ bÞcðaÞ� � e2if � 1; ð47Þ
and the entire matrix Q(a) is

QðaÞ ¼ 2eif

�

eif�e�if

2
� sinh½2ðaþbÞc�

c ðcosh½2bc� � eif cosh½2ac�Þ ðeif sinh½2ac�þsinh½2bc�Þ
c

�c sinh½2ðaþ bÞc� eif�e�if

2
cðeif sinh½2ac� þ sinh½2bc�Þ ðcosh½2bc� � eif cosh½2ac�Þ

cosh½2bc� � e�if cosh½2ac� � ðe�if sinh½2ac�þsinh½2bc�Þ
c

e�if�eif

2
sinh½2ðaþbÞc�

c

�cðe�if sinh½2ac� þ sinh½2bc�Þ cosh½2bc� � e�if cosh½2ac� c sinh½2ðaþ bÞc� e�if�eif

2

0
BBBBB@

1
CCCCCA:

ð48Þ

Note that K(a) is its own inverse owing to the fact that J2(a) is the identity matrix, I, and hence

Q2ðaÞ ¼ D2ðaÞI: ð49Þ
It will prove useful later to work with Eq. (40) in the form

KðaÞ½tþðaÞ � F1ðaÞ� ¼ tþð�aÞ � F1ðaÞ; ð50Þ
where

F1ðaÞ ¼
ieia sin h cos h
ðcos2 h� a2Þ ð1;�i sin h; e�2ia sin h;�i sin he�2ia sin hÞT: ð51Þ

The solution of the Wiener–Hopf equation (50) is dependent on the factorization of K(a) into a product of two
matrices, one analytic (with analytic inverse) and of suitable behaviour at infinity in the half-plane Dþ, and the
other of similar behaviour in the overlapping lower half-plane D�. This decomposition is the focus of the fol-
lowing section.

4. Kernel decomposition for case a = b

The boundary value problem defined in Section 2 was reduced to a 4 · 4 matrix Wiener–Hopf equation (50)
valid in the S-shaped strip of analyticity D. In this section the problem will be considered for the case of equal
spacing, i.e. a = b. For this special case setting a = b in the matrix kernel K(a) given by (46) we can rewrite the
kernel as

K0ðaÞ ¼
1

D0ðaÞ
Q0ðaÞ; D0ðaÞ ¼ 2einðcosh½4acðaÞ� � cos nÞ ð52Þ

where the subscript zero, here and henceforth, signifies the particular case a = b, and we also denote f in this
case as

n ¼ 4a sin h: ð53Þ
To solve the matrix Eq. (50) for the unknown vector functions t(a) and t(�a), which are analytic in Dþ, D�,
respectively, it is necessary to factorise K0(a) into the product form

K0ðaÞU0ðaÞ ¼ L0ðaÞ: ð54Þ
Here U0(a) and L0(a) denote matrix functions analytic, and with analytic inverses, in the upper and lower half-
planes Dþ, D�, respectively. To proceed it is useful to pre-multiply Eq. (54) by the matrix

s ¼

s 0 1 0

0 �s 0 1

�s 0 1 0

0 s 0 1

0
BBB@

1
CCCA; ð55Þ

where
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s ¼ e�in=2: ð56Þ
Performing this multiplication we get

2ein

D0

� ��1

ðsl1 þ l3Þ ¼ f�ðaÞðsu1 � u3Þ �
1

cðaÞ gþðaÞðsu2 � u4Þ; ð57Þ

� 2ein

D0

� ��1

ðsl2 � l4Þ ¼ cðaÞg�ðaÞðsu1 þ u3Þ � fþðaÞðsu2 þ u4Þ; ð58Þ

� 2ein

D0

� ��1

ðsl1 � l3Þ ¼ �fþðaÞðsu1 þ u3Þ þ
1

cðaÞ g�ðaÞðsu2 þ u4Þ; ð59Þ

2ein

D0

� ��1

ðsl2 þ l4Þ ¼ �cðaÞgþðaÞðsu1 � u3Þ þ f�ðaÞðsu2 � u4Þ; ð60Þ

where, for brevity, we work only with the ith column of each side of (54), namely

U0iðaÞ ¼

u1ðaÞ
u2ðaÞ
u3ðaÞ
u4ðaÞ

0
BBB@

1
CCCA

i

; L0iðaÞ ¼

l1ðaÞ
l2ðaÞ
l3ðaÞ
l4ðaÞ

0
BBB@

1
CCCA

i

; i ¼ 1; 2; 3; 4 ð61Þ

and

f�ðaÞ ¼
ein � e�in

2
� e�in=2ð1� einÞ cosh 2cðaÞa; ð62Þ

g�ðaÞ ¼ sinh 4cðaÞa� e�in=2ð1þ einÞ sinh 2cðaÞa: ð63Þ

Note that the subscripts ± on f±(a) and g±(a) do not imply anything about their respective analyticities; in fact
they are all entire functions of a.

The system of Eqs. (57)–(60) has uncoupled somewhat, so that we can form a matrix equation from the first
and last equations in the form

sl1 þ l3

sl2 þ l4

� �
¼ K1ðaÞ

su1 � u3

su2 � u4

� �
; ð64Þ

where

K1ðaÞ ¼
2ein

D0

f�ðaÞI�
gþðaÞ
cðaÞ

�JðaÞ
� �

; ð65Þ

I is the 2 · 2 identity matrix, and

�JðaÞ ¼
0 1

c2ðaÞ 0

� �
: ð66Þ

It can easily be seen that the matrix K1(a) is of Khrapkov type, a class that has been studied extensively by
various authors (see, for example, [1,14]). It can be factorized commutatively as

K1ðaÞ ¼ Kþ1 ðaÞK�1 ðaÞ ¼ K�1 ðaÞKþ1 ðaÞ; ð67Þ
where

K�1 ðaÞ ¼ a�ðaÞ coshðch�ÞIþ
1

cðaÞ sinhðch�Þ�JðaÞ
� �

; ð68Þ

in which a±(a), h±(a) are scalar functions with the indicated analyticity properties, �JðaÞ is the entire matrix
given in Eq. (66) with the further property

�J2ðaÞ ¼ c2ðaÞI: ð69Þ
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The aforementioned constraint on det½K�1 ðaÞ� ¼ ða�ðaÞÞ
2 implies further that a±(a) are zero free as well as sin-

gularity free in D�. Multiplying Kþ1 ðaÞ with K�1 ðaÞ and equating with (65) gives

aþðaÞa�ðaÞ cosh½cðaÞðhþðaÞ þ h�ðaÞÞ� ¼ 2ein f�ðaÞ
D0

; ð70Þ

and

aþðaÞa�ðaÞ sinh½cðaÞðhþðaÞ þ h�ðaÞÞ� ¼ �2ein gþðaÞ
D0

: ð71Þ

By rearrangement, the required factorizations, namely, the product split

½aþðaÞa�ðaÞ�2 ¼ 4e2in ðf 2
�ðaÞ � g2

þðaÞÞ
D2

0

; ð72Þ

and the sum split

tanh½cðaÞðhþðaÞ þ h�ðaÞÞ� ¼ �
gþðaÞ
f�ðaÞ

; ð73Þ

or

hþðaÞ þ h�ðaÞ ¼
1

cðaÞ tanh�1 � gþðaÞ
f�ðaÞ

� �
: ð74Þ

can be achieved. The product split is trivial and can be written, applying the Cauchy’s theorem, as

a�ðaÞ ¼ eip=4 exp � 1

4pi

Z
C

ln½4e2inðg2
þðfÞ � f 2

�ðfÞÞ=D
2
0�

f� a
df

( )
; ð75Þ

and the second is a standard sum factorization (see Noble [18])

h�ðaÞ ¼ �
1

2pi

Z
C

tanh�1½i sinhð2cðfÞaÞ= sinðn=2Þ�
cðfÞðf� aÞ df: ð76Þ

The contour C in both of these integrals passes around the singularities in the f-plane as indicated in Fig. 2,
and the point a lies above (below) C for a+(a), h+(a) (a�(a), h�(a)).

The same procedure may be applied to Eqs. (58) and (59) to get another matrix equation

sl1 � l3

sl2 � l4

� �
¼ K2ðaÞ

su1 þ u3

su2 þ u4

� �
; ð77Þ

with

K2ðaÞ ¼
2ein

D0

fþðaÞI�
g�ðaÞ
cðaÞ

�JðaÞ
� �

; ð78Þ

and �JðaÞ defined as in (66). It is apparent that K2(a) is also of Khrapkov type and can be decomposed imme-
diately into commuting product factors

K�2 ðaÞ ¼ b�ðaÞ coshðcb�ÞIþ
1

cðaÞ sinhðcb�Þ�JðaÞ
� �

; ð79Þ

where b±(a), b±(a) are regular functions in D�. The Khrapkov procedure may again be perfomed to determine
the scalar functions b±(a), b±(a); however, a little work will show that K2(a) is in fact the inverse of K1(a).
Therefore, we can immediately conclude that we can choose b±(a) = �h±(a) and b±(a) = 1/a±(a). Thus, hence-
forth we need employ only the functions h±(a) and a±(a).

Turning back to Eqs. (64) and (77), on using the standard Wiener–Hopf procedure, we get
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ðK�1 Þ
�1ðaÞ

sl1 þ l3

sl2 þ l4

� �
¼ Kþ1 ðaÞ

su1 � u3

su2 � u4

� �
�

C1

C2

� �
; ð80Þ

ðK�2 Þ
�1ðaÞ

sl1 � l3

sl2 � l4

� �
¼ Kþ2 ðaÞ

su1 þ u3

su2 þ u4

� �
�

C3

C4

� �
; ð81Þ

where C1, C2, C3, C4 must be, by the usual analytic continuation argument, arbitrary entire functions. As we
are constructing a factorization there is no loss in generality in taking these as constants. We can now use only
one side of each equation to determine the values of u1, . . . , u4 and l1, . . . , l4. To this end let us take the left-
hand side of both equations giving

sl1 þ l3

sl2 þ l4

� �
¼ K�1 ðaÞ

C1

C2

� �
ð82Þ

and

sl1 � l3

sl2 � l4

� �
¼ K�2 ðaÞ

C3

C4

� �
: ð83Þ

Addition and subtraction of (82), (83) yields

l1

l2

� �
¼ 1

2s
K�1 ðaÞ

C1

C2

� �
þ K�2 ðaÞ

C3

C4

� �� �
; ð84Þ

l3

l4

� �
¼ 1

2
K�1 ðaÞ

C1

C2

� �
� K�2 ðaÞ

C3

C4

� �� �
: ð85Þ

So with four different independent choices of C1–C4 we can get four 4 · 1 column vectors. Therefore, L0(a) can
be constructed as a 4 · 4 matrix in the following form:

L0ðaÞ ¼
1

2s
�

a� cosh ch� 1
c a� sinh ch� a�1

� cosh ch� � 1
c a�1
� sinh ch�

ca� sinh ch� a� cosh ch� �ca�1
� sinh ch� a�1

� cosh ch�
sa� cosh ch� 1

c sa� sinh ch� �sa�1
� cosh ch� s

c a�1
� sinh ch�

sca� sinh ch� sa� cosh ch� sca�1
� sinh ch� �sa�1

� cosh ch�

0
BBBB@

1
CCCCA ð86Þ

and U0(a) and L0(a) are related through the equation

U0ðaÞ ¼ L0ð�aÞX; ð87Þ

where

X ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0
BBB@

1
CCCA; X2 ¼ I: ð88Þ

This concludes the exact factorization of K0(a) and the solution of the Wiener–Hopf equation will be the main
subject of the next section.

5. Solution of the Wiener–Hopf equation for a = b

In the previous section an exact factorization of the Wiener–Hopf kernel into two matrices, U0(a) and
L0(a), regular in D� and Dþ was obtained. These can be employed in the Wiener–Hopf equation (50), which
may be rewritten as
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U�1
0 ðaÞtþðaÞ �

iein=4

2ðcos h� aÞ fU
�1
0 ðaÞ �U�1

0 ðcos hÞgFp �
iein=4

2ðcos hþ aÞ fU
�1
0 ðaÞ � L�1

0 ð� cos hÞgFp

� EðaÞ � L�1
0 ðaÞtþð�aÞ � iein=4

2ðcos h� aÞ fL
�1
0 ðaÞ �U�1

0 ðcos hÞgFp

� iein=4

2ðcos hþ aÞ fL
�1
0 ðaÞ � L�1

0 ð� cos hÞgFp; ð89Þ

for a 2 D where

Fp ¼ 1; �i sin h; e�in=2; �i sin he�in=2
� 	T

; ð90Þ

and U�1
0 ðaÞ is given by

U�1
0 ðaÞ ¼

saþ cosh chþ s
c aþ sinh chþ �aþ cosh chþ � 1

c aþ sinh chþ
scaþ sinh chþ saþ cosh chþ �caþ sinh chþ �aþ cosh chþ
sa�1
þ cosh chþ � s

c a�1
þ sinh chþ a�1

þ cosh chþ � 1
c a�1
þ sinh chþ

�sca�1
þ sinh chþ sa�1

þ cosh chþ �ca�1
þ sinh chþ a�1

þ cosh chþ

0
BBBB@

1
CCCCA: ð91Þ

Note that L�1
0 ðaÞ can easily be found from Eq. (87). The terms with the arguments ±cos h are included to re-

move the poles at a = ±cos h which were defined in Section 3 to lie in D�, respectively. Thus, the left hand side
of (89) is analytic in Dþ, and the right hand side is analytic in D�, and so by analytic continuation argument
they define an entire vector function in the whole complex a-plane Dþ [D�, E(a), say. The precise form of this
vector is determined by examining the behaviour of both sides of (89) as jaj ! 1 in their respective half-planes
of analyticity. First, by standard techniques, it can be proved that

h�ðaÞ ¼ �sgnðnÞ logðaÞ
2a

þ Oða�1Þ; jaj ! 1: ð92Þ

where sgn denotes the sign of its argument; however, in Section 2 we placed a restriction on the incident angle
h to lie in the first quadrant. This implies that n P 0 and hence we can dispense henceforth with sgn(n). Using
asymptotic analysis, it can be found from (92) that

cosh½cðaÞh�ðaÞ� � 1
2
a1=2; c sinh½cðaÞh�ðaÞ� � �1

2
a3=2; ð93Þ

as jaj ! 1 in D�. Recalling the definition of the functions a±(a) given by (75), it may easily be seen that

a�ðaÞ � epi=4; jaj ! 1in D�: ð94Þ

Substituting these expansions into (91), we can write

U�1
0 ðaÞ �

e�pi=4

2

isa1=2 �isa�1=2 �ia1=2 ia�1=2

�isa3=2 isa1=2 ia3=2 �ia1=2

sa1=2 sa�1=2 a1=2 a�1=2

sa3=2 sa1=2 a3=2 a1=2

0
BBB@

1
CCCA; ð95Þ

and the asymptotic behaviour of L�1
0 ðaÞ is given directly from Eq. (87).

The next element is to estimate the sizes of t+(a), t+(�a) for large jaj. A local analysis around the plate edg-
es, x = 0, y = ±a, reveals that

Uðx;�aÞ � c1jxj1=2
; ð96Þ

Uyðx;�aÞ � c2jxj�1=2
; ð97Þ

Uðx; aÞ � c3jxj1=2
; ð98Þ

Uyðx; aÞ � c4jxj�1=2
; ð99Þ
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as jxj ! 0 for finite energy density at the edge of the barrier, where c1, c2, c3, c4 are some unknown constants.
There is a direct relationship between the small x expansion of a function and the large a behaviour of its half-
range Fourier transform. The reader is referred to the the Abelian theorem quoted in Noble [18], and omitting
the details, we find

t�ðaÞ �
ffiffiffi
p
p

2

c1e�3ip=4a�3=2

2c2e�ip=4a�1=2

c3e�3ip=4a�3=2

2c4e�ip=4a�1=2

0
BBB@

1
CCCA; ð100Þ

for a in D�, respectively. Both sides of Eq. (89) can now be estimated for large jaj; from (91) and (100) we find
that they both behave as

Oða�1=2; 1; a�1=2; 1ÞT; j a j! 1; a 2 D�: ð101Þ

Therefore, by Liouville’s theorem both sides must be equal to the constant vector

EðaÞ � ð0; C5; 0; C6ÞT; ð102Þ

where C5 and C6 are constants. This gives the column vector t+(a) as

tþðaÞ ¼ U0ðaÞ ð0;C5; 0;C6ÞT �
iein=4U�1

0 ðcos hÞ
2ðcos h� aÞ Fp �

iein=4L�1
0 ð� cos hÞ

2ðcos hþ aÞ Fp

 !

þ iein=4

2
Fp

1

cos h� a
þ 1

cos hþ a

� �
ð103Þ

which, by inspection, will have growth

Oða�1=2; a1=2; a�1=2; a1=2ÞT ð104Þ

as jaj ! 1, a contradiction to the energy requirement (100), unless C and D are chosen appropriately. It can
be shown, without difficulty, that to enforce this growth behaviour C5 and C6 should be equal and must be
chosen as

C5 ¼ C6 ¼
iein=4

2
ð�1; 0; 1; 0ÞU�1

0 ðcos hÞFp: ð105Þ

Thus, the solution is

tþð�aÞ ¼ iein=4

2
Fp

1

aþ cos h
� 1

a� cos h

� �
� iein=4

2ðaþ cos hÞK0ðaÞU0ðaÞL�1
0 ð� cos hÞFp

þ iein=4

2ða� cos hÞK0ðaÞU0ðaÞU�1
0 ðcos hÞFp

þ iein=4

2
K0ðaÞU0ðaÞ

0 0 0 0

�1 0 1 0

0 0 0 0

�1 0 1 0

0
BBB@

1
CCCAU�1

0 ðcos hÞFp: ð106Þ

The scattered potential may now be constructed from this column vector via Eqs. (28)–(34). We may thus
write the solution to the boundary value problem as

Uðx; yÞ ¼ 1

2p

Z
C

n
ðtþðaÞ � tþð�aÞÞ cosh½cðaþ yÞ�:

þ 1

c
ðsþðaÞ � sþð�aÞÞ sinh½cðaþ yÞ�

o
e�iaxda; 8y; ð107Þ
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where C lies in the strip D as indicated on Fig. 2 and t+(±a) and s+(±a) are derived from Eq. (106) by mul-
tiplying by row vectors (1, 0,0,0), (0, 1,0,0), respectively, and using the relation

K0ðaÞU0ð�aÞ ¼ L0ð�aÞ ð108Þ

where appropriate.
The full form of the solution can now be written down by deforming the contour C in the upper half-plane

for x < 0 or lower half-plane for x > 0 and evaluating by using the residue calculus. It can be shown after sub-
stantial algebra, omitted here for brevity, that the total wave field (including the incident wave (3)) is

Utotðx; yÞ ¼ ð1� P 0Þe�ix cos h�iy sin h � Sðx; yÞ; x < 0;

e�ix cos h�iy sin h þ P 0eix cos h�iy sin h þ Sðx; yÞ; x > 0;

�
ð109Þ

where

Sðx; yÞ ¼
X1

n¼�1;n6¼0

P ne�inp=2ecnyeiknjxj; ð110Þ

P 0 ¼
1

2
þG0U0ðcos hÞL�1

0 ð� cos hÞ
16a cos2ðhÞ Fp �

G0U0ðcos hÞ
8a cos h

ð0; 1; 0; 1ÞTq	1; ð111Þ

P n ¼
Gn

8akn
U0ðknÞ

L�1
0 ð� cos hÞ
cos hþ kn

þU�1
0 ðcos hÞ

cos h� kn

� �
Fp �U0ðknÞð0; 1; 0; 1ÞTq	1

� �
; ð112Þ

q	1 ¼ ð�1; 0; 1; 0ÞU�1
0 ðcos hÞFp; ð113Þ

in which

kn ¼ 1� nþ 2pn
4a

� �2
 !1=2

; cn ¼ �i
nþ 2pn

4a

� �
; ð114Þ

and

Gn ¼ ð�cn;�1; ð�1Þnein=2cn; ð�1Þnein=2Þ: ð115Þ

An avid reader may spot the fact that P0 does not contain a contribution arising from the penultimate term of
t+(�a) of (106) at a = cos h. This is because the residue of this expression turns out, after Taylor series expan-
sion, to be zero. Note that the scattered part of the potential in (109) is, as presumed at the outset, odd in x,
but the transmitted field is composed of the scattered waves plus the incident wave. Further, for each a and h
there is a finite number of propagating (non-evanescent) wave terms out of the infinite sum which are defined
by kn taking real values; the condition for these are defined by

�M 6 n 6 N ; ð116Þ

where M and N are the largest integers less than or equal to 2a(1 + sin h)/p and 2a(1 � sin h)/p, respectively,
i.e.

M ¼ Floor
2að1þ sin hÞ

p

� �
; N ¼ Floor

2að1� sin hÞ
p

� �
: ð117Þ

Our particular interest is in the energy transmitted and reflected from the barriers. The total energy flux for the
transmitted and reflected waves are easily shown to be given by (see, p. 65 of [11], also see, [9], pp.115–116)

ET ¼ j1� P 0j2 þ
XN

m¼�M ;n6¼0

km

k0

jP mj2; ð118Þ

ER ¼
XN

m¼�M

km

k0

jP mj2: ð119Þ
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For ease of exposition of the numerical results in the following Section, it is useful to define the reflection and
transmission coefficients, respectively, as

jT 0j ¼ j1� P 0j; jT mj ¼ jP mj; n 6¼ 0; ð120Þ
jRmj ¼ jP mj: ð121Þ

6. Discussion and concluding remarks

In Section 5 we obtained a closed form analytic solution to the grating problem for the special case a = b.
We have derived explicit expressions for the reflection and transmission coefficients given by Eqs. (120) and
(121). It should be noted, however, that although the solution is explicit, determination of Pn requires the eval-
uation of the expressions (75) and (76). Such integrals are frequently encountered in the Wiener–Hopf method
and their evaluation is straightforward using a mathematical software package such as Mathematica. Taking
the integration contour C of Fig. 2, numerical results for a±(a) and h±(a) can be obtained easily to an accuracy
of the order of 10�12 � 10�15. Note that the accuracy of all of the numerical results to follow can be checked

Fig. 3. jRnj, jT0j against non-dimensional wavenumber a; h = 0.

Fig. 4. jRnj, jT0j against non-dimensional wavenumber a; h = p/6.
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through the percentage error of the energy balance, i.e. ER þ ET ¼ 1 ((118) and (119)); however, since our solu-
tion is a closed form analytic expression, it is not surprising that we find the error to be, at most, of order
10�8%! We can therefore be confident that our numerical evaluations act a benchmark to test the accuracy
of alternative numerical schemes. We will now present our results for different values of h and nondimensiona-
lised wavelength a.

Fig. 3 shows the behaviour of the reflection coefficients, jRnj (=jPnj), as the wavenumber a varies for the
periodic array of rigid plates, where the incident angle is normal to the screens. The results agree closely with
those of Porter and Evans [19] and Dalrymple and Martin [10]. The first of these authors used eigenfunction
expansions and employed Galerkin’s method for their solution, where they reached three significant figure
accuracy for their numerical results. The latter authors also used matched eigenfunction expansions; however,
they did not solve the problem for higher reflected and transmitted modes. Note that we do not show curves
for jTnj for n 5 0 because, due to symmetry, we have jRnj = jTnj!

In Fig. 4 we see that increasing the incident wave angle, h, to h = p/6 increases the value of the zeroth trans-
mission mode. The zeroth reflection and transmission coefficients intersect in the middle of the cut-on region

Fig. 5. jRnj, jT0j against non-dimensional wavenumber a; h = p/4.

Fig. 6. jRnj, jT0j against non-dimensional wavenumber a; h = p/3.
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of the second negative mode. Plotting the transmission coefficients for increasing h, Figs. 5 and 6, it becomes
clear that the magnitudes of jT0j and jRnj drift away from each other. Considering the flux of energy and
referring to the energy Eqs. (118) and (119), we see, Figs. 7 and 8, that the greatest reflection of wave energy
occurs for normal wave incidence, except possibly near the cut-off frequencies.

It may be helpful for the reader to offer a little discussion of the cut-on values of the reflection coefficients
illustrated in the figures. The curve of the reflected energy ER (shown as the unbroken line emanating from 0 at
a = 0 in Fig. 8) is determined by adding all the propagating modes appearing in the solution (119). As
mentioned, the number of such propagating wave modes in the reflected and transmitted wave fields varies
according to the integer values n which satisfy:

�2að1þ sin hÞ
p

6 n 6
2að1� sin hÞ

p
: ð122Þ

The variations in the cut-on values of the higher modes in the reflection coefficient, for different incident angles
are due to this equation. When h = 0�, the negative and positive values of index n have the same number;

Fig. 7. Proportion of the incident wave energy transmitted through the barrier for distinct h values vs. a.

Fig. 8. Proportion of the incident wave energy reflected by the barrier for distinct h values vs. a.
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however as h approaches p/2 the negative n terms remain but there are only contributions from the positive n

index as a becomes very large. At grazing incidence h = p/2 there are no jRnj, n > 0, contributions.
The particular focus of this article is the energy flux through the periodic array. As already mentioned,

although the reflection coefficient curves for non-normal incidence have the same general form as those for
the h = 0� case, the largest energy reflection typically occurs for normal incidence. Increasing the angle of
incidence has the general effect of increasing the total transmitted energy, a result that has been observed
in many barrier problems (see, for example, Porter and Evans [19] and references therein). Figs. 7 and 8
show graphs of the transmitted and reflected wave fields against incidence angle, h. Recalling numerical
results by Erbas� ([11], Chapter 4) and Baldwin and Heins ([9]) for the duct problem with equal length
barriers and gaps, one interesting result is that, for very large wavenumber a, or very short wavelengths,
the total transmitted energy approaches one half. This is not difficult to explain. At high frequencies the

Fig. 9. jT0j, jRnj against h when a = 1.5.

Fig. 10. jT0j, jRnj against h when a = 2.5.
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field scattered by the strip edges is small. Thus, the portion of the waves that are incident on the rigid
barriers will be blocked effectively by the array and hence reflected, whereas the waves incident on the
gaps will not feel the presence of the grating, and transmit through the gap without any loss of energy.
This yields the relation ET � b=2a ¼ 1=2, which is the total transmitted energy of the incident wave.
Another interesting phenomenon occurs as the incident angle increases and approaches p/2. In this case
the wave field transmits, at near grazing angle, through the infinite grating without any significant loss
of energy. This fact is observed from Figs. 5–7.

We now plot the transmission coefficients for distinct values of wavenumber a and varying incidence angle
h. In Figs. 9 and 10 two values for a, a = 1.5 and a = 2.5, respectively, are chosen. As can be seen from the
graphs, the larger values of h result in a larger transmission coefficient and virtually no reflection of the wave
field. The penultimate figures, Figs. 11 and 12, reveal that the maximum amount of energy transmitted
through the grating occurs at h = p/2, which is independent of the gap size. This fact corroborates the discus-
sion above. Our last figure, Fig. 13, displays the comparison of the numerical results of Porter & Evans [19] to
that found in this article. The incident wave angle is taken as h = 30�, and only the first two modes are con-
sidered. The agreement for both small and large wavenumbers is excellent.

Fig. 11. Proportion of the incident wave energy transmitted through the barrier for fixed a against h.

Fig. 12. Proportion of the incident wave energy reflected from the barrier for fixed a against h.
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Appendix A. Derivation of the matrix kernel

In Section 3, we obtained a matrix kernel for the grating problem omitting the details. Here we shall show
in some detail how the matrix kernel can be obtained. Let us start by eliminating the unknown coefficients A,
B, C, D of Eqs. (31)–(34). Multiplying (31) by c (we use c instead of c(a) where there is no risk of confusion)
and adding and subtracting the resulting equation with (33), respectively, A and B are found as

A ¼ c�1eca

2
fcðtþðaÞ � tþð�aÞÞ þ ðsþðaÞ � sþð�aÞÞg; ðA:1Þ

B ¼ c�1e�ca

2
fcðtþðaÞ � tþð�aÞÞ � ðsþðaÞ � sþð�aÞÞg: ðA:2Þ

Equations for the unknowns C and D are found similarly on multiplying (32) by c and adding and subtracting
(32) and (34) to give

C ¼ c�1eca

2
cðtþðaÞ þ tþð�aÞÞ þ ðsþðaÞ þ sþð�aÞÞ � 2 cos heia sin h

ðcos2 h� a2Þ ðciþ sin hÞ
� �

; ðA:3Þ

D ¼ c�1e�ca

2
cðtþðaÞ þ tþð�aÞÞ � ðsþðaÞ þ sþð�aÞÞ � 2 cos heia sin h

ðcos2 h� a2Þ ðci� sin hÞ
� �

: ðA:4Þ

Eqs. (38) and (39) can be combined, after a little modification, to give the following relations

cð38Þ þ ð39Þ ¼ e�if�2cbfcðtþðaÞ � tþð�aÞÞ þ ðsþðaÞ � sþð�aÞÞg; ðA:5Þ
cð38Þ � ð39Þ ¼ e�ifþ2cbfcðtþðaÞ � tþð�aÞÞ � ðsþðaÞ � sþð�aÞÞg: ðA:6Þ

Now, if we multiply (A.5) and (A.6) by ecb and e�cb, respectively, adding and subtracting the resulting equa-
tions, we get:

cð38Þ cosh cbþ ð39Þ sinh cb ¼ e�iffc cosh cbðtþðaÞ � tþð�aÞÞ � sinh cbðsþðaÞ � sþð�aÞÞg; ðA:7Þ
cð38Þ sinh cbþ ð39Þ cosh cb ¼ e�iff�c sinh cbðtþðaÞ � tþð�aÞÞ þ cosh cbðsþðaÞ � sþð�aÞÞg: ðA:8Þ

Fig. 13. Comparison of results for transmitted and reflected wave fields from Porter & Evans [19] (dotted lines) and from the exact result
using the Wiener–Hopf technique (continuous lines) for h = 30�. Comparison of results to those of Porter and Evans.
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In a similar fashion, (36) and (37) can be combined to give:

cð36Þ þ ð37Þ ¼e2cafcðtþðaÞ þ tþð�aÞÞ þ ðsþðaÞ þ sþð�aÞÞg

� 2 cos heia sin hþ2ca

ðcos2�a2Þ ðciþ sin hÞ þ 2 cos he�ia sin h

ðcos2�a2Þ ðciþ sin hÞ; ðA:9Þ

cð36Þ � ð37Þ ¼e�2cafcðtþðaÞ � tþð�aÞÞ � ðsþðaÞ þ sþð�aÞÞg

� 2 cos heia sin h�2ca

ðcos2�a2Þ ðci� sin hÞ þ 2 cos he�ia sin h

ðcos2�a2Þ ðci� sin hÞ: ðA:10Þ

Now, let us multiply (A.9) and (A.10) by e�ca and eca respectively to get

cð36Þ cosh ca� ð37Þ sinh ca ¼ c cosh caðtþðaÞ þ tþð�aÞÞ

þ sinh caðsþðaÞ þ sþð�aÞÞ � 2 cos h
ðcos2�a2Þ ½e

ia sin hfic coshðcaÞ

þ sin h sinhðcaÞg � e�ia sin hfic coshðcaÞ � sin h sinhðcaÞg�; ðA:11Þ
cð36Þ sinh ca� ð37Þ cosh ca ¼ �c sinh caðtþðaÞ þ tþð�aÞÞ � cosh caðsþðaÞ

þ sþð�aÞÞ þ 2 cos h
ðcos2�a2Þ ½e

ia sin hfic sinhðcaÞ

þ sin h coshðcaÞg þ e�ia sin hfic sinhðcaÞ � sin h coshðcaÞg�: ðA:12Þ

Eqs. (A.7), (A.8) and (A.11), (A.12) are the main equations from which the matrix kernel will be obtained,
recalling that v+(±a) and u+(±a) are given by (36) and (37). To achieve this, the best practice is to collect
the ‘+’ and ‘�’ functions on each sides of these equations in their explicit form. Performing this operation
gives the following four equations:

e�if coshðcbÞtþðaÞ � e�ifc�1 sinhðcbÞsþðaÞ � c�1 sinhðcbÞuþðaÞ � coshðcbÞvþðaÞ
¼ e�if coshðcbÞtþð�aÞ � e�inc�1 sinhðcbÞsþð�aÞ � c�1 sinhðcbÞuþð�aÞ � coshðcbÞvþð�aÞ; ðA:13Þ

e�if sinhðcbÞtþðaÞ � e�ifc�1 coshðcbÞsþðaÞ þ c�1 coshðcbÞuþðaÞ þ sinhðcbÞvþðaÞ
¼ e�if sinhðcbÞtþð�aÞ � e�ifc�1 coshðcbÞsþð�aÞ þ c�1 coshðcbÞuþð�aÞ þ sinhðcbÞvþð�aÞ; ðA:14Þ

coshðcaÞtþðaÞ þ c�1 sinhðcaÞsþðaÞ þ c�1 sinhðcaÞuþðaÞ � coshðcaÞvþðaÞ
¼ � coshðcaÞtþð�aÞ � c�1 sinhðcaÞsþð�aÞ þ c�1 sinhðcaÞuþð�aÞ

þ coshðcaÞvþð�aÞ þ 2i cos h
ðcos2 h� a2Þ fe

ia sin hðcosh ca� ic�1 sin h sinh caÞ

� e�ia sin hðcosh caþ ic�1 sin h sinh caÞg; ðA:15Þ
sinhðcaÞtþðaÞ þ c�1 coshðcaÞsþðaÞ � c�1 coshðcaÞuþðaÞ þ sinhðcaÞvþðaÞ
¼ � sinhðcaÞtþð�aÞ � c�1 coshðcaÞsþð�aÞ þ c�1 coshðcaÞuþð�aÞ

� sinhðcaÞvþð�aÞ þ 2i cos h
ðcos2 h� a2Þ fe

ia sin hðsinh ca� ic�1 sin h cosh caÞ

þ e�ia sin hðsinh caþ ic�1 sin h cosh caÞg: ðA:16Þ

Multiplying (A.13) by eif, (A.14) by c(a)eif, (A.16) by c(a), we can finally combine the resulting equations into
the matrix Wiener–Hopf equation of Section 3:

MðaÞtþðaÞ ¼ JMðaÞtþð�aÞ þ FðaÞ; ðA:17Þ

where t+(a), M(a), and F(a) are given by Eqs. (41), (42), and (45) respectively. The matrix Wiener–Hopf kernel,
K(a), is then given by

KðaÞ ¼M�1ðaÞJMðaÞ: ðA:18Þ

302 B. Erbas�, I.D. Abrahams / Wave Motion 44 (2007) 282–303



References

[1] I.D. Abrahams, Radiation and scattering of waves on an elastic half-space; a non-commutative matrix Wiener–Hopf problem, J.
Mech. Phys. Solids 44 (12) (1995) 2125–2154.

[2] I.D. Abrahams, On the solution of Wiener–Hopf problems involving non-commutative matrix kernel decompositions, SIAM J. Appl.
Math. 57 (2) (1998) 541–567.

[3] I.D. Abrahams, On the non-commutative factorization of Wiener–Hopf kernels of Khrapkov type, Proc. Roy. Soc. A 454 (1998)
1719–1743.

[6] J.D. Achenbach, A.K. Gautesen, Elastodynamic stress intensity factors for a semi-infinite crack under 3-D loading, J. Appl. Mech. 44
(1977) 243–249.

[7] J.D. Achenbach, Z.L. Li, Reflection and Transmission of scalar waves by a periodic array of screens, Wave Motion 8 (1986) 225–234.
[9] G.L. Baldwin, A.E. Heins, On the diffracton of a plane wave by an infinite plane grating, Math. Scand. 2 (1954) 103–118.
[10] R.A. Dalrymple, P.A. Martin, Wave diffraction through offshore breakwaters, J. Wtrwy. Port Coast. Ocean. Eng. 116 (6) (1990)

727–741.
[11] B. Erbas�, Scattering of Waves in Ducts and by Periodic Structures, Ph.D. Thesis, University of Manchester, 2002.
[12] L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, 1993.

[13] D.S. Jones, Factorization of a Wiener–Hopf matrix, IMA J. Appl. Math. 32 (1984) 211–220.
[14] A.A. Khrapkov, Certain cases of the elastic equilibrium of an infinite wedge with a non-symmetric notch at the vertex, subjected to

concentrated forces, Appl. Math. Mech. (PMM) 35 (1971) 625–637.
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