

Pseudo completions and completions in stages of o-minimal structures

Tressl, Marcus

2006

MIMS EPrint: 2007.187

Manchester Institute for Mathematical Sciences School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK

ISSN 1749-9097

Pseudo completions and completions in stages of o-minimal structures

Marcus Tressl

Received: 26 June 2004 / Published online: 14 July 2006 © Springer-Verlag 2006

Abstract For an o-minimal expansion R of a real closed field and a set \mathscr{V} of Th(R)-convex valuation rings, we construct a "pseudo completion" with respect to \mathscr{V} . This is an elementary extension S of R generated by all completions of all the residue fields of the $V \in \mathscr{V}$, when these completions are embedded into a big elementary extension of R. It is shown that S does not depend on the various embeddings up to an R-isomorphism. For polynomially bounded R we can iterate the construction of the pseudo completion in order to get a "completion in stages" S of R with respect to \mathscr{V} . S is the "smallest" extension of R such that all residue fields of the unique extensions of all $V \in \mathscr{V}$ to S are complete.

Mathematics Subject Classification (2000) Primary: 03C64 · 12J10 · 12J15; Secondary: 13B35

Let *R* be a real closed field. There is a largest ordered field \hat{R} such that *R* is dense in \hat{R} . \hat{R} is again real closed and \hat{R} is called the completion of *R* (cf. [7]). If *v* is a proper real valuation on *R*, then \hat{R} is also the underlying field of the completion of the valued field (*R*, *v*) and \hat{R} is obtained by adjoining limits of Cauchy sequences with respect to *v* as explained in [8].

We generalize this construction as follows. Let \mathscr{V} be a set of convex valuation rings, possibly containing *R* itself. We construct a "smallest" real closed

M. Tressl (🖂)

Partially supported by the European RTNetwork RAAG (contract no. HPRN-CT-2001-00271).

NWF-I Mathematik, Universität Regensburg, 93040 Regensburg, Germany e-mail: marcus.tressl@mathematik.uni-regensburg.de

field containing R which has a limit for all sequences of R that become Cauchy sequences after passing to the residue field of some $V \in \mathcal{V}$. This can also be done for o-minimal expansions of real closed fields and Th(R)-convex valuation rings (see Sect. 3 for the definition of the completion in this case).

Our first result (Theorem 4.1) basically says that we can adjoin the missing limits to R in any order and that the resulting elementary extension R' of R does not depend on the choices, up to an R-isomorphism. We call R' the pseudo completion of R with respect to \mathcal{V} . If R is a pure real closed field (more generally, a polynomially bounded o-minimal expansion of a real closed field), then we can compute the value groups and the residue fields of convex valuation rings of R'. Moreover for every valuation ring $V \in \mathcal{V}$ the convex hull V' of V in R' is the unique convex valuation ring of R', lying over V.

It turns out that R' is not "complete in stages" with respect to $\mathscr{V}' := \{V' | V \in \mathscr{V}\}$ in general, i.e. not all residue fields of the V' are complete in general [cf. Example 5.7]. Therefore, in order to get a "smallest" extension of R, which is complete in stages, we have to iterate the construction of the pseudo completion. The iteration stops at an ordinal and the resulting extension S of R is called the completion in stages of R with respect to \mathscr{V} . In Theorem 5.10, we compute the value groups and the residue fields of convex valuation rings of S. Moreover in Theorem 5.10 it is shown that every element $s \in S \setminus R$ is of the form ax + b where $a, b \in R$ and $x \in S$ such that for a unique convex valuation ring W of S with $W \cap R \in \mathscr{V}$, s/\mathfrak{m}_W is the limit of a Cauchy sequence of V/\mathfrak{m}_V without limits in V/\mathfrak{m}_V ; here $\mathfrak{m}_V, \mathfrak{m}_W$ denote the maximal ideal of V, W, respectively.

Finally we want to point out a combinatorial tool which we use in our arguments. This is a dimension in o-minimal structures, we call it the realization rank, which is coarser than the ordinary dimension associated to o-minimal structures. For real closed fields $R \subseteq S$, with tr.deg. S/R finite, the realization rank of S over R is the maximal number of elements $s_1, \ldots, s_k \in S$ such that $tp(s_1, \ldots, s_k/R)$ is uniquely determined by the open boxes contained in it [cf. Proposition 1.15]. We first analyze this new dimension.

The explanation of the valuation theoretic notions and facts used for o-minimal expansions of fields can be found in [2]. Readers who are mainly interested in the case of real closed fields may replace "o-minimal structure" by "real closed field", "definable" by "semi-algebraic" and "definable closure" by "real closure". Moreover if $R \subseteq S$ are real closed fields and $B \subseteq S$, then the type tp(B/R) of B over R can be identified with the ordering of $R[t_b|b \in B]$ (where the t_b are indeterminates) induced by the evaluation map $t_b \mapsto b$.

1 The realization rank

We start with a reminder on dependence relations as in van der Waerden's "Algebra" ([10]).

Definition 1.1 A relation $x \ll A$ between elements x and subsets A of a given set X is called a dependence relation if the following conditions are fulfilled: (D1) $x \ll \{x\}$. (D2) if $x \ll A$ and $A \subseteq B$ then $x \ll B$.

- (D3) if $x \ll A$ then there is a finite subset B of A, such that $x \ll B$.
- (D4) (exchange lemma) if A is finite, $x \ll A \cup \{y\}$ and $x \ll A$, then $y \ll A \cup \{x\}$.
- (D5) (transitivity) if A is finite, $x \ll A$ and $a \ll B$ for every $a \in A$, then $x \ll B$.

We rephrase this notion in terms of independent sets:

Definition 1.2 Let X be a set and let \mathcal{I} be a nonempty set of finite subsets of X. \mathcal{I} is called a system of independence if the following two properties hold.

- (I1) If $A \subseteq B \in \mathcal{I}$ and $B \in \mathcal{I}$, then $A \in \mathcal{I}$.
- (I2) If $A, B \in \mathcal{I}, x \in X \setminus B$ and if $B \cup \{x\} \in \mathcal{I}$, then $A \cup \{x\} \in \mathcal{I}$ or there is some $a \in A \setminus B$ such that $B \cup \{a\} \in \mathcal{I}$.

Observe that $\emptyset \in \mathcal{I}$ if \mathcal{I} is an independence system. Dependence relations and systems of independence describe the same concept:

Proposition 1.3 If \mathcal{I} is a system of independence of a set X then we define a relation between elements and subsets of X by

 $x \ll_{\mathcal{I}} A : \iff x \in A \text{ or there is some } A_0 \subseteq A, A_0 \in \mathcal{I} \text{ such that } A_0 \cup \{x\} \notin \mathcal{I}.$

If \ll is a dependence relation of X then we define

 $\mathcal{I}(\ll) := \{A | A \text{ is finite and } a \ll A \setminus \{a\} \text{ for all } a \in A\}.$

 (i) If ≪ is a dependence relation of X, then I(≪) is a system of independence and

$$\ll_{\mathcal{I}(\ll)} = \ll$$
.

(ii) If \mathcal{I} is a system of independence of X, then $\ll_{\mathcal{I}}$ is a dependence relation and

$$\mathcal{I}(\ll_{\mathcal{I}}) = \mathcal{I}.$$

Proof This is a folklore fact, we omit the easy proof.

If \mathcal{I} is a system of independence of X with corresponding dependence relation \ll and $A \subseteq X$, then we write $\mathcal{I} - \operatorname{rk}(A)$ or $\ll -\operatorname{rk}(A)$ respectively, for the cardinality of a basis – i.e. a maximal \ll -independent subset–of A.

1.1 The realization rank

We always work with small subsets of a large *o*-minimal structure \mathfrak{M} expanding a dense linear order without endpoints; that means \mathfrak{M} will be λ -big for some

large infinite cardinal λ , whereas "small" means "of cardinality λ " (cf. [4], 10.1). \mathfrak{M} is not mentioned always.

Moreover we fix a (small) subset A of \mathfrak{M} . A is always assumed to be definably closed. For a set X, $\operatorname{cl}(X)$ denotes the definable closure of X (in \mathfrak{M}). If $D \subseteq \mathfrak{M}$ is definably closed, then $D\langle X \rangle$ also denotes $\operatorname{cl}(D \cup X)$.

Lemma 1.4 *If p is a 1-type over A and A* \subseteq *B* \subseteq \mathfrak{M} *, then the following conditions are equivalent.*

- (i) *p* has a unique extension to *B*.
- (ii) If p is realized in cl(B) then p is realized in A.

Proof The set A is definably closed. Therefore each formula with parameters in A with one free variable is equivalent to a quantifier free formula of the language $\{<\}$ with parameters in A. Now the lemma follows easily.

Definition 1.5 If *B* is a subset of \mathfrak{M} and if *c* is an element from \mathfrak{M} , we say that *c* is dominated by *B* over *A* (or *A*-dominated by *B*) and write $c \triangleleft_A B$, if tp(c/A) is realized in $clA \cup B$; otherwise *c* is called *A*- indominated by *B*.

Counterexample 1.6 A-dominance is not a dependence relation, since transitivity is violated. To see an example let \mathfrak{M} be a big real closed field containing \mathbb{R} , take $A = R_0$ to be the real closure of \mathbb{Q} and let $\mu \in \mathfrak{M}$ be positive and infinitesimal over \mathbb{R} . Then

- (a) $\mu \in R_0(\pi, \pi + \mu)$, thus μ is R_0 -dominated by $\{\pi, \pi + \mu\}$.
- (b) $\pi + \mu$ is R_0 -dominated by $\{\pi\}$.
- (c) μ is R_0 -indominated by $\{\pi\}$.

In spite of this example, the A-dominance relation leads to a dependence relation. Before introducing this relation we prove that \triangleleft_A satisfies axioms (D1)–(D4) of a dependence relation. We suppress the index A and write dominated or indominated only. The set A is always fixed and, as mentioned in the beginning, definably closed.

Certainly we have for all $c \in \mathfrak{M}$ and all $B, C \subseteq \mathfrak{M}$:

- (D1) c is dominated by $\{c\}$.
- (D2) *c* dominated by $B, B \subseteq C \Rightarrow c$ dominated by *C*.
- (D3) if c is dominated by B, then there is a finite subset B_0 of B, such that c is dominated by B_0 .

From Lemma 1.4 we know for any element $c \notin A$ the equivalence of

- (i) c is indominated by B.
- (ii) $tp(c/A \cup B)$ is the unique extension of tp(c/A) on $A \cup B$.
- (iii) If $c' \in \mathfrak{M}$ such that tp(c/A) = tp(c'/A), then $c' \notin clA \cup B$.

Exchange Lemma for *A***-dominance 1.7** *If c is indominated by B and dominated by Bd, then d is dominated by Bc.*

Proof We search for a realization of tp(d/A) in cl(ABc). Since *c* is dominated by *Bd* there is some realization $c' \in cl(ABd)$ of tp(c/A). Since *c* is indominated by *B*, it follows that $c' \notin cl(AB)$. From the exchange lemma for the definable closure "cl" in o-minimal structures (cf. [6], Theorem 4.1) we get $d \in cl(ABc')$. Since *c* is indominated by *B* and t(c'/A) = t(c/A) it follows from the equivalence preceding our lemma that tp(c/AB) = tp(c'/AB). Let σ be an $(A \cup B)$ -automorphism of \mathfrak{M} such that $\sigma(c') = c$. Then $\sigma(d) \in clABc$ is a realization of tp(d/A)as desired.

The next proposition implies a variant of transitivity for *A*-dominance, which we will use to define a system of independence.

Proposition 1.8 Let I be an index set, let $\{b_i | i \in I\}$, C and D be sets such that for each $i \in I$, b_i is indominated by $C \cup \{b_j | j \neq i\}$. Suppose b_i is dominated by $C \cup D$ for every $i \in I$. Then $tp((b_i)_{i \in I} / A \cup C)$ is realized in $cl A \cup C \cup D$. More precisely: If b'_i is a realization of $tp(b_i/A)$ in $cl A \cup C \cup D$, then $(b'_i)_{i \in I}$ is a realization of $tp((b_i)_{i \in I} / A \cup C)$.

Proof We have $b_i \neq b_j$ if $i \neq j$ and it is enough to prove the Proposition for finite *I*. We do an induction on n = card I:

n = 1: suppose b is dominated by $C \cup D$, indominated by C and b' realizes tp(b/A) in cl $A \cup C \cup D$. Since b is indominated by C the type $tp(b/A \cup C)$ is realized by b' too.

 $n \to n+1$. Suppose $\{b_1, \ldots, b_{n+1}\}$ is indominated by *C* and b_i is dominated by $C \cup D$. Let $b'_1, \ldots, b'_{n+1} \in \text{cl } A \cup C \cup D$ be realizations of $tp(b_1/A), \ldots, tp(b_{n+1}/A)$ respectively. By the induction hypothesis we have $tp(b_1, \ldots, b_n/A \cup C) = tp(b'_1, \ldots, b'_n/A \cup C)$.

Let σ be an $A \cup C$ -automorphism of \mathfrak{M} such that $\sigma(b_i) = b'_i (1 \le i \le n)$. Since b_{n+1} is indominated by $C \cup \{b_1, \ldots, b_n\}$, we see that $\sigma(b_{n+1})$ is indominated by $C \cup \{b'_1, \ldots, b'_n\}$, that is $tp(f(b_{n+1})/A \cup C \cup \{b'_1, \ldots, b'_n\}) = tp(b'_{n+1}/A \cup C \cup \{b'_1, \ldots, b'_n\})$. Hence (b'_1, \ldots, b'_{n+1}) is a realization of $tp(b_1, \ldots, b_{n+1}/A \cup C)$. \Box

Corollary and Definition 1.9 Let $A, C \subseteq \mathfrak{M}$ and let A be definably closed. For elements $x \in \mathfrak{M}$ and subsets B of \mathfrak{M} we define $x \triangleleft_{A,C} B : \iff x \triangleleft_A (C \cup B)$. Then $\triangleleft_{A,C}$ satisfies properties (D1)–(D4) of a dependence relation (cf. Definition 1.1).

Proof Properties (D1)–(D3) are obviously true for $\triangleleft_{A,C}$. (D4) holds by Exchange Lemma for A-dominance 1.7.

Definition 1.10 Let $A, C \subseteq \mathfrak{M}$ and let A be definably closed. We define

 $\mathcal{I}(A, C) := \{B \subseteq \mathfrak{M} | B \text{ is finite and for all } b \in B \text{ we have } b \not\triangleleft_{A, C} B \setminus \{b\}\}.$

Proposition 1.11 $\mathcal{I}(A, C)$ is a system of independence.

Proof Certainly, property (I1) of an independence system holds for $\mathcal{I}(A, C)$ and we show that also property (I2) of an independence system holds for $\mathcal{I}(A, C)$.

To see this let $B, D \in \mathcal{I}(A, C)$ and let $x \notin D$. Suppose $B \cup \{x\} \notin \mathcal{I}(A, C)$ and $D \cup \{b\} \notin \mathcal{I}(A, C)$ for all $b \in B$. We have to show $D \cup \{x\} \notin \mathcal{I}(A, C)$. Since $\triangleleft_{A,C}$ satisfies (D1)–(D4) (cf. Corollary and Definition 1.9), this means $x \triangleleft_{A,C} B$ and $b \triangleleft_{A,C} D$ for all $b \in B$. As $B \in \mathcal{I}(A, C)$ we can apply Proposition 1.8:

Let $B = \{b_1, \ldots, b_n\}$ and let F be an $A \cup C$ -definable map, such that $F(b_1, \ldots, b_n)$ is a realization of tp(x/A). From Proposition 1.8 we know that $tp(b_1, \ldots, b_n/A \cup C)$ is realized in $clA \cup C \cup D$ by some *n*-tuple (b'_1, \ldots, b'_n) . If σ is an $A \cup C$ -automorphism of \mathfrak{M} such that $\sigma(b_i) = b'_i$ then $\sigma(F(b_1, \ldots, b_n)) = F(b'_1, \ldots, b'_n)$ is a realization of tp(x/A) in $clA \cup C \cup D$.

Hence $x \triangleleft_{A,C} D$ and $D \cup \{x\} \notin \mathcal{I}(A, C)$ as desired.

Notations 1.12 *The dependence relation corresponding to* $\mathcal{I}(A, C)$ *as explained in Proposition 1.3 is denoted by* $\ll_{A,C}$ *. The dimension associated with* $\ll_{A,C}$ *is denoted by* $\operatorname{rk}_{A,C}$ *and is called the realization rank with respect to* A, C.

If the set C is contained in A we write \ll_A and rk_A instead of $\ll_{A,C}$ and $\operatorname{rk}_{A,C}$. A set B is called $\ll_{A,C}$ -independent if every finite subset of B is in $\mathcal{I}(A, C)$.

Proposition 1.13 *We have for every set* $B \subseteq \mathfrak{M}$ *:*

- (i) *B* is $\ll_{A,C}$ -independent if and only if $b \not \triangleleft_{A,C} B \setminus \{b\}$ for all $b \in B$.
- (ii) For all $x \in \mathfrak{M}$, $x \ll_{A,C} B \iff x \triangleleft_{A,C} B_0$ for some $\ll_{A,C}$ -independent subset B_0 of B.
- (iii) $\operatorname{rk}_{A,C}(B) = \min\{\operatorname{card} B_0 \mid B_0 \subseteq B \text{ and } b \triangleleft_{A,C} B_0 \text{ for all } b \in B\}$

Proof (i) holds by definition of $\ll_{A,C}$ and since $\triangleleft_{A,C}$ satisfies (D1)–(D4) and (ii) is implied by (i).

(iii) \geq holds, since by (ii), for a $\ll_{A,C}$ -basis B_0 of B we have $b \triangleleft_{A,C} B_0$ for all $b \in B$.

Conversely let B' be a $\ll_{A,C}$ -basis of B and let $B_0 \subseteq B$, such that each $b \in B$ is A-dominated by $B_0 \cup C$. By Proposition 1.8 the type of B' over $A \cup C$ is realized in $cl(A \cup C \cup B_0)$. Since dim $B'/A \cup C = card B'$ it follows that dim $B_0/A \cup C \ge card B'$. Hence $rk_{A,C}B = card B' \le dim B_0/A \cup C \le card B_0$.

A set $B_0 \subseteq B$, which is minimal with the property

 $b \in B \Rightarrow b$ is dominated by $C \cup B_0$

need not be indominated over C. Look at the following example.

Examples Here are three examples which shows that the ranks $\operatorname{rk}_{A,C}$ do not behave as one might expect. Let R_0 be the real closure of \mathbb{Q} in \mathbb{R} and let μ be some positive infinitesimal. Then we have

- (i) $\operatorname{rk}_{R_0}(R_0(\pi + \mu, \pi)/R_0) = 2$. But the set $\{\pi + \mu, \pi\}$ is not an R_0 -dominance basis of $R_0(\pi + \mu, \pi)$ over R_0 . In particular \ll_{R_0} is different from \triangleleft_{R_0} .
- (ii) $\operatorname{rk}_{R_0,\mu}(\{\pi + \mu, \pi\}) = 1 = \operatorname{rk}_{R_0}(\{\pi + \mu, \pi\}/R_0)$ and

 $\operatorname{rk}_{R_0,\{\pi,\pi+\mu\}}(\mu) = 0 \neq 1 = \operatorname{rk}_{R_0}(\mu)$ That is: the symmetry

$$\operatorname{rk}_{A,D}(B) = \operatorname{rk}_A B \implies \operatorname{rk}_{A,B}(D) = \operatorname{rk}_A(D)$$

does not hold in general.

(iii) If *A* is a subset of \mathbb{R} , and *B* is an arbitrary set, then $\operatorname{rk}_{A,\mathbb{R}}(B) \leq 1$, since \mathbb{R} is Dedekind complete. Hence, if $p = tp(\mu, \pi/R_0)$ and (α, β) is another realization of *p*, we have

$$\operatorname{rk}_{R_0,\mathbb{R}}(\{\alpha,\beta\}) \le 1 < 2 = \operatorname{rk}_{R_0}(\mu,\pi).$$

Intuitively speaking this means that p cannot be extended to a type of \mathbb{R} "in an independent way".

The next proposition gives a geometric interpretation of $rk_{A,C}$.

Definition 1.14 Let R be o-minimal and let C be subset of an elementary extension of R. Let p be an n-type over R. We say that p is a box type over C if p is uniquely determined as an element of $S_n(R \cup C)$ by those formulas from p which define the open boxes $\prod_{i=1}^{n} (a_i, b_i), a_i, b_i \in R$.

If $C \subseteq R$, we just say p is a box type.

So if *p* is a box type over *C*, then *p* has a unique extension to $S_n(R \cup C)$ and the open *R*-definable boxes containing *p* imply this extension.

Note that if $\bar{a} \in \mathbb{R}^n$, then $\{tp(\bar{a}/R)\}\$ is a neighborhood of $tp(\bar{a}/R)$, which does not contain an open box.

Proposition 1.15 Let R be o-minimal and let C be a subset of an elementary extension of R. If $p \in S_n(R)$, then the following conditions are equivalent:

- (i) For some (hence for each) realization $\bar{\alpha}$ of p we have $\operatorname{rk}_{R,C}(\bar{\alpha}) = n$.
- (ii) *p* is a box type over *C*.
- (iii) If p_1, \ldots, p_n are the projections of p onto the coordinate axis, then each p_i is a cut of R and p is the unique n-type over $R \cup C$ containing each p_i .

Proof Obviously each of the conditions (i) and (ii) imply $\dim p = n$.

(i) \Rightarrow (ii). By induction on *n*. If n = 1, then *p* is omitted in $R\langle C \rangle$, thus (ii) holds. For the induction step, let $\bar{\alpha}$ to be an n-1-tuple and let β be an element, such that *p* is realized by $\bar{\alpha}^{\hat{\beta}}\beta$ with $\operatorname{rk}_{R,C}(\bar{\alpha}\beta) = n$. By the induction hypothesis, $tp(\bar{\alpha}/R)$ is a box type over *C*. Let *X* be an $R \cup C$ -definable set which contains $tp(\bar{\alpha}, \beta/R \cup C)$. Since dim $\bar{\alpha}, \beta/R \cup C = n$, we can suppose that *X* is an open cell $(F, G)_Y$, where *F*, *G* and *Y* are $R \cup C$ -definable. We have $F(\bar{\alpha}) < \beta$. As $tp(\beta/R)$ is omitted in $R\langle C\bar{\alpha}\rangle$, there is some $a_1 \in R$ with $F(\bar{\alpha}) \leq a_1 < \beta$. Similar we can find some $a_2 \in R$ with $\beta < a_2 \leq G(\bar{\alpha})$. Since $tp(\bar{\alpha}/R)$ is a box type over *C*, there is an open *R*-definable box $Y_0 \subseteq \{\bar{b} \in Y \mid F(\bar{b}) \leq a_1, a_2 \leq G(\bar{b})\}$ with $tp(\bar{\alpha}/R) \in Y_0$. Finally $Y \times (a_1, a_2)$ is an open box, which contains $tp(\bar{\alpha}, \beta/R \cup C)$ and which is contained in *X*.

(ii) \Rightarrow (i). We do again an induction on *n*. If n = 1, then (ii) implies that *p* is omitted in $R\langle C \rangle$, thus $\operatorname{rk}_{R,C}(\alpha) = 1$ for all realizations α of *p*. Assume $p \in S_n(R)$ is a box type over *C* and $\bar{\alpha}\hat{\beta}$ is a realization of *p*. Certainly $tp(\bar{\alpha}/R)$ is a box type over *C* and by the induction hypothesis $\operatorname{rk}_{R,C}(\bar{\alpha}) = n - 1$. We have to show that $tp(\beta/R)$ is omitted in $R\langle C\bar{\alpha}\rangle$: Let *F* be an $R \cup C$ -definable map, say $F(\bar{\alpha}) < \beta$. Let $Y \subseteq R^{n-1}$ be an open box and let $a_1 < a_2 \in R$ with $p \in Y \times (a_1, a_2)$ and $Y \times (a_1, a_2) \subseteq \{(\bar{b}, b') \in R^n \mid F(\bar{b}) < b'\}$. That is $F(\bar{b}) \leq a_1$ for all $\bar{b} \in Y$, hence $F(\bar{\alpha}) \leq a_1 < \beta$.

(ii) \Leftrightarrow (iii) If p_1, \ldots, p_n are the projections of p and each p_i is a cut over R, then the intersection of all open boxes containing p in $S_n(R \cup C)$ is the set of all n-types $q \in S_n(R \cup C)$ which contain p_1, \ldots, p_n .

The next corollary and the subsequent remark will not be used later on. They relate the notion "box type" to the real spectrum (cf. [1]), for the reader who is aquainted with this point of view. Recall that quantifier elimination for real closed fields says that for every real closed field R, the natural map $S_n(R) \rightarrow \text{Sper } R[t], t = (t_1, \dots, t_n)$ is a bijection. We say that an element $p \in \text{Sper } R[t]$ is a box type if the corresponding *n*-type is a box type.

Corollary 1.16 If R is a real closed field and $p \in \text{Sper } R[t]$, $t = (t_1, ..., t_n)$ is a box type such that R is archimedean in the real closure of p, then p is minimal and maximal in Sper R[t].

Proof Since dim p = n, p is minimal in Sper R[t]. On the other hand, if $q \in$ Sper R[t] is different from p then there is an open box B containing p and not containing q. Since R is archimedean in the real closure of p, we can find a smaller open box B' containing p with $\overline{B'} \subseteq B$. Hence p does not specialize to q.

Observe that the converse of Corollary 1.16 fails in general. The reason is that a semi-algebraic homeomorphism $\mathbb{R}^n \longrightarrow \mathbb{R}^n$ respects the topology of Sper $\mathbb{R}[t]$ – hence minimal, maximal points are mapped to minimal, maximal points – but not the property "p is a box type".

In other words, box types cannot be detected with the topology of Sper R[t].

Proposition 1.17 Let $R \prec \mathfrak{M}$ and let $B, C \subseteq \mathfrak{M}$ such that B is $\ll_{R,C}$ -independent. Then $tp(B/R \cup C)$ is the unique extension of tp(B/R). In particular $tp(B/R \cup C)$ is an heir of tp(B/R) (cf. [4], p. 292, for the definition of "heir")

Proof We may assume that $B = \{b_1, \ldots, b_n\}$ is finite and we do an induction on *n*. If n = 1, then $tp(b_1/R \cup C)$ is the unique extension of $tp(b_1/R)$, since $b_1 \not \triangleleft_R C$. In the induction step we have: $tp(b_1, \ldots, b_n/R \cup C)$ is the unique extension of $tp(b_1, \ldots, b_n/R)$ (from the induction hypothesis) and $tp(b_{n+1}/R \cup C \cup \{b_1, \ldots, b_n\})$ is the unique extension of $tp(b_{n+1}/R)$ (since *B* is $\ll_{R,C}$ independent). These two properties are equivalent to the property that tp $(b_1, \ldots, b_{n+1}/R \cup C)$ is the unique extension of $tp(b_1, \ldots, b_{n+1}/R)$. 1.2 Behavior of \ll_R under base change

First a reminder on the functional version of the Marker–Steinhorn Theorem. Recall that an elementary extension $R \prec S$ of o-minimal structures is called **tame**, if every $s \in S$, which is *R*-bounded, is infinitely close to an element of *R* wit respect to *R*.

Theorem 1.18 Let $R \prec S$ be a tame extension of o-minimal expansions of fields. Let V be the convex hull of R in S and let $\lambda : S \longrightarrow R \cup \{\infty\}$ be the place according to V. Furthermore let $X \subseteq S^n$ and $F : X \longrightarrow S$ be definable in (S, V)with parameters from S. For a subset Y of S^n let $H(Y) := \bigcup_{y \in Y} y + \mathfrak{m}_V^n$ denote the set of all points of S^n which are infinitely close to a point of Y with respect to R. Then

(i) The composed map

 $\lambda F: F^{-1}(V) \cap R^n \longrightarrow S^n \xrightarrow{F} S \xrightarrow{\lambda} R \cup \{\infty\}$

is *R*-definable. λF is the unique map $F^{-1}(V) \cap \mathbb{R}^n \longrightarrow \mathbb{R}$ with the property $(\lambda F)(\bar{a}) = \lambda(F(\bar{a}))(\bar{a} \in \mathbb{R} \cap F^{-1}(V)).$

- (ii) There is a decomposition $R^n = E \cup D \cup D' \cup C$ of R^n in *R*-definable sets, such that:
 - (a) F is positive infinite on H(D).
 - (b) *F* is negative infinite on H(D').
 - (c) $F (\lambda F)_S$ is infinitesimal on H(C) and
 - (d) dim E < n.

Proof This is [5], Theorem 3.3.

Proposition 1.19 Let $R \prec S$ be o-minimal expansions of fields and let B be from an elementary extension of S such that $b \not \triangleleft_R S$ for all $b \in B$.

- (i) If B is \ll_S -independent then B is \ll_R -independent.
- (ii) If R is tame in S, then B is \ll_S -independent if and only if B is \ll_R -independent.

Proof (i) Suppose *B* is \ll_S -independent and not \ll_R -independent. By induction on *n* we may assume that there are b, b_1, \ldots, b_n such that $\{b_1, \ldots, b_n\}$ is \ll_R -independent and such that $F(b_1, \ldots, b_n)$ and *b* realize the same cut of *R* for some *R*-definable map $F : \mathbb{R}^n \longrightarrow \mathbb{R}$. By assumption, $F(b_1, \ldots, b_n)$ and *b* realize the same cut of *S*, hence $\{b, b_1, \ldots, b_n\}$ is \ll_S -dependent, a contradiction.

(ii) Now suppose *R* is tame in *S*. Let *V* be the convex hull of *R* in *S* and let $\lambda : S \longrightarrow R \cup \{\infty\}$ be the place according to *V*. Suppose *B* is \ll_R -independent and not \ll_S -independent. Again, by induction we find $b, b_1, \ldots, b_n \in B$ such that $\{b_1, \ldots, b_n\}$ is \ll_S -independent, but for some *S*-definable map $F : S^n \longrightarrow S$, the element $F(b_1, \ldots, b_n)$ induces the same cut over *S* as *b*. Let $Z := F^{-1}(V) \cap R^n$

and $\lambda F : Z \longrightarrow R$ as in Theorem 1.18 (i). Let $R^n = E \cup D \cup D' \cup C$ of R^n be a decomposition as in 1.18(ii).

Since $F(b_1,...,b_n) = b$ is *R*-bounded, there is an *S*-definable set Z_0 such that *F* is *R*-bounded on *Z* and such that $Z_0 \in tp(b_1,...,b_n)$. By Proposition 1.15 and since $\{b_1,...,b_n\}$ is \ll_S -independent, there is an *S*-definable, open box *O* such that $\overline{O} \subseteq Z_0 \setminus E$ and such that $O \in tp(b_1,...,b_n)$. Since $b_i \not \triangleleft_R S$ $(1 \le i \le n)$, we may shrink *O* so that *O* is *R*-definable. From Theorem 1.18 (ii) we get that $F - (\lambda F)_S$ has values in m_V on $H(\overline{O}) \supseteq \overline{O}_S$. But then also $F(b_1,...,b_n) - \lambda F(b_1,...,b_n)$ is infinitesimal with respect to *R*. Since the cut of *b* over *R* is not definable and $F(b_1,...,b_n)$ realizes this cut, also $\lambda F(b_1,...,b_n)$ realizes this cut. Since λF is *R*-definable, $\{b, b_1,...,b_n\}$ is \ll_R -dependent. \Box

Lemma 1.20 Let $R \prec S$ be o-minimal expansions of fields and let b be from an elementary extension of S.

- (i) If *S* is dense in S(b) and $b \not \lhd_R S$ then *R* is dense in R(b).
- (ii) If R is dense in R⟨b⟩ and S does not contain infinitesimal elements with respect to R, then S is dense in S⟨b⟩.

Proof (i) Suppose there are $\alpha, \beta \in R\langle b \rangle$, $\alpha < \beta$ with $(\alpha, \beta) \cap R = \emptyset$. We may assume that $\alpha, \beta \notin R$. Since *S* is dense in $S\langle b \rangle$ there is some $s \in S$ with $\alpha < s < \beta$, thus $tp(s/R) = tp(\alpha/R)$. Since $\alpha \in R\langle b \rangle \setminus R$ there is an *R*-definable map $f : S\langle b \rangle \longrightarrow S\langle b \rangle$ such that $f(\alpha) = b$. Hence f(s) realizes tp(b/R), a contradiction.

(ii) Suppose *S* is not dense in $S\langle b \rangle$ and *S* does not contain infinitesimal elements with respect to *R*. Take $\alpha, \beta \in S\langle b \rangle \setminus S$ with $\alpha < \beta$ such that $(\alpha, \beta) \cap S = \emptyset$, in particular $tp(\alpha/S) = tp(\beta/S)$. Let $f : S \longrightarrow S$ be *S*-definable such that $f(\alpha) = b$. Then *f* is strictly monotonic on the realizations of $tp(\alpha/S)$, hence $\gamma := f(\beta) \neq b$ is a realization of tp(b/S). Say $b < \gamma$. Since *S* does not contain infinitesimal elements with respect to *R* there is some $m \in R$ such that $0 < m < \gamma - b$. Then $b < b + m < \gamma$ and there is no element in *R* between *b* and b + m.

Proposition 1.21 Let $R \prec S$ be an o-minimal expansions of fields and let $B, D \subseteq S$. Let B be \ll_R -independent such that R is neither dense nor tame in $R\langle b \rangle$ for all $b \in B$. If D is another \ll_R -independent set such that R is dense in $R\langle d \rangle$ for each $d \in D$, then $R\langle B \rangle$ is dense in $R\langle B \cup D \rangle$ and $B \cup D$ is \ll_R -independent.

Proof We may assume that $B = \{b_1, \ldots, b_n\}$ and $D = \{d_1, \ldots, d_k\}$ are finite. First observe that *R* is archimedean in $R\langle B \rangle$, otherwise by induction, b_n is infinitely close to some $c \in R\langle b_1, \ldots, b_{n-1} \rangle$ and *R* is archimedean in $R\langle b_1, \ldots, b_{n-1} \rangle$. But then either b_n has a definable type over *R* or *c* and b_n have the same type over *R*, a contradiction to our assumption.

By Lemma 1.20 (ii) applied to $R \prec R\langle B \rangle$ and $d_1, R\langle B \rangle$ is dense in $R\langle B, d_1 \rangle$. By Lemma 1.20(ii) applied to $R \prec R\langle B, d_1 \rangle$ and $d_2, R\langle B, d_1 \rangle$ is dense in $R\langle B, d_1, d_2 \rangle$. Continuing in this way we see that $R\langle B \rangle$ is dense in $R\langle B \cup D \rangle$.

Now we prove by induction on *n* that $B \cup D$ is \ll_R -independent. Suppose we know that $\{b_1, \ldots, b_{n-1}\} \cup D$ is \ll_R -independent. Suppose $tp(b_n/R)$ is realized in

 $R\langle \{b_1, \ldots, b_{n-1}\} \cup D \rangle$. Since *B* is \ll_R -independent, $tp(b_n/R\langle b_1, \ldots, b_{n-1}\rangle)$ is realized in $R\langle \{b_1, \ldots, b_{n-1}\} \cup D \rangle$. Since $R\langle b_1, \ldots, b_{n-1}\rangle$ is dense in $R\langle \{b_1, \ldots, b_{n-1}\} \cup D \rangle$, also $R\langle b_1, \ldots, b_{n-1}\rangle$ is dense in $R\langle B \rangle$. By Lemma 1.20 (i), *R* is dense in $R\langle b_n \rangle$ a contradiction.

2 V-limits

Let $K \subseteq L$ be ordered fields. In this section we study elements *b* of $L \setminus K$ which become limits of Cauchy sequences of *K* after passing to some residue field of a convex valuation ring *V* of *K*. It turns out that this property only depends on the cut that *b* generates over *K*, these cuts are then called *V*-limits.

We first recall some notions from [9]. If X is a totally ordered set, then a cut p of X is a tuple $p = (p^L, p^R)$ with $X = p^L \cup p^R$ and $p^L < p^R$. If $Y \subseteq X$ then Y^+ denotes the cut p of X with $p^R = \{x \in X | x > Y\}$. Y^+ is called the upper edge of Y. Similarly the lower edge Y^- of Y is defined.

Definition 2.1 *Let p be a cut of an ordered abelian group K, The convex subgroup*

$$G(p) := \{a \in K | a + p = p\}$$

of K is called the invariance group of p (here $a + p := (a + p^L, a + p^R)$). If K is an ordered field, then the convex valuation ring

$$V(p) := \{a \in K | a \cdot G(p) \subseteq G(p)\}$$

is called the invariance valuation ring of p. If $s \notin K$ is from an ordered field extension of K then we write G(s/K) and V(s/K) for the invariance group and the invariance ring of the cut induced by s on K.

Definition 2.2 *Let K* be a divisible *ordered abelian group and let p be a cut of K. We may define the signature of p as*

 $\operatorname{sign} p := \begin{cases} 1 & \text{if there is a convex subgroup } G \text{ of } K \text{ and some } a \in K \text{ with } p = a + G^+ \\ -1 & \text{if there is a convex subgroup } G \text{ of } K \text{ and some } a \in K \text{ with } p = a - G^+ \\ 0 & \text{otherwise} \end{cases}$

Since *K* is divisible we cannot have $a + G^+ = b + H^-$ for $a, b \in K$ and convex subgroups *G*, *H* of *K*. Hence the signature is well defined.

In what follows the units of a ring A will be denoted by A^* .

Definition 2.3 Let K be an ordered field and let $V \subseteq K$ be a convex valuation ring with maximal ideal \mathfrak{m}_V . A cut p of K is called a V-limit if sign p = 0 and if there is some $a \in K^*$ such that $G(p) = a \cdot \mathfrak{m}_V$. Observe that V(p) = V in this case.

If in addition $G(p) = \mathfrak{m}_V$ and $\mathfrak{m}_V^+ \le p \le V^+$, then p is called a properV-limit. Observe that $\mathfrak{m}_V^+ in this case, as sign <math>p = 0$. An element b from an ordered field extension L of K is called a (proper) V-limit if $b \notin K$ and if the cut of b induced on K is a (proper) V-limit.

The next proposition states some reformulations of the notion "proper V-limit". First some notations. If K is an ordered field, then a sequence $(a_{\alpha})_{\alpha < \lambda}$ of elements of K is called a Cauchy sequence, if it is a Cauchy sequence with respect to the order topology of K. Observe that for a non-trivial convex valuation ring V of K, a Cauchy sequence with respect to V in the valuation theoretic sense (cf. [8]) is a Cauchy sequence in our sense. Recall, if $(a_{\alpha})_{\alpha < \lambda}$ is a Cauchy sequence, then a subsequence of $(a_{\alpha})_{\alpha < \lambda}$ is a Cauchy sequence with respect to V in the valuation theoretic sense.

An element *b* from an ordered field extension of *K* is the limit of a Cauchy sequence $(a_{\alpha})_{\alpha < \lambda}$ of *K* if

$$\forall \varepsilon \in K, \ \varepsilon > 0 \ \exists \alpha_0 < \lambda \ \forall \alpha > \alpha_0 \ |b - a_\alpha| < \varepsilon.$$

If *T* is an o-minimal extension of the theory of real closed fields, then a convex valuation ring *V* of a model *R* of *T* is called *T*-convex, if *V* is the convex hull of an elementary substructure of *R*. In this case, every maximal definably closed subfield $K \subseteq V$ is an elementary substructure of *R* (cf. [2]).

If T is the theory of real closed fields, then all convex subrings of R are T-convex.

Proposition 2.4 Let $L \subseteq M$ be an extension of ordered fields, let $W \subseteq M$ be a convex subring and let $V := W \cap L$. Let $K \subseteq W$ be a subfield such that $K/\mathfrak{m}_W = V/\mathfrak{m}_W$. The following are equivalent for every $b \in M$:

- (i) b is a proper V-limit.
- (ii) $b \in W^*$ and b/\mathfrak{m}_W is the limit of a Cauchy sequence of V/\mathfrak{m}_V without limits in V/\mathfrak{m}_V .
- (iii) *b* is the limit of a Cauchy sequence of K without limits in K.
- (iv) $b \notin K$ and K is dense in the ordered group K + bK.
- (v) $b \notin K$, sign(b/K) = 0 and $G(b/K) = \{0\}$.

Proof We may assume that b > 0.

(i) \Rightarrow (v) First we prove that $b \notin V + \mathfrak{m}_W$. Suppose $b - a \in \mathfrak{m}_W$ for some $a \in V$, say a < b. Since sign b/L = 0 and $G(b/L) = \mathfrak{m}_V$, there is some $c \in V$, $c > \mathfrak{m}_V$ with a + c < b. Hence $\mathfrak{m}_V < c < b - a \in \mathfrak{m}_W$ in contradiction to $V = L \cap W$.

This proves $b \notin K$ and for all $c \in K$, $a \in V$ with $c - a \in \mathfrak{m}_W$ we have c < b iff a < b.

Let $c \in K$, c > 0. We prove that $c \notin G(b/K)$. Let $v \in V$ with $c - v \in \mathfrak{m}_W$, say v < c. Then $v > \mathfrak{m}_V$, since c > 0. Since $G(b/L) = \mathfrak{m}_V$ there is some $a \in V^{>0}$ such that a < b < a + v. Let $c_1 \in K$ with $c_1 - a \in \mathfrak{m}_W$. Then also $a + v - (c + c_1) \in \mathfrak{m}_W$ and by what we have shown, a < b < a + v implies $c_1 < b < c_1 + c$. Thus $c \notin G(b/K)$ as desired.

It remains to show that sign(b/K) = 0, say $sign(b/K) \ge 0$. Since G(b/K) = 0 it is enough to find for every element $c \in K$ with c < b an element $c_1 \in K$, $c_1 > 0$

with $c + c_1 < b$. Let $a \in V$ with $c - a \in \mathfrak{m}_W$. Then a < b and from $\operatorname{sign}(b/L) = 0$, $G(b/L) = \mathfrak{m}_V$ we get some $v \in V$, $v > \mathfrak{m}_V$ with a + v < b. Take $c_1 \in K$ with $c_1 - v \in \mathfrak{m}_W$. Then $c_1 > 0$ and $c + c_1 < b$ since $c + c_1 - (a + v) \in \mathfrak{m}_W$.

 $(v) \Rightarrow (i)$. First we prove that $b \notin L + \mathfrak{m}_W$. Suppose $b - a \in \mathfrak{m}_W$ for some $a \in L$. Since $\operatorname{sign}(b/K) = 0$, there is some $v \in V$ with b < v. But then also $a \in V$. Let $c \in K$ with $a - c \in \mathfrak{m}_W$. Then $b - c \in \mathfrak{m}_W$ and there is no element in K between b and c. This implies that the cut of b over K is definable, a contradiction to $\operatorname{sign} b/K = 0$.

Hence $b \notin L + \mathfrak{m}_W \supseteq V + \mathfrak{m}_W = K + \mathfrak{m}_W$. We prove $G(b/L) = \mathfrak{m}_V$. First let $v \in \mathfrak{m}_V$, $v \ge 0$ and suppose there is some $l \in L$ with b < l < b + v. Then $l - b \in \mathfrak{m}_W$ in contradiction to $b \notin L + \mathfrak{m}_W$. Hence $\mathfrak{m}_V \subseteq G(b/L)$. Conversely let $a \in V$, $a > \mathfrak{m}_V$ and take $c \in K$ with $a - c \in \mathfrak{m}_W$. Then c > 0 and since G(b/K) = 0 there is some $c_1 \in K$, $c_1 > 0$ with $c_1 < b < c_1 + c$. Let $a_1 \in V$ with $a_1 - c_1 \in \mathfrak{m}_W$. Then $a_1 < b < a_1 + a$, hence $a \notin G(b/L)$.

Thus we know $G(b/L) = \mathfrak{m}_V$ and it remains to show that $\operatorname{sign}(b/L) = 0$. Suppose there is some $a \in V$ such that the cut η of b over L is $a \pm \mathfrak{m}_V^+$, say $\eta = a + \mathfrak{m}_V^+$. Let $c \in K$ with $a - c \in \mathfrak{m}_W$. Then c < b. Since $\operatorname{sign}(b/K) = 0$ there is some $c_1 \in K$, $c_1 > 0$ with $c + c_1 < b$. Let $a_1 \in V$ with $c_1 - a_1 \in \mathfrak{m}_W$. Then $a + a_1 < b$ and $a_1 > \mathfrak{m}_W \supseteq \mathfrak{m}_V$, in contradiction to $\eta = a + \mathfrak{m}_V^+$.

So we know that (i) is equivalent to (v). The equivalences (i) \Leftrightarrow (ii) \Leftrightarrow (iii) and (iv) \Leftrightarrow (v) are easy and left to the reader.

Remarks Observe that an ordered field *K* need not be dense in *K*(*b*) if *b* is the limit of a Cauchy sequence of *K* without limits in *K*. For example if $K = \mathbb{Q}$, $\varepsilon \neq 0$ is infinitesimal and $b = \sqrt{2 + \varepsilon}$. Also, a field *K* as in Proposition 2.4 cannot be found inside *V* in general. For example if $L = \mathbb{Q}(\sqrt{2} + \varepsilon)$, where ε is infinitesimal and *V* is the convex hull of \mathbb{Q} in *L*. Then \mathbb{Q} is the unique subfield of *V* and $V/\mathfrak{m}_V \cong \mathbb{Q}(\sqrt{2})$.

Here is another reformulation of the notion "proper V-limit" in terms of so-called distinguished Cauchy sequences as explained in [8], section D:

If (K, V_0) is a valued field, then a sequence $(a_\alpha)_{\alpha < \lambda}$ is called distinguished Cauchy sequence if $(a_\alpha)_{\alpha < \lambda}$ is a pseudo Cauchy sequence of the valued field (K, V_0) , such that $a_\alpha \in V_0$ for all α and such that for some valuation ring V of K with $V_0 \subsetneq V$ the $(a_\alpha - a_\beta)/V_0^*$ are unbounded in the convex subgroup V^*/V_0^* of K^*/V_0^* .

We call V the valuation ring associated to $(a_{\alpha})_{\alpha < \lambda}$.

Corollary 2.5 In the situation of Proposition 2.4, let $V_0 \subsetneq V$ be another convex valuation ring. Then b is a proper V-limit if and only if b is the pseudo limit of a distinguished pseudo Cauchy sequences of the valued field (L, V_0) which does not have a limit in L and which has V as associated valuation ring.

Proof Easily from Proposition 2.4.

Proposition 2.6 Let $L \subseteq M$ be an extension of ordered fields, let $W \subseteq M$ be a convex subring and let $V := W \cap L$. Let $K \subseteq W$ be a subfield such that $K/\mathfrak{m}_W = V/\mathfrak{m}_W$ and let $b \in M$. Then

- (i) *b* is a *V*-limit if and only if there are $a_1, a \in L$, $a \neq 0$ such that $a_1 + ab$ is a proper *V*-limit.
- (ii) If b is a V-limit and a V'-limit, where V' is a convex valuation ring of L, then V = V'.
- (iii) If L, M are models of an o-minimal extension T of the theory of real closed fields, K, L ≺ M and if V is T-convex, then K is dense in K(b) if b is a proper V-limit.

Proof (i) If $a_1, a \in L$, $a \neq 0$, then a straightforward computation shows that $G(a_1 + ab/L) = a \cdot G(b/L)$ and $\operatorname{sign}(b/L) = \operatorname{sign}(a_1 + ab/L)$.

So if $a_1, a \in L$, $a \neq 0$, such that $a_1 + ab$ is a proper V-limit, then $\operatorname{sign}(b/L) = \operatorname{sign}(a_1 + ab/L) = 0$ and from $G(a_1 + ab/L) = \mathfrak{m}_V$ we get $G(b/L) = \frac{1}{a}G(ab/L) = \frac{1}{a}$

Conversely if *b* is a *V*-limit, $a_0 \in L^*$ and $G(b/L) = a_0 \cdot \mathfrak{m}_V$, then $G(b \cdot a_0^{-1}/L) = \mathfrak{m}_V$, so there is $a_1 \in L$ with $a_1 < b \cdot a_0^{-1} < a_1 + 1$. Then $a_1 - b \cdot a_0^{-1}$ is a proper *V*-limit and we may take $a := -a_0^{-1}$.

(ii) If *b* is a *V*-limit and a *V'*-limit, where *V'* is a convex valuation ring of *L*, then $G(b/L) = a \cdot \mathfrak{m}_V$ and $G(b/L) = a' \cdot \mathfrak{m}_{V'}$ for some $a, a' \in L^*$. But then $\mathfrak{m}_{V'} = \frac{a}{a'}\mathfrak{m}_V$ and this is only possible if V = V'.

(iii) Suppose *b* is a proper *V*-limit and *K* is not dense in $K\langle b \rangle$. Let $a, c \in K\langle b \rangle$ with a < c and $(a, c) \cap K = \emptyset$. We may assume that $a, c \notin K$. There is a *K*-definable map $f : K \longrightarrow K$ such that f(a) = b. As *a* and *c* realize the same cut over *K*, *b* and f(c) realize the same cut over *K*. Moreover *f* is strictly monotonic in $[a, c] \subseteq K\langle b \rangle$, say b < f(c). Since sign b/K = 0 by Proposition 2.4(v), there is some $d \in K$ with 0 < d < f(c) - b. As $(b, f(c)) \cap K = \emptyset$ we get $d \in G(b/K)$, a contradiction to G(b/K) = 0 (cf. Proposition 2.4(v)).

Proposition 2.7 Let *T* be an o-minimal expansion of fields in the language \mathscr{L} , let $R \models T$ and let \mathscr{V} be a set of *T*-convex valuation rings of *R*. For each $V \in \mathscr{V}$ let $K_V \subseteq V$ be a maximal definably closed subfield of *V*. Let $S \succ R$ and for each $V \in \mathscr{V}$ let $B_V \subseteq S$ be a set of proper *V*-limits.

Then $\bigcup_{V \in \mathscr{V}} B_V$ is \ll_R -independent if and only if B_V is \ll_{K_V} -independent for all $V \in \mathscr{V}$.

Proof We write $B := \bigcup_{V \in \mathscr{V}} B_V$. By Proposition 2.4 each $b \in B_V$ has signature 0 over K_V . Hence $b \not \triangleleft_{K_V} R$ for all $b \in B_V$. So if B is \ll_R -independent, then B_V is \ll_R -independent and by Proposition 1.19, B_V is \ll_{K_V} -independent for all $V \in \mathscr{V}$.

For the converse we may assume that \mathscr{V} is finite, say $\mathscr{V} = \{V_1, \ldots, V_n\}$ and $V_1 \subsetneq \cdots \varsubsetneq V_n$. Let $B_i \subseteq B_{V_i}$ be finite. It is enough to prove by induction on n that $B = B_1 \cup \cdots \cup B_n$ is \ll_R -independent if each B_i is $\ll_{K_{V_i}}$ -independent. If n = 1, then we know this from Proposition 1.19(ii).

Induction step. Let $L_i \subseteq V_i$ be a maximal definably closed subfield of V_i with $L_1 \subseteq \cdots \subseteq L_{n+1}$. From the case n = 1 we know that each B_i is \ll_R -independent. By what we have above, B_i is \ll_{L_i} -independent. By Proposition 2.4, each $b \in B_i$ is a $V_i \cap L_{n+1}$ -limit. By the induction hypothesis, $B_1 \cup \cdots \cup B_n$ is $\ll_{L_{n+1}}$ -independent.

By Proposition 2.6(iii), L_{n+1} is dense in $L_{n+1}\langle b \rangle$ for each $b \in B_{n+1}$. On the other hand if $b \in B_1 \cup \cdots \cup B_n$, then L_{n+1} is neither dense nor tame in $L_{n+1}\langle b \rangle$. By Proposition 1.21, $B_1 \cup \cdots \cup B_n \cup B_{n+1}$ is $\ll_{L_{n+1}}$ -independent. Again by Proposition 1.19, $B_1 \cup \cdots \cup B_n \cup B_{n+1}$ is \ll_R -independent.

3 The completion of an o-minimal structure

Proposition 3.1 Let *T* be an o-minimal extension of the theory of real closed fields. Let $R \prec M$ be models of *T*. Then there is a model *S* of *T* with $R \prec S \prec M$, such that:

- (i) R is dense in S.
- (ii) If R' is an elementary substructure of $\mathcal{M}, R \prec R'$ and if R is dense in R', then there is an elementary embedding $R' \longrightarrow S$ over R.

The embedding in (ii) is unique. If $R \prec S' \prec M$ and S' has properties (i) and (ii), then there is a unique *R*-isomorphism $S \longrightarrow S'$.

Proof Let $X \subseteq \mathcal{M}$ be the set of all $\alpha \in \mathcal{M}$, such that *R* is dense in $R\langle \alpha \rangle$. Let *B* be a \ll_R -basis of *X* over *R*. We claim, that $S := R\langle B \rangle$ has the required properties. Clearly *R* is an elementary substructure of *S*.

By Proposition 1.21, *R* is dense in *S*. Let $R' \prec M$ be an elementary extension of *R*, such that *R* is dense in *R'*. Let *B'* be a transcendence basis of *R'* over *R*. Clearly *B'* is an \ll_R -basis of *R'*. By the choice of *B*, the type of every $b' \in B'$ over *R* is realized in $R\langle B \rangle$. By Proposition 1.8 we know that tp(B'/R) is realized in $R\langle B \rangle = S$. Hence tp(R'/R) is realized in *S* and there is an elementary *R*-embedding $R' \longrightarrow S$.

Both additions are obvious.

Corollary 3.2 Let T be an o-minimal extension of the theory of real closed fields. Let $R \prec \tilde{R} \prec M$ be models of T, suppose that R is archimedean in \tilde{R} and \tilde{R} is tame in M. We provide \tilde{R} with the topology induced by the ordering of \tilde{R} . Let S be the topological closure \overline{R} in this topology. Then $R \prec S \prec \tilde{R} \prec M$ and S fulfills the conditions (i) and (ii) of Proposition 3.1, both for R and \tilde{R} as well as for R and M. We have

$$S = \{ \alpha \in \tilde{R} \mid R \text{ is dense in } R\langle \alpha \rangle \}$$

Proof Let $R \prec S_1 \prec \mathcal{M}$ as in Proposition 3.1 and let $S_1 \prec \tilde{S}_1 \prec \mathcal{M}$, such that S_1 is archimedean in \tilde{S}_1 and \tilde{S}_1 is tame in \mathcal{M} . Since \tilde{S}_1 and \tilde{R} are isomorphic over R we can suppose that $S_1 \subseteq \tilde{R} = \tilde{S}_1$ (T is an expansion of RCF). Since R is archimedean in \tilde{R} , S_1 is contained in $\overline{R} = S$. If $\alpha \in \overline{R}$, then R is dense in $R\langle \alpha \rangle$. If $\alpha \in \tilde{R}$, such that R is dense in $R\langle \alpha \rangle$, then by Lemma 1.20, the set S_1 is dense in $S_1\langle \alpha \rangle$. By the choice of S_1 we get therefore $\alpha \in S_1$. This proves $S_1 = S = \{\alpha \in \tilde{R} \mid R \text{ is dense in } R\langle \alpha \rangle\}$.

Proposition 3.1 applied to a sufficiently large, elementary extension \mathfrak{M} of R yields

Corollary 3.3 Let T be an o-minimal extension of the theory of real closed fields and let R be a model of T. Then there is a model S > R with:

- (i) *R* is dense in *S*.
- (ii) If R' is an elementary extension of R and R is dense in R', then there is an elementary embedding $R' \longrightarrow S$ over R.

The embedding in (ii) is unique. S is uniquely determined up to a unique R-isomorphism by conditions (i) and (ii). \Box

The model S in Corollary 3.3 is the largest elementary extension of R, such that R is dense in S. S is not dense in any proper elementary extension of S. S is called the **completion** of R and is denoted by \hat{R}

We get S by Corollary 3.2 in the following manner: choose $R \prec R_1 \prec \mathfrak{M}$ such that R is archimedean in R_1 (i.e. R_1 is the convex hull of R), R_1 is tame in \mathfrak{M} and \mathfrak{M} is $|R_1|^+$ -saturated. Take

$$S = \{ \alpha \in R_1 \mid R \text{ is dense in } R \langle \alpha \rangle \}$$

Since *R* is dense in $R\langle\alpha\rangle$ if and only if *R* is dense in the field $R(\alpha)$ (by Propositions 2.4 and 2.6(iii)), the underlying field of the completion of *R* does not depend on the theory *T*.

If V is a convex valuation ring of R and \hat{V} is the convex hull of V in \hat{R} , then the valued field (\hat{R}, \hat{V}) is the completion of the valued field (R, V).

4 Definition of the Pseudo Completion

Theorem 4.1 Let T be an o-minimal expansion of fields in the language \mathcal{L} , let $R \models T$ and let \mathcal{V} be a set of T-convex valuation rings of R (the case $R \in \mathcal{V}$ is not excluded). For each $V \in \mathcal{V}$ let $K_V, L_V \subseteq V$ be maximal definably closed subfields of V.

Let $S \succ R$ so that S contains completions \hat{K}_V of K_V and \hat{L}_V of L_V for all $V \in \mathcal{V}$. Then

- (i) There is an \mathscr{L} -isomorphism $\varphi : R \langle \bigcup_{V \in \mathscr{V}} \hat{K}_V \rangle \longrightarrow R \langle \bigcup_{V \in \mathscr{V}} \hat{L}_V \rangle$ over R sending $R \langle \hat{K}_V \rangle$ onto $R \langle \hat{L}_V \rangle$.
- (ii) If $K_V = L_V$ for each $V \in \mathscr{V}$ and φ_V denotes the unique \mathscr{L} -isomorphism $\varphi_V : \hat{K}_V \longrightarrow \hat{L}_V$ over K_V , then there is a unique \mathscr{L} -isomorphism $\varphi : R\langle \bigcup_{V \in \mathscr{V}} \hat{K}_V \rangle \longrightarrow R\langle \bigcup_{V \in \mathscr{V}} \hat{L}_V \rangle$ over R extending all the φ_V .
- (iii) The product map

$$\bigotimes_{V \in \mathscr{V}} (R \otimes_{K_V} \hat{K}_V) \longrightarrow S$$

which sends $(\sum r_{1i} \otimes b_{1i}) \otimes \cdots \otimes (\sum r_{ki} \otimes b_{ki})$ to $(\sum r_{1i} \cdot b_{1i}) \cdots (\sum r_{ki} \cdot b_{ki})$ is injective.

Proof Let $B_V \subseteq \hat{K}_V$ be a basis of \hat{K}_V over K_V in the sense of T. Since K_V is dense in \hat{K}_V , B_V is \ll_{K_V} -independent. By Proposition 2.7, $B := \bigcup_{V \in \mathcal{V}} B_V$ is \ll_R -independent. Moreover by Proposition 2.6(iii), for $V \in \mathcal{V}$ and $b \in B_V$, the cut of b over R is realized by some $c_b \in \hat{L}_V$ and in the situation of (ii) we must take $c_b := \varphi_V(b)$. Then, by Proposition 1.8, there is an elementary R-embedding $\varphi : R\langle B \rangle \longrightarrow R\langle \bigcup_{V \in \mathcal{V}} \hat{L}_V \rangle$ sending b to c_b for each $b \in B_V$, $V \in \mathcal{V}$.

In order to prove that φ is surjective and that $\varphi(R\langle \hat{K}_V \rangle) = R\langle \hat{L}_V \rangle$ it is enough to show that $C_V := \{c_b | b \in B_V\}$ is a basis of \hat{L}_V over L_V in the sense of T. Clearly C_V is independent over L_V . Let $l \in \hat{L}_V \setminus L_V$, $l \notin C_V$. Then l is a V-limit, so $tp(l/K_V)$ is realized in \hat{K}_V . Then also tp(l/R) is realized in $R\langle B_V \rangle$, hence tp(l/R) is realized in $R\langle C_V \rangle$. This means that $C_V \cup \{l\}$ is \ll_R -dependent and by Proposition 1.19, $C_V \cup \{l\}$ is \ll_{L_V} -dependent. Since $l \in \hat{L}_V$ and L_V is dense in \hat{L}_V this is only possible if $l \in L_V \langle C_V \rangle$.

This proves (i) and (ii).

(iii). First we show that $R \otimes_{K_V} \hat{K}_V \longrightarrow S$ is injective, i.e. R and \hat{K}_V are linearly disjoint over K_V . Since B_V is \ll_{K_V} -independent, B_V is \ll_R -independent by Proposition 2.7. Since $tp(b/K_V)$ is omitted in R for all $b \in B_V$ it follows that B_V is $\ll_{K_V,R}$ -independent. By Proposition 1.17, $tp(B_V/R)$ is an heir of $tp(B_V/K_V)$. This property implies that every linear equation with coefficients in \hat{K}_V which has a solution in R, also has a solution in K_V . Hence R and \hat{K}_V are linearly disjoint over K_V .

It remains to show that the domains $R \otimes_{K_V} \hat{K}_V$ are linearly disjoint over R. By what we have shown we may identify $R \otimes_{K_V} \hat{K}_V$ with $R[\hat{K}_V] \subseteq S$. Moreover we may assume that \mathscr{V} is finite, say $\mathscr{V} = \{V_1, \ldots, V_n\}$. We write B_i for B_{V_i} . Since $\bigcup_{i=1}^n B_i$ is \ll_R -independent, the type $tp(B_n/R \cup B_1 \cup \cdots \cup B_{n-1})$ is an heir over R (c.f. Proposition 1.17). Again it follows that every linear equations with coefficients in $R\langle B_1 \cup \cdots \cup B_{n-1} \rangle$ which has a solution in $R\langle B_n \rangle$, also has a solution in R. By induction on n we get (iii).

Definition 4.2 In the situation of Theorem 4.1 the model $R(\bigcup_{V \in \mathscr{V}} \hat{K}_V)$ of T is called the pseudo completion of R with respect to \mathscr{V} .

By Theorem 4.1 this model of T is up to an R-isomorphism independent of S, K_V and \hat{K}_V ; it can be constructed in the following way. Let A be the ring

$$A := \bigotimes_{V \in \mathscr{V}} (R \otimes_{K_V} \hat{K}_V).$$

Then A is an R-algebra without zero divisors and there is an injective R-algebra homomorphism f from A into an elementary extension of R. Then the pseudo completion is the definable closure of f(A).

If T is the theory of real closed fields then the pseudo completion is the real closure of the quotient field of A with respect to any ordering.

The next proposition describes in what sense the pseudo completion is minimal.

Proposition 4.3 Let *T* be an o-minimal expansion of fields in the language \mathcal{L} , let $R \models T$, let \mathcal{V} be a family of *T*-convex subrings of *R* and let *R'* be the pseudo completion of *R* with respect to \mathcal{V} . Let $S \succ R$ be an elementary extension of *R*.

- (i) Suppose each cut of R, which is a V-limit for some $V \in \mathcal{V}$ is realized in S. Then there is an elementary embedding $R' \longrightarrow S$ over R.
- (ii) For each V ∈ V, let W(V) be the convex hull of V in S. Let W be a set of T-convex valuation rings of S with W(V) ∈ W for all V ∈ V and let S' be the pseudo completion of S with respect to W. Then there is an elementary R-embedding R' → S'.

If \mathcal{W} is precisely the set of all W(V) with $V \in \mathcal{V}$ and for each $V \in \mathcal{V}$, the residue field of V is equal to the residue field of W(V), then we can choose this embedding φ so that S' is the definable closure of $S \cup \varphi(R')$.

Proof For $V \in \mathcal{V}$ let $K_V \subseteq V$ be a maximal definably closed subfield of V.

(i). Let $B_V \subseteq \hat{K}_V \subseteq R'$ be a transcendence basis of \hat{K}_V over K_V ($V \in \mathscr{V}$). Pick some $V \in V$. By assumption and Proposition 2.6(iii), for $b \in B_V$ the cut of b over K_V is realized in S. Since K_V is dense in \hat{K}_V , B_V is \ll_{K_V} -independent. By Proposition 1.8, \hat{K}_V can be embedded into S over K_V . By Theorem 4.1, R' can be embedded over R into S.

(ii). Let $L_V \subseteq W(V)$ be a maximal definably closed subfield of W(V) containing K_V for every $V \in \mathcal{V}$. Since K_V is archimedean in L_V it follows from Lemma 1.20(ii), that there is a (unique) elementary K_V -embedding φ_V : $\hat{K}_V \longrightarrow \hat{L}_V$. By Theorem 4.1 we may assume that S' contains the definable closure of $S[\bigcup_{V \in \mathcal{V}} \hat{L}_V]$. By Theorem 4.1, R' is R-isomorphic to the definable closure of $R[\bigcup_{V \in \mathcal{V}} \varphi(\hat{K}_V)]$ in S'.

Now suppose \mathscr{W} is precisely the set of all W(V) with $V \in \mathscr{V}$ and for each $V \in \mathscr{V}$, the residue field of V is equal to the residue field of W(V). Then $L_V = K_V$ and S' is R-isomorphic to the definable closure of $S[\bigcup_{V \in \mathscr{V}} \hat{K}_V]$. \Box

By Example 5.11 below, a pseudo completion R' of a pure real closed field R is in general not minimal in the sense that any R-endomorphism of R' is an automorphism. Moreover it is unclear if R' is uniquely determined up to an R-isomorphism by the minimality demand of Proposition 4.3(i); this is the content of the open problem 5.12 at the end of the paper.

5 Completion in stages of polynomially bounded structures

An o-minimal expansion R of a field is called polynomially bounded if every definable function $R \longrightarrow R$ is ultimately bounded by some polynomial. Here all polynomially bounded structures are additionally assumed to have an archimedean prime model. In particular, pure real closed fields are polynomially bounded. If R is polynomially bounded, then every convex subring is Th(R)-convex (cf. [2]).

Definition 5.1 Let K be an ordered field and let \mathscr{V} be a set of convex valuation rings of K. We say that K is complete in stages with respect to \mathscr{V} if all residue fields of elements of \mathscr{V} are complete.

By Proposition 2.4, *K* is complete in stages with respect to \mathcal{V} if and only if there are no *V*-limits in any ordered field extension of *K*, for all $V \in \mathcal{V}$.

For ordered fields, this definition is more general than the definition of Ribenboim [8]. Let V be a convex valuation ring of an ordered field. Then the valued field (K, V) is complete in stages in the sense of Ribenboim ([8], section D) if and only if K is complete in stages with respect to

 $\{W \subseteq K | W \text{ is a convex valuation ring with } V \subsetneq W\}$

in our sense. This follows from Corollary 2.5 together with [8], section D, Théorème 3, which says that the valued field (K, V) is complete in stages if and only if every distinguished pseudo Cauchy sequence of (K, V) has a pseudo limit in K.

In this section we construct a completion in stages of R with respect to \mathcal{V} for a polynomially bounded expansion R of a real closed field and a set \mathcal{V} of convex valuation rings of R. This is a smallest elementary extension S which is complete in stages with respect to the set of convex hulls of the $V \in \mathcal{V}$. We get S by iterating the construction of the pseudo completion. Before we can do this, we have to compute the residue fields and the value groups of the pseudo completion.

Proposition 5.2 Let *R* be polynomially bounded and let *s* be an element from an elementary extension of *R*, $s \notin R$. The following are equivalent.

- (i) $\operatorname{sign}(s/R) = 0$.
- (ii) If G is a convex subgroup of (R, +), then G^+ is omitted in $R\langle s \rangle$.
- (iii) If W is a convex valuation ring of R(s), then the value group of W is equal to the value group of $W \cap R$.

Proof Clearly (ii) implies (i). Also (ii) implies (iii), since an element $R\langle s \rangle$ which is not in the value group of $W \cap R$ is the edge of a convex subgroup of R.

Conversely suppose $\alpha \in R\langle s \rangle$ realizes G^+ for a convex subgroup G of (R, +). The proposition is proved if we show that $\operatorname{sign}(s/R) \neq 0$ and that $w(\alpha)$ is not in the value group of $V(\alpha/R)$, where w is the valuation of $R\langle s \rangle$ with respect to the convex hull W of $V(\alpha/R)$ in $R\langle s \rangle$.

In order to see this, let $r \in R$ and suppose $\alpha/r \in W^*$, say $\alpha/r > 0$. Then there are $y, z \in V$ with $0 < \alpha/r < y$ and $0 < r/\alpha < z$, thus $0 < r/z < \alpha < y \cdot r$. Hence $r/z \in G$ and $zy \cdot r/z \notin G$ in contradiction to $z \cdot y \in V(\alpha/R)$.

Hence $w(\alpha)$ is not in the value group of $V(\alpha/R)$. By the valuation property ([3]) there must be some $b \in R$ such that w(s - b) is not in the value group of $V(\alpha/R)$. But then s - b realizes the edge of a convex subgroup of R, i.e. $\operatorname{sign}(s/R) \neq 0$.

Lemma 5.3 Let *R* be polynomially bounded and let *s* be from an elementary extension of *R* with sign(s/R) = 0. If $F : R \longrightarrow R$ is *R*-definable with $F(s) \notin R$, then there are $a, b \in R$, a < s < b such that *F* is differentiable in (a, b) and for all $r \in R$ with a < r < b we have

$$G(F(s)/R) = F'(r) \cdot G(s/R).$$

Proof By C^1 -cell decomposition and since the cut of *s* over *R* is not definable, we may assume that *F* is C^1 in an open neighborhood of [a, b] for some $a, b \in R$ with a < s < b. We write *F'* for the derivative of *F* in [a, b]. If *F* is a linear map in some interval (c, d) with $c, d \in R$, c < s < d the lemma holds since G(ys + z/R) = yG(s/R) for all $y, z \in R, y \neq 0$. Hence we may assume that $F'(s) \notin R$.

Let *W* be the convex hull of *V* in $R\langle s \rangle$. Since sign(s/R) = 0, Proposition 5.2 implies that the value group of *W* is equal to the value group of *V*. Hence there is some $z \in R$ such that $z \cdot F'(s) \in W^*$. We may replace *F* by $z \cdot F$, hence we may assume that $F'(s) \in W^*$, say F'(s) > 0. Since $F'(s) \notin R$, Proposition 5.2 gives us $c, d \in V, \mathfrak{m}_V < c < d$ with c < F'(s) < d. By shrinking (a, b) if necessary we may assume that $F|_{[a,b]} : [a,b] \longrightarrow [F(a), F(b)]$ is a strictly increasing homeomorphism with $F'(x) \in (c,d)$ on [a,b]. We prove G(F(s)/R) = G(s/R); this also proves the lemma, since $G(s/R) = F'(r) \cdot G(s/R)$ for all $r \in R$, a < r < b.

In order to show $G(s/R) \subseteq G(F(s)/R)$ we take $g \in G(s/R)$, g > 0, $r \in R$ with a < r < s and we show that F(r) + g < F(s). Since F'(x) > c in [a, b] we know that $F(x) > F(r) + c \cdot (x - r)$ for $x \in (r, b)$. Since $g \in G(s/R)$ and $c \in V^*$, we know that r + g/c < s, hence $F(x) > F(r) + c \cdot (x - r) \ge F(r) + g$ for $x \in (r + g/c, b)$ and F(s) > F(r) + g as desired.

Conversely let $y \in R$ with y > G(s/R). Then also y/d > G(s/R) and there is some $r \in (a, b)$ with r < s < r + y/d. Since F'(x) < d in [a, b] we know that $F(x) < F(r)+d \cdot (x-r)$ for $x \in (r, b)$. Hence also $F(x) < F(r)+d \cdot (x-r) < F(r)+y$ for all $x \in R$ with $r < x < \min\{b, r+y/d\}$. Since $r < s < \min\{b, r+y/d\}$ it follows F(r) < F(s) < F(r) + y, thus $y \notin G(F(s)/R)$ as desired.

Lemma 5.4 Let $R \prec S$ be polynomially bounded, such that sign(s/R) = 0 for all $s \in S \setminus R$. Let α be from an elementary extension of S and let $F : S \longrightarrow S$ be S-definable such that $F(\alpha) \notin S$. Suppose $sign(\alpha/S) = 0$ and the cuts of α and $F(\alpha)$ over R are omitted in S. Then there is some $c \in R^*$ such that $G(F(\alpha)/R) = c \cdot G(\alpha/R)$.

Proof By Lemma 5.3 applied to *S* and α we get some $s \in S^*$ with $G(F(\alpha)/S) = s \cdot G(\alpha/S)$. Let $V = V(\alpha/R)$ and let *W* be the convex hull of *V* in *S*. By assumption and by Proposition 5.2, there is some $c \in R^*$ such that $c/s \in W^*$. Since the cut of α over *R* is omitted in *S*, $G(\alpha/S)$ contains $G(\alpha/R)$. Since *S* does not realize the upper edge of $G(\alpha/R)$, $G(\alpha/S)$ is the convex hull of $G(\alpha/R)$ in *S*. This implies that $V(\alpha/S)$ contains $V = V(\alpha/R)$. Again, since *S* does not realize the upper edge of *V*, $V(\alpha/S)$ is the convex hull of *V* in *S*. Thus c/s is a unit in $V(\alpha/S) = W$ and $s \cdot G(\alpha/S) = s \cdot (c/s) \cdot G(\alpha/S) = c \cdot G(\alpha/S)$.

By Proposition 5.2, sign $F(\alpha)/S = 0$, hence also $G(F(\alpha)/S)$ is the convex hull of $G(F(\alpha)/R)$ in S. Thus $G(F(\alpha)/S) = c \cdot G(\alpha/S)$ implies $G(F(\alpha)/R) = c \cdot G(\alpha/R)$.

Corollary 5.5 Let R be polynomially bounded, let s_1, \ldots, s_n be from an elementary extension of R with $\operatorname{rk}_R(s_1, \ldots, s_n) = n$ and $\operatorname{sign}(s_i/R) = 0$ for all $i \in \{1, \ldots, n\}$. If $F : R^n \longrightarrow R$ is R-definable and $F(s_1, \ldots, s_n) \notin R$, then $\operatorname{sign}(F(s_1, \ldots, s_n)/R) = 0$ and $G(F(s_1, \ldots, s_n)/R) = c \cdot G(s_i/R)$ for some $i \in \{1, \ldots, n\}$ and some $c \in R$.

Proof For $i \in \{1, ..., n\}$ the cut of s_i over R is omitted in $R(s_1, ..., s_{i-1})$. As $sign(s_i/R) = 0$ it follows that $sign(s_i/R(s_1, ..., s_{i-1})) = 0$. Then by induction on n, Proposition 5.2 implies that every $s \in R(s_1, ..., s_i) \setminus R$ has signature 0.

Let $\alpha := F(s_1, \ldots, s_n)$. Since $\alpha \notin R$ there is some $i \in \{1, \ldots, n\}$ such that $\alpha \cup (\{s_1, \ldots, s_n\} \setminus \{s_i\})$ is a \ll_R -basis of $R\langle s_1, \ldots, s_n \rangle$. Say i = 1. Let $S := R\langle s_2, \ldots, s_n \rangle$. Since the cuts of α and s_1 over R are omitted in S and $\text{sign}(s_1/S) = 0$, we can apply Lemma 5.4. Hence $G(\alpha/R) = c \cdot G(s_1/R)$ for some $c \in R^*$.

Now we compute the residue fields and the value groups of convex valuation rings of the pseudo completion of a polynomially bounded structure:

Theorem 5.6 Let *R* be polynomially bounded and let *S* be the pseudo completion of *R* with respect to a set \mathscr{V} of convex subrings of *R*.

- (i) Every $s \in S \setminus R$ is a V-limit for a unique convex valuation ring V of R and this ring is in \mathcal{V} .
- (ii) Let V_0 be any convex valuation ring of R. Then the convex hull W_0 of V_0 in S is the unique convex valuation ring of S lying over V_0 . The value group of W_0 is the value group of V_0 and
 - (a) if $V_0 \subsetneq V$ for all $V \in \mathcal{V}$, then the extension $(R, V_0) \subseteq (S, W_0)$ of valued fields is immediate;
 - (b) if $V \subseteq V_0$ for some $V \in \mathcal{V}$, then W_0/\mathfrak{m}_{W_0} is the pseudo completion of V_0/\mathfrak{m}_{V_0} with respect to $\{V/\mathfrak{m}_{V_0}|V \in \mathcal{V}, V \subseteq V_0\}$.

Proof (i) follows from Corollary 5.5, since *S* is the definable closure of a \ll_R -independent set of elements, each being a *V*-limit for some $V \in \mathcal{V}$ (cf. Propositions 2.7 and 2.4). The uniqueness statement holds by Proposition 2.6(ii).

(ii) By (i), every $s \in S \setminus R$ is a V-limit for some $V \in \mathcal{V}$, in particular sign(s/R) = 0. By Proposition 5.2, no edges of convex subgroups of R are realized in S. Consequently W_0 is the unique convex valuation ring of S, lying over V_0 and W_0 must have the same value group as V_0 .

In order to see (a) and (b) let $K_V \subseteq V$ be a maximal definably closed subfield for each $V \in \mathcal{V} \cup \{V_0\}$.

(a) Suppose $V_0 \subsetneq V$ for all $V \in \mathscr{V}$. Let $s \in W_0$. We have to show that the cut p of s over K_{V_0} is definable. Suppose p is not definable. If $G(s/K_{V_0}) = 0$, then s is a V_0 -limit by Proposition 2.4. By (i), s is a V-limit for some $V \in \mathscr{V}$. Since $V \neq V_0$ this is impossible (cf. Proposition 2.6(i)). Hence $G(s/K_{V_0}) \neq 0$ and $V(s/K_{V_0})$ is a proper convex valuation ring of K_{V_0} . Since p is omitted in R, G(s/R) is the

largest convex subgroup of R with $G(s/R) \cap K_{V_0} = G(s/K_{V_0})$. This implies that V(s/R) is a convex valuation ring, lying over $V(s/K_{V_0})$. As $V(s/K_{V_0})$ is proper it follows $V(s/R) \subseteq V_0$. On the other hand – by (i) – $V(s/R) \in \mathcal{V}$ and this contradicts our assumption on V_0 .

(b) By Theorem 4.1 we may assume that $K_{V_0} \subseteq K_V$ for every $V \in \mathscr{V}$ with $V_0 \subseteq V$. For $V \in \mathscr{V}$ with $V \subseteq V_0$, any maximal definably closed subfield of $V \cap K_{V_0}$ is also a maximal definably closed subfield of V (this is so, since such a field L is archimedean in $V \cap K_{V_0}$ and tame in K_{V_0} – as $V \cap K_{V_0}$ is archimedean in V and K_{V_0} is tame in R, also L is archimedean in V and tame in R). So by Theorem 4.1 we may assume that $K_V \subseteq K_{V_0}$ for all $V \in \mathscr{V}$ with $V \subseteq V_0$, too. Let $\mathscr{V}' := \{V \in \mathscr{V} | V \subseteq V_0\}$ and let $R' := R \langle \bigcup_{V \in \mathscr{V}'} \hat{K}_V \rangle$ be the pseudo completion of R with respect to \mathscr{V}' .

First we prove (ii) (b) for \mathscr{V}' and $W'_0 := W_0 \cap R'$. By Theorem 4.1 it is enough to show that $K_{V_0} \langle \bigcup_{V \in \mathscr{V}'} \hat{K}_V \rangle$ is a maximal definably closed subfield of W'_0 . In order to prove this it suffices to take $V_1, \ldots, V_n \in \mathscr{V}'$ and finite subsets $B_i \subseteq K_{V_i}$ independent over K_{V_i} $(1 \le i \le n)$ and to show that $K_{V_0}\langle B \rangle$ is a maximal definably closed subfield of $W_0 \cap R\langle B \rangle$. By Proposition 2.7, the B_i are mutually disjoint and their union B is $\ll_{K_{V_0}}$ -independent. Hence for each $b \in B$ the cut p of b over K_{V_0} is omitted in $K_{V_0}\langle B \setminus \{b\}\rangle$. Since p is not definable, the unique extension to $K_{V_0}\langle B \setminus \{b\}\rangle$ is not definable as well. This shows that $K_{V_0}\langle B \setminus \{b\}\rangle$ is archimedean in $K_{V_0}\langle B \rangle$. Hence, by induction, K_{V_0} is archimedean in $K_{V_0}\langle B \rangle$ and $K_{V_0}\langle B \rangle$ is a subfield of W_0 . Since $R\langle B \rangle$ is generated by B and dim $R\langle B \rangle / R$ is greater or equal to the dimension of the residue field of $W_0 \cap R\langle B \rangle$ over V_0/m_{V_0} (cf. [2]), $K_{V_0}\langle B \rangle$ must be a maximal definably closed subfield of $W_0 \cap R\langle B \rangle$.

Hence we know that the residue field of $W'_0 = W_0 \cap R'$ is the pseudo completion of V_0/\mathfrak{m}_{V_0} with respect to $\{V/\mathfrak{m}_{V_0}|V \in \mathscr{V}, V \subseteq V_0\}$ and it remains to show that $(R', W'_0) \subseteq (S, W_0)$ is immediate. But this follows from a., since by Theorem 4.1, S is the pseudo completion of R' with respect to the set of convex hulls of all $V \in \mathscr{V}$ with $V_0 \subsetneq V$.

Example 5.7 The pseudo completion R' of a real closed field R with respect to a set \mathscr{V} of convex valuation rings of R, containing R, is not complete in general. In particular, if \mathscr{V}' denotes the set of convex hulls of elements from \mathscr{V} in R', then R' need not be complete in stages with respect to \mathscr{V}' .

To see an example, let K be a real closed field with completion $\hat{K} \neq K$ and let Γ be a divisible subgroup of $(\mathbb{R}, +)$ containing $1 \in \mathbb{R}$. We also assume that Γ is an ordered subgroup of (K, +). In this situation we can equip the generalized power series field $\hat{K}((t^{\Gamma}))$ with the derivative

$$\left(\sum a_{\gamma}t^{\gamma}\right)'=\sum a_{\gamma}\cdot\gamma\cdot t^{\gamma-1}.$$

Let *R* be the real closure of $K(t^{\gamma}|\gamma \in \Gamma)$ in $\hat{K}((t^{\Gamma}))$ and let *V* be the convex hull of *K* in *R*. The completion \hat{R} of *R* is

$$\hat{R} = \left\{ \sum_{n=0}^{\infty} a_n t^{\gamma_n} | a_n \in K, \ \gamma_n \in \Gamma \text{ and } \gamma_n \to \infty \ (n \to \infty) \right\}.$$

Hence the pseudo completion of *R* with respect to $\{V, R\}$ is $\hat{R}\langle \hat{K} \rangle$. We claim that for $x \in \hat{K} \setminus K$, the element

$$\exp(x \cdot t) := \sum_{i=0}^{\infty} \frac{x^i}{i!} t^i$$

is not in $\hat{R}\langle \hat{K} \rangle$. Since $\exp(x \cdot t)$ is in the completion of $\hat{K}(t^{\gamma}|\gamma \in \Gamma) \subseteq \hat{R}\langle \hat{K} \rangle$, this will show the incompleteness of $\hat{R}\langle \hat{K} \rangle$. We use a differential algebraic argument:

Lemma 5.8 Let $K \subseteq L$ be ordinary differential fields of characteristic 0, let $y, x \in L, y \neq 0$ such that x is transcendental over K. Suppose $g, h \in K[x]$, with $y' = g \cdot y$ and x' = h. If $g \notin K$ and $\deg g \geq \deg h$, then y and x are algebraically independent over K. Here the degree is the degree with respect to x.

Proof Suppose *y* is algebraic over K(x). Let $f_{d-1}, \ldots, f_0 \in K(x)$ be rational functions, such that

$$\mu(T) := T^d + f_{d-1}T^{d-1} + \dots + f_0$$

is the minimal polynomial of y over K(x). Then

$$0 = \mu(y)' = d \cdot y^{d-1} \cdot y' + f'_{d-1} y^{d-1} + f_{d-1} \cdot (d-1) \cdot y^{d-2} y' + \dots + f'_1 y + f_1 y' + f'_0$$

= $d \cdot g \cdot y^d + (f'_{d-1} + f_{d-1} \cdot (d-1) \cdot g) \cdot y^{d-1} + \dots + (f'_1 + f_1 g) y + f'_0 =: \eta(y).$

Since $x' \in K(x)$, K(x) is a differential subfield of L and $\eta(y) = 0$ is an algebraic relation of y over K(x) of degree d. Hence $\eta(y) = d \cdot g \cdot \mu(y)$ and a comparison of the constant coefficients with respect to y implies $f'_0 = d \cdot g \cdot f_0$. Let $P, Q \in K[T]$ with $f_0 = P(x)/Q(x)$, $Q(x) \neq 0$. Since $y \neq 0$, $P(x) \neq 0$. From $f'_0 = d \cdot g \cdot f_0$ we get

$$Q(x) \cdot P(x)' - P(x) \cdot Q(x)' = d \cdot g \cdot P(x) \cdot Q(x).$$

Since x' = h and deg $g \ge \max\{1, \deg h\}$, P(x)' is a polynomial in x of degree $< \deg P + \deg g$. Also deg $Q(x)' < \deg Q + \deg g$, hence deg $(Q(x) \cdot P(x)' - P(x) \cdot Q(x))) < \deg P + \deg Q + \deg g = \deg(d \cdot g \cdot P(x) \cdot Q(x)))$, a contradiction. \Box

Now we prove $\exp(x \cdot t) \notin \hat{R}\langle \hat{K} \rangle$. Let $B \subseteq \hat{K}$ be a transcendence basis of \hat{K} over K containing x and let C be a transcendence basis of \hat{R} over R. By Proposition 2.7, $B \cup C$ is a transcendence basis of $\hat{R}\langle \hat{K} \rangle$ over R and $B \cap C = \emptyset$. Let $L := \hat{R}\langle B \setminus \{x\}\rangle$. The field \hat{R} is a differential subfield of $\hat{K}((t^{\Gamma}))$, equipped with the derivative introduced above (thus $(t^{\gamma})' = \gamma \cdot t^{\gamma-1}$ for $\gamma \in \Gamma$). Since L is obtained from \hat{R} by adjoining constants to \hat{R} and then taking the real closure,

П

L is also a differential subfield of $\hat{K}((t^{\Gamma}))$. Moreover *x* is transcendental over *L*. Since $\exp(x \cdot t)' = x \cdot \exp(x \cdot t)$ and x' = 0, Lemma 5.8 implies that $\exp(x \cdot t)$ and *x* are algebraically independent over *L*. Hence $\exp(x \cdot t) \notin L\langle x \rangle = \hat{R} \langle \hat{K} \rangle$ as desired.

In the example above, the pseudo completion of $S := \hat{R} \langle \hat{K} \rangle$ with respect to $\{S, W\}$, where W is the convex hull of V, is the completion of $\hat{K}(t^{\gamma} | \gamma \in \Gamma)$.

More generally, if *R* is polynomially bounded, \mathscr{V} is a set of convex valuation rings of *R*, let *R'* be the pseudo completion of *R* with respect to \mathscr{V} and let \mathscr{V}' be the set of convex hulls of elements from \mathscr{V} in *R'*. We write $(R, \mathscr{V})'$ for (R', \mathscr{V}') . We define for each ordinal α the pair $(R^{(\alpha)}, \mathscr{V}^{(\alpha)})$ by $(R^{(0)}, \mathscr{V}^{(0)}) :=$ $(R, \mathscr{V}), (R^{(\alpha+1)}, \mathscr{V}^{(\alpha+1)}) := (R^{(\alpha)}, \mathscr{V}^{(\alpha)})'$ and for a limit ordinal α we take $R^{(\alpha)} =$ $\bigcup_{\beta < \alpha} R^{(\beta)}$ and $\mathscr{V}^{(\alpha)} := \{\bigcup_{\beta < \alpha} V^{(\beta)} | V \in \mathscr{V}\}.$

Let $V_0 \subseteq \bigcap_{V \in \mathscr{V}} V$ be a convex subring and let $V_0^{(\alpha)}$ be the convex hull of V_0 in $R^{(\alpha)}$.

Claim The extension
$$(R^{(1)}, V_0^{(1)}) \subseteq (R^{(\alpha)}, V_0^{(\alpha)})$$
 is immediate for all $\alpha \ge 1$.

Proof By induction on α , where the limit step is obvious. Suppose we know that $(R^{(1)}, V_0^{(1)}) \subseteq (R^{(\alpha)}, V_0^{(\alpha)})$ is immediate for some $\alpha \ge 1$. We show that $(R^{(\alpha)}, V_0^{(\alpha)}) \subseteq (R^{(\alpha+1)}, V_0^{(\alpha+1)})$ is immediate. If $V_0 \notin \mathcal{V}$, then $V_0^{(\alpha)} \notin \mathcal{V}^{(\alpha)}$ and we can apply Theorem 5.6(ii)(a).

Hence we may assume that V_0 is the least element in V. Then also $V_0^{(\alpha)}$ is the least element of $\mathscr{V}^{(\alpha)}$. By Theorem 5.6(ii)(b), $V_0^{(1)}$ has a complete residue field. By induction, $V_0^{(\alpha)}$ has a complete residue field, too. Hence $R^{(\alpha+1)}$ is the pseudo completion of $R^{(\alpha+1)}$ with respect to $\mathscr{V}^{(\alpha)} \setminus \{V_0^{(\alpha)}\}$. But then again by Theorem 5.6(ii)(a), $(R^{(\alpha)}, V_0^{(\alpha)}) \subseteq (R^{(\alpha+1)}, V_0^{(\alpha+1)})$ is immediate.

From the claim it follows that $R^{(\alpha)}$ can be embedded as a field into the maximal immediate extension of the valued field $(R^{(1)}, V_0^{(1)})$. Consequently there must be some ordinal α with $R^{(\alpha)} = R^{(\alpha+1)}$.

Definition 5.9 The completion in stages of R with respect to \mathcal{V} is defined to be the elementary extension $R^{(\alpha)}$ for an ordinal α with $R^{(\alpha)} = R^{(\alpha+1)}$.

By construction, the completion in stages is complete in stages with respect to the family of convex hulls of the rings from \mathscr{V} . Moreover the properties of the pseudo completion from Theorem 5.6 are inherited by the completion in stages:

Theorem 5.10 Let *R* be polynomially bounded and let *S* be the completion in stages of *R* with respect to a set \mathcal{V} of convex subrings of *R*.

- (i) Every $s \in S \setminus R$ is a V-limit for a unique convex valuation ring V of R and this ring is in \mathcal{V} .
- (ii) Let V_0 be any convex valuation ring of R. Then the convex hull W_0 of V_0 in S is the unique convex valuation ring of S lying over V_0 . The value group of W_0 is the value group of V_0 and

- (a) if $V_0 \subsetneq V$ for all $V \in \mathcal{V}$, then the extension $(R, V_0) \subseteq (S, W_0)$ of valued fields is immediate;
- (b) if $V \subseteq V_0$ for some $V \in \mathcal{V}$, then W_0/\mathfrak{m}_{W_0} is the completion in stages of V_0/\mathfrak{m}_{V_0} with respect to $\{V/\mathfrak{m}_{V_0}|V \in \mathcal{V}, V \subseteq V_0\}$.
- (iii) Let S' be an elementary extension of R and for each $V \in \mathcal{V}$ let W'_V be the convex hull of V in S'. If S' is complete in stages with respect to $\{W'_V | V \in \mathcal{V}\}$, then there is an elementary embedding $\varphi : S \longrightarrow S'$ over R.

Proof For an ordinal α , let $R^{(\alpha)}$ and $\mathcal{V}^{(\alpha)}$ be as in the construction of *S* above. First we prove (ii). Let V_0 be any convex valuation ring of *R* and let $V_0^{(\alpha)}$ be the convex hull of V_0 in $R^{(\alpha)}$. By induction on α we get from Theorem 5.6 that $V_0^{(\alpha)}$ is the unique convex valuation ring of $R^{(\alpha)}$, lying over V_0 and the value group of $V_0^{(\alpha)}$ is the value group of V_0 . Moreover item (ii)(a) follows immediately from Theorem 5.6(ii)(a) by induction on α .

(ii)(b) By Theorem 5.6(ii)(b) for every ordinal α , $V_0^{(\alpha+1)}/\mathfrak{m}_{V_0^{(\alpha+1)}}$ is the pseudo completion of $V_0^{(\alpha)}/\mathfrak{m}_{V_0^{(\alpha)}}$ with respect to $\{V^{(\alpha)}/\mathfrak{m}_{V_0^{(\alpha)}}|V \in \mathcal{V}, V \subseteq V_0\}$. By induction on α we get that $V_0^{(\alpha)}/\mathfrak{m}_{V_0^{(\alpha)}}$ is the α -fold iterated pseudo completion of V_0/\mathfrak{m}_{V_0} with respect to $\{V/\mathfrak{m}_{V_0}|V \in \mathcal{V}, V \subseteq V_0\}$. This easily implies (ii)(b)

(i) The uniqueness statement is obviously true.

By induction on α we prove that every $x \in R^{(\alpha)} \setminus R$ is a *V*-limit for some $V \in \mathscr{V}$. For $\alpha = 1$ we know this from Theorem 5.6(i). For limit ordinals there is nothing to do. Now suppose $x \in R^{(\alpha+1)}$. If the cut of *x* over *R* is realized in $R^{(\alpha)}$, then by the induction hypothesis, *x* is a *V*-limit for some $V \in \mathscr{V}$. Hence we may assume that the cut of *x* over *R* is omitted in $R^{(\alpha)}$. Since $R^{(\alpha+1)}$ is the pseudo completion of $R^{(\alpha)}$ with respect to $\mathscr{V}^{(\alpha)}$, Theorem 5.6(i) gives us some $V \in \mathscr{V}$ such that *x* is a $V^{(\alpha)}$ -limit. Thus $\operatorname{sign}(x/R^{(\alpha)}) = 0$ and for some $a \in R^{(\alpha)}$, $G(x/R^{(\alpha)}) = a \cdot \mathfrak{m}_{V^{(\alpha)}}$. Since the cut of *x* over *R* is omitted in $R^{(\alpha)}$, we have $\operatorname{sign}(x/R) = 0$.

Since the value group of $V^{(\alpha)}$ is the value group of V, there is some $r \in R$ such that $r/a \in (V^{(\alpha)})^*$. Hence $a \cdot \mathfrak{m}_{V^{(\alpha)}} = r \cdot \mathfrak{m}_{V^{(\alpha)}}$. Since the cut of x over R is omitted in $R^{(\alpha)}$ and $G(x/R)^+$ is omitted in $R^{(\alpha)}$, $G(x/R^{(\alpha)}) = r \cdot \mathfrak{m}_{V^{(\alpha)}}$ is the convex hull of G(x/R). Since $\mathfrak{m}_{V^{(\alpha)}}$ is the convex hull of \mathfrak{m}_V , it follows that $G(x/R) = r \cdot \mathfrak{m}_V$. Together with sign(x/R) = 0, this means that x is a V-limit.

(iii) Since W'_V is the convex hull of V and the residue field of W'_V is complete, for every maximal definably closed subfield K of V there is a completion of K inside W'_V . By Theorem 4.1, there is an elementary embedding of $R^{(1)}$ into S' over R. By an obvious induction this can be iterated until we reach the completion in stages.

If \mathscr{V} is finite of size *n*, then $R^{(n)}$ is complete in stages with respect to $\mathscr{V}^{(n)}$. This follows from Theorem 5.6 by induction on *n*: if $\mathscr{V} = \{V_1, \ldots, V_n\}$ with $V_1 \subsetneq \cdots \subsetneq V_n$, then by Theorem 5.6(ii) (b), $V_1^{(1)}$ has a complete residue field. Thus $R^{(2)}$ is the pseudo completion of $R^{(1)}$ with respect to $\{V_2^{(1)}, \ldots, V_n^{(1)}\}$. Moreover $V_1^{(1)} \subseteq V_1^{(2)}$ is immediate by Theorem 5.6(ii)(a) Hence by induction, $R^{(n)}$ is complete in stages with respect to $\mathscr{V}^{(n)}$.

Example 5.11 One might ask if the pseudo completion or the completion in stages S of a real closed field R with respect to a set of convex valuation rings is minimal in the sense that every R-embedding $S \longrightarrow S$ is surjective. This is not true in general. Look at the following example.

Let $R = R_0 \langle \mu \rangle$ be the real closure of $\mathbb{Q}(\mu)$, where μ is infinitesimal and let *S* be the pseudo completion of *R* with respect to the valuation ring *V* := the convex hull of \mathbb{Q} in *R*. Then *S* is $\mathbb{R}\langle \mu \rangle$, which is the completion in stages of *R* with respect to the valuation ring *V*, too. We now construct a proper real closed subfield *R* of $\mathbb{R}\langle \mu \rangle$, which contains μ and which is isomorphic over $R_0 \langle \mu \rangle$ to *S*. In particular *R* realizes every cut of R_0 .

Let $T \subseteq \mathbb{R}$ be a transcendence basis over R_0 and let $B = \{b_1, b_2, \ldots\}$ be a countable subset of T. Let

$$R := R_0 \langle (T \setminus B) \cup \{\mu, b_1 + \mu b_2, b_2 + \mu b_3, \ldots \} \rangle.$$

Then $b_1 \notin R$, otherwise there is some $n \in \mathbb{N}$ such that $b_1 \in R_1 := R_0 \langle (T \setminus B) \cup \{\mu, b_1 + \mu b_2, \dots, b_n + \mu b_{n+1}\} \rangle$. But then $b_1, \dots, b_{n+1}, \mu \in R_1$, hence R_1 has transcendence degree $\geq n + 2$ over $R_0 \langle T \setminus B \rangle$, which is not possible.

R is isomorphic to *S* over $R_0((T \setminus B) \cup \{\mu\})$, the isomorphism is given by sending b_i to $b_i + \mu \cdot b_{i+1}$ (observe that $T \cup \{\mu\}$ is \ll_{R_0} -independent and b_i and $b_i + \mu b_{i+1}$ realize the same cut over R_0 . Then use Proposition 1.8).

Open Problem 5.12 Let *S* be a real closed field containing \mathbb{R} , of transcendence degree 1 over \mathbb{R} . Let S_0 be a real closed subfield of *S* which realizes every cut of \mathbb{Q} . Is S_0 isomorphic to *S*?

More general, let *S* be the pseudo completion of a real closed field and let $\varphi : S \longrightarrow S$ be an *R*-algebra homomorphism. Let S_0 be a real closed field with $\varphi(S) \subseteq S_0 \subseteq S$. Is S_0 isomorphic to *S* over *R*? In the example above, *R* is the real closure of $\mathbb{Q}(\mu)$, where μ is infinitesimal and *S* is the pseudo completion of *R* with respect to the valuation ring V := the convex hull of \mathbb{Q} in *R*. Then $S = \mathbb{R}\langle \mu \rangle$ also is the completion in stages of *R* with respect to $\{V\}$.

References

- 1. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 36. Springer, Berlin Heidelberg New York (1998)
- 2. van den Dries, L., Lewenberg, A.H.: *T*-convexity and tame extension. J. Symb. Logic **60**(1), 74–101 (1995)
- van den Dries, L., Speissegger, P.: The field of reals with multisummable series and the exponential function. Proc. Lond. Math. Soc. 81(3), 513–565 (2000)
- Hodges, W.: Model Theory. Encyclopedia of mathematics and its applications, vol. 42. Cambridge university Press, Cambridge (1993)
- Marker, D., Steinhorn, C.: Definable types in *o*-minimal theories. J. Symb. Logic 59, 185–198 (1994)

- Pillay, A., Steinhorn, C.: Definable sets in ordered structures I. Trans. Am. Math. Soc. 295, 565–592 (1986)
- Prieß-Crampe, S.: Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen. Ergebnisse der Mathematik und ihrer Grenzgebiete vol. 98. Springer, Berlin Heidelberg New York (1983)
- 8. Ribenboim, P.: Théorie des valuations. Les Presses de l'Université de Montréal, Montreal (1964)
- 9. Tressl, M.: Model Completeness of o-minimal Structures expanded by Dedekind Cuts. J. Symb. Logic **70**(1), 29–60 (2005)
- 10. van der Waerden, B.L.: Algebra I. Springer, Berlin Heidelberg New York (1966)