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LOCALLY POLYNOMIALLY BOUNDED STRUCTURES

G. O. JONES and A. J. WILKIE

Abstract

We prove a theorem which provides a method for constructing points on varieties defined by
certain smooth functions. We require that the functions are definable in a definably complete
expansion of a real closed field and are locally definable in a fixed o-minimal and polynomially
bounded reduct.

As an application we show that in certain o-minimal structures definable functions are piecewise
implicitly defined over the basic functions in the in the language.

1. Introduction

In his proof of the model completeness of the real exponential field ([7]), the sec-
ond author develops a theory of Noetherian differential rings of definable functions,
and studies varieties defined by these functions. One of the main results of this
theory is Theorem 5.1 which provides a method for constructing points on such
varieties.

Our aim in this paper is to prove a version of this theorem without the Noetheri-
anity assumption. Instead we suppose that the functions considered are definable in
an expansion of a real closed field, M say, which is definably complete (see [5],[6])
and further, that the functions are what we call locally tame. We will give precise
definitions later, but the idea is that certain restrictions (to bounded boxes) of
the (total) functions considered, are definable in a fixed o-minimal polynomially
bounded reduct of M. Then we can use Miller’s results ([3],[4]) to bound orders of
vanishing and it is this that makes up for the lack of Noetherianity.

After proving the main result, we specialize to the o-minimal situation. We
call an o-minimal structure M with model complete theory locally polynomially
bounded if the reduct generated by all restrictions of the basic functions to bounded
open boxes is polynomially bounded. We show that being locally polynomially
bounded is preserved under elementary equivalence. Combining this with model
completeness and the main theorem, we show that definable functions are piecewise
implicitly defined over the basic functions in the language. This implies that these
structures have smooth cell decomposition. Under a further assumption on these
basic functions, this gives uniform control over the derivatives of definable functions.

2. Locally tame functions

Let M̄ = 〈M,<,+, ·, 0, 1〉 be a fixed real closed field and let M = 〈M̄, . . .〉 be
an arbitrary, but fixed, expansion of M. We also fix an o-minimal, polynomially
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bounded reduct M0 of M such that M0 is also an expansion of M̄ . We use
definable to mean definable with parameters and 0-definable to mean definable
without parameters, and unless we specifically mention another structure, we are
referring to definability in M.

Definition 1. Suppose that f : U → M is a definable function on some open
U ⊆ Mn. We say that f is locally tame if f is smooth (i.e. infinitely differentiable
on U in the sense of the usual ε−δ definition formulated in M) and, for every open
box B ⊆ Mn having sides of length ≤ 1 and satisfying B ⊆ U , we have that f |B is
definable in M0.

Example 1. Suppose that M = 〈R̄, exp〉 and M0 = 〈R̄, exp |[0, 1]〉. Then exp
is locally tame. Now consider the function

g : R → R

t 7→
{

exp(−1/t2) t 6= 0
0 t = 0.

This function is smooth and definable, but, by the following result, it is not locally
tame.

Proposition 2.1. Let f : U → M be a locally tame function. Then the set of
flat points of f (i.e. the points at which all derivatives of f of all orders vanish) is
definable and is both open and closed in U . Further, if B is any open box having
sides of length at most 1, satisfying B ⊆ U , and B contains a flat point of f , then
f vanishes throughout B.

Proof. Let X be the set of all flat points of f and let

Y = {x̄ ∈ U : there is an open box around x̄ on which f vanishes}.

Clearly we have Y ⊆ X. Suppose that ā ∈ X and let B be a box containing ā with
sides of length ≤ 1 such that B ⊆ U . Since f is locally tame, the restriction f |B is
definable in M0. This structure is o-minimal and polynomially bounded so a result
of Miller’s ([3]) shows that ā ∈ Y . So Y = X and X is definable and since Y is
open, so is X.

Now suppose for a contradiction that X is not closed in U . Then there is some
b̄ ∈ U such that b̄ ∈ frX. Fix α ∈ Nn. There are points arbitrarily close to b̄ at which
f is flat. At such a point, x̄ say, Dαf(x̄) = 0. Hence Dαf(b̄) = 0. Since α ∈ Nn was
arbitrary, it follows that f is flat at b̄. So b̄ ∈ X which is a contradiction.

Finally, if B is an open box having sides of length at most 1, satisfying B ⊆ U
and containing a flat point of f , then we may apply the above argument in the
o-minimal, polynomially bounded structure M0 to the function f |B and use the
fact that B is definably connected.

We now suppose that we have, for each n ≥ 1, a Q-algebra Rn of locally tame
functions f : Mn → M , which is closed under partial differentiation. We will also
assume that Rn ⊆ Rn+1 (in the obvious sense) and that

Q[X1, . . . , Xn] ⊆ Rn.
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Before giving our main result, we recall some notation from [7]. Let f ∈ Rn. We
define ∇f : Mn → Mn by

∇f(ā) := 〈 ∂f

∂x1
(ā), . . . ,

∂f

∂xn
(ā)〉 for ā ∈ Mn.

Note that ∇f ∈ Rn
n. For p ≥ 1 and f1, . . . , fp ∈ Rn we let

Vn(f1, . . . , fp) := {x̄ ∈ Mn : f1(x̄) = . . . = fp(x̄) = 0}

and

V reg
n (f1, . . . , fp) := {x̄ ∈ Vn(f1, . . . , fp) : ∇f1(x̄), . . . ,∇fp(x̄) are linearly independent}.

Here, linear independence is in the M̄ vector space Mn. The Jacobian matrix of
f1, . . . , fp is the matrix

Jn(f1, . . . , fp) :=

 ∇f1

...
∇fp

 .

The rows of Jn(f1, . . . , fp) are linearly independent when evaluated at ā ∈ Mn if
and only if p ≤ n and there is a p × p submatrix whose determinant is non-zero
when evaluated at ā. So, if we let Q = Qn,f1,...,fp ∈ Rn be the sum of squares of all
such determinants we have

for all ā ∈ Mn, ā ∈ V reg
n (f1, . . . , fp) ↔ ā ∈ Vn(f1, . . . , fp) and Q(ā) > 0. (2.1)

Lemma 2.2. If we regard f1, . . . , fp as elements of Rn+1, then there is a function
fp+1 ∈ Rn+1 such that

Vn+1(f1, . . . , fp+1) = V reg
n+1(f1, . . . , fp+1),

and Vn+1(f1, . . . , fp+1) projects onto V reg
n (f1, . . . , fp). In particular, V reg

n+1(f1, . . . , fp+1)
is closed in Mn+1.

Proof. Let fp+1(x1, . . . , xn+1) = xn+1 ·Q(x1, . . . , xn)−1 where Q is the function
defined before the Lemma. Then by (2.1),

〈ā, an+1〉 ∈ V reg
n+1(f1, . . . , fp+1) ↔ ā ∈ V reg

n (f1, . . . , fp) and an+1 = Q(ā)−1.

An easy calculation shows that for such 〈ā, an+1〉, we have Q0(ā, an+1) ≥ Q(ā)3,
where Q0 := Qn+1,f1,...,fp+1 . So

Vn+1(f1, . . . , fp+1) = V reg
n+1(f1, . . . , fp+1).

as required.

Theorem 2.3. Assume that M is definably complete (i.e. every definable sub-
set of M with an upper bound has a least upper bound). Suppose that n ≥ 1
and that f ∈ Rn is such that V (f) is nonempty. Then there exist m ≥ 0 and
f1, . . . , fn+m ∈ Rn+m such that

V reg
n+m(f1, . . . , fn+m) ∩ Vn+m(f) 6= ∅.

Here we regard f as an element of Rn+m, so Vn+m(f) = Vn(f)×Mm.
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Proof. If f vanishes identically then we let m = 0 and fi(x1, . . . , xn) = xi so
that we have V reg

n (f1, . . . , fn) ∩ Vn(f) = {0}. So we may suppose that f is not
identically zero.

We will show by induction on p, for 1 ≤ p ≤ n, that

there exist m ≥ 0 and f1, . . . , fp+m ∈ Rp+m such that
V reg

n+m(f1, . . . , fp+m) ∩ Vn+m(f) 6= ∅. (2.2)

Suppose first that p = 1. We choose any point ā ∈ Vn(f). Since M is definably
complete, the set M is definably connected (see [5]) and a simple argument shows
that Mn is also definably connected. Hence since f is locally tame and is not
identically zero, Proposition 2.1 gives an α ∈ Nn such that, with f1 = Dαf , we
have ā ∈ V reg

n (f1). This proves (2.2) for p = 1, with m = 0.
Now suppose that p is such that 1 ≤ p < n and that (2.2) holds for p. Then we

have m ≥ 0 and f1, . . . , fp+m ∈ Rn+m such that

V reg
n+m(f1, . . . , fp+m) ∩ Vn+m(f) 6= ∅.

Case 1. There is some ā ∈ V reg
n+m(f1, . . . , fp+m) ∩ Vn+m(f) such that f is not

identically zero on B ∩ V reg
n+m(f1, . . . , fp+m) for any open box B ⊆ Mn+m with

ā ∈ B.
Since ā ∈ V reg

n+m(f1, . . . , fp+m), there is some (p + m) × (p + m) submatrix of
Jn+m(f1, . . . , fp+m) whose determinant is non-zero at ā. We will assume that this
submatrix consists of the last (p + m) columns, and write ∆ for its determinant.
Note that ∆ is a function in Rn+m. For ȳ = 〈y1, . . . , yn+m〉 ∈ Mn+m, we let
ỹ := 〈y1, . . . , yn−p〉. Since the functions f1, . . . , fp+m are locally tame, there is an
open box B0 ⊆ Mn+m such that ā ∈ B0 and f1|B0 , . . . , fp+m|B0 are definable in
M0. By the implicit function theorem, applied in the o-minimal structure M0 (see
[1], Chapter 7) there is an open box U ⊆ Mn−p with ã ∈ U and a smooth map
φ : U → Mp+m, definable in M0, such that

(i) φ(ã) = 〈an−p+1, . . . , an+m〉,
(ii) {〈ỹ, φ(ỹ)〉 : ỹ ∈ U} = B ∩ V reg

n+m(f1, . . . , fp+m)
for some open box B ⊆ Mn+m with ā ∈ B. We may suppose that ∆ has no zeroes
in B. Since f is locally tame, f |B is definable in M0 and hence so is the function

g : U → M

ỹ 7→ f(ỹ, φ(ỹ)).

Now, by the hypothesis of case 1 and (i) and (ii) above, g is not identically zero
on U , and as M0 is polynomially bounded, there is some α ∈ Nn−p such that
g∗ := Dαg vanishes at ã but, for some j = 1, . . . , n− p, ∂g∗

∂yj
does not.

Now we have

fi(ỹ, φ(ỹ)) = 0 for i = 1, . . . ,m + p and ỹ ∈ U,

g(ỹ) = f(ỹ, φ(ỹ)) for ỹ ∈ U,

and by differentiating these relations, we obtain a function F ∈ Rn+m such that

g∗(ỹ) =
F (ỹ, φ(ỹ))
∆(ỹ, φ(ỹ))d

for all ỹ ∈ U

for some d. We also have that F (ã, φ(ã)) = F (ā) = 0, and since ∂g∗

∂yj
(ã) 6= 0, it follows

from Lemma 4.7 in [7] that ∇f1(ā), . . . ,∇fp(ā),∇F (ā) are linearly independent.
So we obtain (2.2) for p + 1 by taking fp+m+1 = F and not changing m.
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Case 2. Not case 1.
By Lemma 2.2 we may suppose (after increasing m) that V reg

n+m(f1, . . . , fp+m) =
Vn+m(f1, . . . , fp+m). Let C = V reg

n+m(f1, . . . , fp+m) ∩ Vn+m(f). Then C is nonempty
(by (2)) and closed in Mn+m. Now, if we can find some h ∈ Rn+m which has a
zero in C but is not identically zero on B ∩ V reg

n+m(f1, . . . , fp+m) for any open box
B containing this zero, then we can apply the method of Case 1 to h and we will
be done.

To find such an h we proceed as in the proof of Theorem 5.1 in [7]. Let η̄ =
〈η1, . . . , ηn+m〉 ∈ Qn+m. Then, since C is closed, there is a point b̄ ∈ C at minimum
distance from η̄. (This follows easily from the definable completeness of M.) Let
Hη̄(x̄) := Σ(xi−ηi)2. Then Hη̄ ∈ Rn+m and the function Hη̄|C has a minimum at b̄.
However, by the hypotheses of Case 2, C coincides with V reg

n+m(f1, . . . , fp+m) on some
open box in Mn+m containing the point b̄ and hence, by the method of Lagrange
multipliers (see 4.10 in [7]; we should also remark that we may work in the o-minimal
structure M0 at this point), the vectors ∇f1(b̄), . . . ,∇fp+m(b̄),∇Hη̄(b̄) are linearly
dependent. Now, by (1), this is equivalent to the vanishing at b̄ of the function
Qη̄ := Qn+m,f1,...,fp+m,Hη̄

∈ Rn+m. Now consider the function f̃ := Q2
η̄ +f2. Either

it will serve as the required function h, or else it too satisfies the same hypothesis
of Case 2 as did f (including the fact that V reg

n+m(f1, . . . , fp+m) ∩ Vn+m(f̃) 6= ∅).
So by successive repetition of this argument we either succeed in finding a suitable

h, or else for any positive integer r and any sequence of points η̄1, . . . η̄r ∈ Qn+m,
we find a point c̄ ∈ C such that for each i = 1, . . . , r, the vector ∇Hη̄i(c̄) lies
in the vector space spanned by ∇f1(c̄), . . . ,∇fp+m(c̄). However, for η̄ ∈ Qn+m

one calculates that ∇Hη̄(c̄) = 〈2(c1 − η1), . . . , 2(cn+m − ηn+m)〉. Thus, if we take
r = n+m+1, η̄1 = 0̄ and η̄2, . . . , η̄n+m+1 to be any basis for Qn+m we see that (for
any c̄ ∈ Mn+m), the set {∇Hη̄1(c̄), . . . ,∇Hη̄n+m+1(c̄)} spans Mn+m, contradicting
the fact that p + m < n + m. Thus we will find a suitable h and this completes the
proof of Theorem 2.3.

Examples of definably complete structures include any structure elementarily
equivalent to an expansion of R̄, and any o-minimal structure. See [5] and [6] for
discussions of definably complete structures.

3. Locally polynomially bounded structures

From now on in this paper, we fix an o-minimal structure M = 〈M̄,F〉 with
model complete theory, where F is a collection of smooth functions f : Mn → M
for various n. Let Fres denote the collection of all functions of the form f |B , for
f ∈ F and B an open box in Mn. We say M is locally polynomially bounded if
the structure M0 := 〈M̄,Fres〉 is polynomially bounded.

So, for example, suppose that R̃ is a polynomially bounded o-minimal expansion
of R̄ and that R̃ has smooth cell decomposition. Then the structure 〈R̄,F〉, where
F is the collection of all smooth R̃-definable functions, is LPB, and this structure
and R̃ have the same definable sets. Another example of an LPB structure is the
real exponential field discussed in the previous section. These examples can be
combined: suppose that R̃ is a polynomially bounded o-minimal expansion of R̄ with
smooth cell decomposition and that the restricted exponential function, exp |[0,1], is
definable in R̃. Let F denote the collection of all total smooth definable functions.
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By a Theorem of van den Dries and Speissegger (Theorem B in [2]) the structure
〈R̄,F , exp〉 is model complete and hence LPB.

Now, let M be an LPB structure with M0 and F as described above. Let N =
〈N̄ ,G〉 be a structure for the same language (with N̄ a real closed field) and form
Gres and N0 in the analogous way.

Theorem 3.1. If M≡ N then N is also LPB.

Proof. We must show that N0 is polynomially bounded. We will first show it
is power bounded, in the sense of [4], so suppose that it is not. Then by Miller’s
Dichotomy Theorem ([4]), there is an exponential function E : N → N which is
0-definable in N0. This means that there is some formula, Φ(F1, . . . , Fn, x, y) say, in
the language of ordered rings together with n function variables (of various arities)
but only first order quantifiers, functions g1, . . . , gn ∈ G (of the corresponding
arities) and bounded open boxes B1, . . . , Bn (in the corresponding spaces) such
that

for all a, b ∈ N,E(a) = b if and only if N |= Φ(g1|B1 , . . . , gn|Bn
, a, b).

We now write Φ(x, y) for Φ(F1, . . . , Fn, x, y) and let Ψ(F1, . . . , Fn) be the formula

∀x∃!yΦ(x, y) ∧ Φ(0, 1) ∧ ∀x, x′, y, y′
[
(x < x′ ∧ Φ(x, y) ∧ Φ(x′, y′)) →

(y < y′ ∧ Φ(x + x′, y · y′))
]
.

Then
N |= ∃B1, . . . , BnΨ(g1|B1 , . . . , gn|Bn).

Now quantification over boxes is first order, as we can quantify over the corners.
So, by the elementary equivalence of M and N , we have

M |= ∃B1, . . . , BnΨ(f1|B1 , . . . , fn|Bn
)

where the f1, ..., fn ∈ F correspond to g1, ..., gn ∈ G. Hence an exponential function
is definable in M0, contradicting the fact that M is locally polynomially bounded.

So N0 is power bounded. We now need to show that it is polynomially bounded.

Claim. Suppose that for any formula Φ(F1, . . . , Fn, x, y) (in the language of
ordered rings, together with n function variables but only first order quantifiers)
and any collection of functions f1, . . . , fn ∈ F , the formula Φ(f1|B1 , . . . , fn|Bn , x, y)
defines inM the graphs of only finitely many power functions as the boxes B1, . . . , Bn

vary. Then N0 is polynomially bounded.

Proof. Note that it suffices to show that there is no non-polynomially bounded
power function definable without parameters in N0. So, suppose that g1 . . . , gn ∈
G and B1, . . . , Bn are open boxes such that the formula Φ(g1|B1 , . . . , gn|Bn , x, y)
defines a power function, xα say, in N0. By the hypothesis of the Claim and the
fact that M0 is polynomially bounded, there is a k ∈ N such that the sentence

∀B1, . . . , Bn(if Φ(f1|B1 , . . . , fn|Bn , x, y) defines a power function
then this function is bounded by xk)

holds in M, where the f1, ..., fn ∈ F correspond to g1, ..., gn ∈ G. (To see that the
set of boxes for which Φ(f1|B1 , . . . , fn|Bn , x, y) defines a power function is definable,
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write out a formula analogous to the formula Ψ above.) Hence this sentence is true
in N and so α ≤ k and N0 is polynomially bounded.

We will now establish the hypothesis of the Claim, so fix a formula Φ(F1, . . . , Fn, x, y)
and functions f1, . . . , fn ∈ F . Let K be the (definable) set of exponents of power
functions defined by Φ(f1|B1 , . . . , fn|Bn , x, y) as the boxes B1, . . . , Bn vary and
suppose for a contradiction that K contains a nonempty open interval, J say.
Using definable choice and monotonicity (in the o-minimal structure M) there
is a bounded subinterval J0 say, with J0 ⊆ J and a continuous definable function
G on J0, whose values are n-tuples of boxes, such that

for all α ∈ J0, G(α) = 〈Bα
1 , . . . , Bα

n 〉 is such that
Φ(f1|Bα

1
, . . . , fn|Bα

n
, x, y) defines y = xα for x > 0.

(3.1)

Since J0 is a closed bounded interval, G is bounded and we may take bounded
open boxes D1, . . . , Dn such that Bα

i ⊆ Di, for all α ∈ J0 and i = 1, . . . , n.
Now, if we repeat the above argument with the structure 〈M̄, f1|D1 , . . . , fn|Dn〉
in place of M, we obtain an interval J1 and a function G1 defined in the structure
〈M̄, f1|D1 , . . . , fn|Dn〉 such that (3.1) holds with J1, G1 in place of J0, G. Hence the
function 〈x, y〉 7→ xy with x > 0 and y ∈ J1 is definable in 〈M̄, f1|D1 , . . . , fn|Dn〉
and hence in M0. But this is impossible, by the proof of 4.2 in [4], as M0 is
polynomially bounded.

4. Consequences of model completeness

For the remainder of the paper, we fix an LPB structure, M = 〈M̄,F〉. Let F̃
be the smallest collection of functions containing F and all polynomials over Q and
closed under the Q-algebra operations and under partial differentiation. For each
n ≥ 1, let Rn be the Q-algebra consisting of all n-ary functions in F̃ . Then each
Rn is closed under partial differentiation and consists of locally tame functions, so
the results of the first section apply. These results also apply to the rings Rā

n, for
ā ∈ Mp, consisting of all functions of the form x̄ 7→ f(ā, x̄) for some f ∈ Rp+n.

Definition 2. Let ā ∈ Mp and b ∈ M . We say that b is F-defined over ā if
there exist m ≥ 1, f1, . . . , fm ∈ Rā

m and b1, . . . , bm ∈ M with b = bi for some i, such
that

b̄ ∈ V reg
m (f1, . . . , fm).

The following is an easy consequence of the model completeness of 〈M̄,F〉 and
2.3, together with a standard trick on representing definable sets as projections of
zero sets.

Theorem 4.1. Let ā ∈ Mp, b ∈ M . Then b is in the definable closure of ā if
and only if b is F-defined over ā. In particular, “F-defined over” is a pregeometry.

Definition 3. We say that a 0-definable function f : U → M , where U ⊆ Mn

is open, is implicitly F-defined if there exist m ≥ 1, functions g1, . . . , gm ∈ Rn+m

and 0-definable functions φ1, . . . , φm : U → M such that
(1) f = φi, for some i = 1, . . . ,m,
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(2) 〈φ1(x̄), . . . , φm(x̄)〉 ∈ V reg
n (g1(x̄, ·), . . . , gm(x̄, ·)), for all x̄ ∈ U .

Corollary 4.2. If ā ∈ Mn is generic (for the pregeometry given by definable
closure) and f : U → M is a 0-definable function on a neighbourhood U of ā,
then there is an open 0-definable V ⊆ U with ā ∈ V , such that f |V is implicitly
F-defined.

Proof. Since f(ā) is in the definable closure of ā, it follows from the previ-
ous Theorem that there exist m ≥ 1, functions g1, . . . , gm ∈ Rn+m and a tuple
〈b1, . . . , bm〉 ∈ Mm such that f(ā) ∈ {b1, . . . , bm} and

b̄ ∈ V reg
m (g1(ā, ·), . . . , gm(ā, ·)).

Consider the 0-definable set

X := {〈x̄, ȳ〉 ∈ Mn+m : ȳ ∈ V reg
m (g1(x̄, ·), . . . , gm(x̄, ·))}.

For each x̄ there are at most finitely many ȳ such that 〈x̄, ȳ〉 ∈ X. Hence by cell
decomposition and the fact that ā is generic there is an open cell, C say, containing
ā and 0-definable functions φ1, . . . , φm : C → M such that

〈φ1(x̄), . . . , φm(x̄)〉 ∈ V reg
m (g1(x̄, ·), . . . , gm(x̄, ·))

and φi(ā) = f(ā) for some i. Then as ā is generic, φi and f agree on some open
neighbourhood V of ā and so f |V is implicitly F- defined.

Using this Corollary and Theorem 3.1, a standard compactness argument yields
the following:

Corollary 4.3. Suppose that f : U → M is a 0-definable function on an
open set U ⊆ Mn. Then there are 0-definable open sets U1, . . . , Uk ⊆ U with
dim(U \

⋃k
i=1 Ui) < n such that f |Ui is implicitly F-defined, for each i.

Now the implicit function theorem implies that functions which are implicitly
F-defined are smooth, and so we have:

Corollary 4.4. Locally polynomially bounded structures have smooth cell
decomposition.

5. Controlling the derivatives

Definition 4. A smooth definable function f : U → M on an open set U ⊆ Mn

is said to have controlled derivatives if there exists a definable continuous function
ω : U → M≥0 and Ci ∈ M,Ei ∈ N, for each i ∈ N such that

|Dαf(x̄)| ≤ C|α| · ω(x̄)E|α| for all α ∈ Nn and x̄ ∈ U.

We say that such an ω is a control function for f and that {ω, Ci, Ei} is control
data for f .

We now suppose that each of the functions f ∈ F has controlled derivatives. It
follows that, in the notation of the previous section, the functions in F̃ (and hence
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in Rn) also have controlled derivatives. Note that, because of the presence of exp,
this assumption holds for the examples of LPB structures given in Section 3.

Proposition 5.1. Suppose that f : U → M is implicitly F-defined. Then f
has controlled derivatives.

Proof. Let g1, . . . , gm ∈ Rn+m and φ1, . . . , φm : U → M witness the fact
that f is implicitly defined. Since g1, . . . , gm have controlled derivatives, there is
a continuous definable function ω : Mn → M and Ci ∈ M,Ei ∈ N such that for
each i = 1, . . . ,m and all α ∈ Nn,

|Dαgi(x̄, ȳ)| ≤ C|α| · ω(x̄, ȳ)E|α| for all 〈x̄, ȳ〉 ∈ Mn+m.

Let ∆ be the determinant of the matrix
∂g1
∂y1

. . . ∂g1
∂ym

...
...

∂gm

∂y1
. . . ∂gm

∂ym

 .

We will show by induction on |α| that there are C ′
|α| ∈ M,E′

|α| ∈ N such that for
each i and all x̄ ∈ U ,

|Dαφi(x̄)| ≤ C ′
|α|

(
ω(x̄, φ1(x̄), . . . , φm(x̄))
∆(x̄, φ1(x̄), . . . , φm(x̄))

)E′
|α|

,

which suffices as f is one of the φi.
Suppose first that |α| = 1. We write φ̄(x̄) := 〈φ1(x̄), . . . , φm(x̄)〉. Since the

derivative ∂φi

∂yj
(x̄) has the form

polynomial in ∂gl

∂yk
evaluated at 〈x̄, φ̄(x̄)〉, for various k, l

∆(x̄, φ̄(x̄))
,

the required C ′
1, E

′
1 clearly exist.

Now suppose that |α| > 1. By the chain rule, Dαφi(x̄) has the form

polynomial in Dβgj evaluated at 〈x̄, φ̄(x̄)〉 and Dβ′
φk(x̄),

for various j, k, β, β′ with |β| ≤ |α|, |β′| < |α|
∆(x̄, φ̄(x̄))d

,

and by the induction hypothesis, we can find suitable C ′
|α|, E

′
|α|.

Combining this with Corollary 4.2, we obtain

Corollary 5.2. Suppose that f : U → M is a smooth definable function.
Then there are definable open sets U1, . . . , Uk ⊆ U with dim(U \

⋃
Ui) < n such

that for each i = 1, . . . , k, f |Ui has controlled derivatives.

Remark 1. In polynomially bounded structures, all smooth functions have con-
trolled derivatives. It seems feasible that a more careful analysis of the derivatives
of implicit functions may show that exponents of the form |α| are preserved. This
could lead to new results in the polynomially bounded case.
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