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Abstract For an o-minimal expansion R of a real closed field and a set V of
Th(R)-convex valuation rings, we construct a “pseudo completion” with respect
to V . This is an elementary extension S of R generated by all completions of all
the residue fields of the V ∈ V , when these completions are embedded into a
big elementary extension of R. It is shown that S does not depend on the vari-
ous embeddings up to an R-isomorphism. For polynomially bounded R we can
iterate the construction of the pseudo completion in order to get a “completion
in stages” S of R with respect to V . S is the “smallest” extension of R such that
all residue fields of the unique extensions of all V ∈ V to S are complete.

Mathematics Subject Classification (2000) Primary: 03C64 · 12J10 · 12J15;
Secondary: 13B35

Let R be a real closed field. There is a largest ordered field R̂ such that R is
dense in R̂. R̂ is again real closed and R̂ is called the completion of R (cf. [7]).
If v is a proper real valuation on R, then R̂ is also the underlying field of the
completion of the valued field (R, v) and R̂ is obtained by adjoining limits of
Cauchy sequences with respect to v as explained in [8].

We generalize this construction as follows. Let V be a set of convex valu-
ation rings, possibly containing R itself. We construct a “smallest” real closed
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field containing R which has a limit for all sequences of R that become Cauchy
sequences after passing to the residue field of some V ∈ V . This can also be
done for o-minimal expansions of real closed fields and Th(R)-convex valuation
rings (see Sect. 3 for the definition of the completion in this case).

Our first result (Theorem 4.1) basically says that we can adjoin the missing
limits to R in any order and that the resulting elementary extension R′ of R
does not depend on the choices, up to an R-isomorphism. We call R′ the pseudo
completion of R with respect to V . If R is a pure real closed field (more gener-
ally, a polynomially bounded o-minimal expansion of a real closed field), then
we can compute the value groups and the residue fields of convex valuation
rings of R′. Moreover for every valuation ring V ∈ V the convex hull V′ of V
in R′ is the unique convex valuation ring of R′, lying over V.

It turns out that R′ is not “complete in stages” with respect to V ′ := {V′|V ∈
V } in general, i.e. not all residue fields of the V′ are complete in general [cf.
Example 5.7]. Therefore, in order to get a “smallest” extension of R, which is
complete in stages, we have to iterate the construction of the pseudo comple-
tion. The iteration stops at an ordinal and the resulting extension S of R is called
the completion in stages of R with respect to V . In Theorem 5.10, we compute
the value groups and the residue fields of convex valuation rings of S. Moreover
in Theorem 5.10 it is shown that every element s ∈ S \ R is of the form ax + b
where a, b ∈ R and x ∈ S such that for a unique convex valuation ring W of
S with W ∩ R ∈ V , s/mW is the limit of a Cauchy sequence of V/mV without
limits in V/mV ; here mV , mW denote the maximal ideal of V, W, respectively.

Finally we want to point out a combinatorial tool which we use in our argu-
ments. This is a dimension in o-minimal structures, we call it the realization
rank, which is coarser than the ordinary dimension associated to o-minimal
structures. For real closed fields R ⊆ S, with tr.deg. S/R finite, the realization
rank of S over R is the maximal number of elements s1, . . . , sk ∈ S such that
tp(s1, . . . , sk/R) is uniquely determined by the open boxes contained in it [cf.
Proposition 1.15]. We first analyze this new dimension.

The explanation of the valuation theoretic notions and facts used for o-mini-
mal expansions of fields can be found in [2]. Readers who are mainly interested
in the case of real closed fields may replace “o-minimal structure” by “real
closed field”, “definable” by “semi-algebraic” and “definable closure” by “real
closure”. Moreover if R ⊆ S are real closed fields and B ⊆ S, then the type
tp(B/R) of B over R can be identified with the ordering of R[tb|b ∈ B] (where
the tb are indeterminates) induced by the evaluation map tb �→ b.

1 The realization rank

We start with a reminder on dependence relations as in van der Waerden’s
“Algebra” ([10]).

Definition 1.1 A relation x � A between elements x and subsets A of a given set
X is called a dependence relation if the following conditions are fulfilled:
(D1) x � {x}.
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(D2) if x � A and A ⊆ B then x � B.
(D3) if x � A then there is a finite subset B of A, such that x � B.
(D4) (exchange lemma)

if A is finite, x � A ∪ {y} and x 
� A, then y � A ∪ {x}.
(D5) (transitivity)

if A is finite, x � A and a � B for every a ∈ A, then x � B.

We rephrase this notion in terms of independent sets:

Definition 1.2 Let X be a set and let I be a nonempty set of finite subsets of X.
I is called a system of independence if the following two properties hold.

(I1) If A ⊆ B ∈ I and B ∈ I, then A ∈ I.
(I2) If A, B ∈ I, x ∈ X\B and if B ∪ {x} ∈ I, then A ∪ {x} ∈ I or there is some

a ∈ A\B such that B ∪ {a} ∈ I.

Observe that ∅ ∈ I if I is an independence system. Dependence relations and
systems of independence describe the same concept:

Proposition 1.3 If I is a system of independence of a set X then we define a
relation between elements and subsets of X by

x �I A : ⇐⇒ x ∈ A or there is some A0 ⊆ A, A0 ∈ I such that A0 ∪ {x} 
∈ I.

If� is a dependence relation of X then we define

I(�) := {A|A is finite and a 
� A\{a} for all a ∈ A}.

(i) If � is a dependence relation of X, then I(�) is a system of independence
and

�I(�)=� .

(ii) If I is a system of independence of X, then�I is a dependence relation and

I(�I) = I.

Proof This is a folklore fact, we omit the easy proof. ��
If I is a system of independence of X with corresponding dependence relation
� and A ⊆ X, then we write I − rk(A) or � −rk(A) respectively, for the
cardinality of a basis – i.e. a maximal �-independent subset–of A.

1.1 The realization rank

We always work with small subsets of a large o-minimal structure M expanding
a dense linear order without endpoints; that means M will be λ-big for some
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large infinite cardinal λ, whereas “small” means “of cardinality λ” (cf. [4], 10.1).
M is not mentioned always.

Moreover we fix a (small) subset A of M. A is always assumed to be definably
closed. For a set X, cl(X) denotes the definable closure of X (in M). If D ⊆ M
is definably closed, then D〈X〉 also denotes cl(D ∪X).

Lemma 1.4 If p is a 1-type over A and A ⊆ B ⊆ M, then the following conditions
are equivalent.

(i) p has a unique extension to B.
(ii) If p is realized in cl(B) then p is realized in A.

Proof The set A is definably closed. Therefore each formula with parameters
in A with one free variable is equivalent to a quantifier free formula of the
language {<} with parameters in A. Now the lemma follows easily. ��
Definition 1.5 If B is a subset of M and if c is an element from M, we say that c
is dominated by B over A (or A-dominated by B) and write c �A B, if tp(c/A) is
realized in clA ∪ B; otherwise c is called A- indominated by B.

Counterexample 1.6 A-dominance is not a dependence relation, since transi-
tivity is violated. To see an example let M be a big real closed field containing
R, take A = R0 to be the real closure of Q and let μ ∈ M be positive and
infinitesimal over R. Then

(a) μ ∈ R0(π , π + μ), thus μ is R0-dominated by {π , π + μ}.
(b) π + μ is R0-dominated by {π}.
(c) μ is R0-indominated by {π}.
In spite of this example, the A-dominance relation leads to a dependence rela-
tion. Before introducing this relation we prove that �A satisfies axioms (D1)–
(D4) of a dependence relation. We suppress the index A and write dominated or
indominated only. The set A is always fixed and, as mentioned in the beginning,
definably closed.

Certainly we have for all c ∈ M and all B, C ⊆ M:

(D1) c is dominated by {c}.
(D2) c dominated by B, B ⊆ C ⇒ c dominated by C.
(D3) if c is dominated by B, then there is a finite subset B0 of B, such that c is

dominated by B0.

From Lemma 1.4 we know for any element c 
∈ A the equivalence of

(i) c is indominated by B.
(ii) tp(c/A ∪ B) is the unique extension of tp(c/A) on A ∪ B.

(iii) If c′ ∈ M such that tp(c/A) = tp(c′/A), then c′ 
∈ clA ∪ B.

Exchange Lemma for A-dominance 1.7 If c is indominated by B and dominated
by Bd, then d is dominated by Bc.
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Proof We search for a realization of tp(d/A) in cl(ABc). Since c is dominated
by Bd there is some realization c′ ∈ cl(ABd) of tp(c/A). Since c is indominated
by B, it follows that c′ 
∈ cl(AB). From the exchange lemma for the definable
closure “cl” in o-minimal structures (cf. [6], Theorem 4.1) we get d ∈ cl(ABc′).
Since c is indominated by B and t(c′/A) = t(c/A) it follows from the equivalence
preceding our lemma that tp(c/AB) = tp(c′/AB). Let σ be an (A∪B)-automor-
phism of M such that σ(c′) = c. Then σ(d) ∈ clABc is a realization of tp(d/A)

as desired. ��
The next proposition implies a variant of transitivity for A-dominance, which

we will use to define a system of independence.

Proposition 1.8 Let I be an index set, let {bi | i ∈ I}, C and D be sets such that for
each i ∈ I, bi is indominated by C∪ {bj|j 
= i}. Suppose bi is dominated by C∪D
for every i ∈ I. Then tp((bi)i∈I/A∪C) is realized in cl A∪C∪D. More precisely:
If b′i is a realization of tp(bi/A) in cl A ∪ C ∪D, then (b′i)i∈I is a realization of
tp((bi)i∈I/A ∪ C).

Proof We have bi 
= bj if i 
= j and it is enough to prove the Proposition for
finite I. We do an induction on n = card I:

n = 1: suppose b is dominated by C ∪D, indominated by C and b′ realizes
tp(b/A) in cl A ∪ C ∪D. Since b is indominated by C the type tp(b/A ∪ C) is
realized by b′ too.

n → n+1. Suppose {b1, . . . , bn+1} is indominated by C and bi is dominated by
C∪D. Let b′1, . . . , b′n+1 ∈ cl A∪C∪D be realizations of tp(b1/A), . . . , tp(bn+1/A)

respectively. By the induction hypothesis we have tp(b1, . . . , bn/A ∪ C) =
tp(b′1, . . . , b′n/A ∪ C).

Let σ be an A∪C-automorphism of M such that σ(bi) = b′i (1 ≤ i ≤ n). Since
bn+1 is indominated by C ∪ {b1, . . . , bn}, we see that σ(bn+1) is indominated by
C ∪ {b′1, . . . , b′n}, that is tp(f (bn+1)/A ∪ C ∪ {b′1, . . . , b′n}) = tp(b′n+1/A ∪ C ∪
{b′1, . . . , b′n}). Hence (b′1, . . . , b′n+1) is a realization of tp(b1, . . . , bn+1/A ∪ C). ��
Corollary and Definition 1.9 Let A, C ⊆ M and let A be definably closed. For
elements x ∈ M and subsets B of M we define x�A,C B : ⇐⇒ x�A (C∪B). Then
�A,C satisfies properties (D1)–(D4) of a dependence relation (cf. Definition 1.1).

Proof Properties (D1)–(D3) are obviously true for �A,C. (D4) holds by Ex-
change Lemma for A-dominance 1.7. ��
Definition 1.10 Let A, C ⊆ M and let A be definably closed. We define

I(A, C) := {B ⊆ M|B is finite and for all b ∈ B we have b �A,C B \ {b}}.

Proposition 1.11 I(A, C) is a system of independence.

Proof Certainly, property (I1) of an independence system holds for I(A, C) and
we show that also property (I2) of an independence system holds for I(A, C).
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To see this let B, D ∈ I(A, C) and let x 
∈ D. Suppose B ∪ {x} 
∈ I(A, C) and
D∪ {b} 
∈ I(A, C) for all b ∈ B. We have to show D∪ {x} 
∈ I(A, C). Since �A,C
satisfies (D1)–(D4) (cf. Corollary and Definition 1.9), this means x �A,C B and
b �A,C D for all b ∈ B. As B ∈ I(A, C) we can apply Proposition 1.8:

Let B = {b1, . . . , bn} and let F be an A ∪ C-definable map, such that
F(b1, . . . , bn) is a realization of tp(x/A). From Proposition 1.8 we know that
tp(b1, . . . , bn/A ∪ C) is realized in clA ∪ C ∪D by some n-tuple (b′1, . . . , b′n). If
σ is an A∪C-automorphism of M such that σ(bi) = b′i then σ(F(b1, . . . , bn)) =
F(b′1, . . . , b′n) is a realization of tp(x/A) in clA ∪ C ∪D.

Hence x �A,C D and D ∪ {x} 
∈ I(A, C) as desired. ��
Notations 1.12 The dependence relation corresponding to I(A, C) as explained
in Proposition 1.3 is denoted by �A,C. The dimension associated with �A,C is
denoted by rkA,C and is called the realization rank with respect to A, C.

If the set C is contained in A we write�A and rkA instead of�A,C and rkA,C.
A set B is called �A,C-independent if every finite subset of B is in I(A, C).

Proposition 1.13 We have for every set B ⊆ M:

(i) B is�A,C-independent if and only if b �A,C B \ {b} for all b ∈ B.
(ii) For all x ∈ M, x �A,C B ⇐⇒ x �A,C B0 for some �A,C-independent

subset B0 of B.
(iii) rkA,C(B) = min{card B0 | B0 ⊆ B and b �A,C B0 for all b ∈ B}
Proof (i) holds by definition of �A,C and since �A,C satisfies (D1)–(D4) and
(ii) is implied by (i).

(iii) ≥ holds, since by (ii), for a�A,C-basis B0 of B we have b �A,C B0 for all
b ∈ B.

Conversely let B′ be a �A,C-basis of B and let B0 ⊆ B, such that each
b ∈ B is A-dominated by B0 ∪ C. By Proposition 1.8 the type of B′ over A ∪ C
is realized in cl(A ∪ C ∪ B0). Since dim B′/A ∪ C = card B′ it follows that
dim B0/A ∪ C ≥ card B′. Hence rkA,CB = card B′ ≤ dim B0/A ∪ C ≤ card B0.

��
A set B0 ⊆ B, which is minimal with the property

b ∈ B ⇒ b is dominated by C ∪ B0

need not be indominated over C. Look at the following example.

Examples Here are three examples which shows that the ranks rkA,C do not
behave as one might expect. Let R0 be the real closure of Q in R and let μ be
some positive infinitesimal. Then we have

(i) rkR0(R0(π +μ, π)/R0) = 2. But the set {π +μ, π} is not an R0-dominance
basis of R0(π + μ, π) over R0. In particular�R0 is different from �R0 .

(ii) rkR0,μ({π + μ, π}) = 1 = rkR0({π + μ, π}/R0)

and
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rkR0,{π ,π+μ}(μ) = 0 
= 1 = rkR0(μ)

That is: the symmetry

rkA,D(B) = rkAB ⇒ rkA,B(D) = rkA(D)

does not hold in general.
(iii) If A is a subset of R, and B is an arbitrary set, then rkA,R(B) ≤ 1, since

R is Dedekind complete. Hence, if p = tp(μ, π/R0) and (α, β) is another
realization of p, we have

rkR0,R({α, β}) ≤ 1 < 2 = rkR0(μ, π).

Intuitively speaking this means that p cannot be extended to a type of R

“in an independent way”.

The next proposition gives a geometric interpretation of rkA,C.

Definition 1.14 Let R be o-minimal and let C be subset of an elementary exten-
sion of R. Let p be an n-type over R. We say that p is a box type over C if p is
uniquely determined as an element of Sn(R∪C) by those formulas from p which
define the open boxes

∏n
i=1(ai, bi), ai, bi ∈ R.

If C ⊆ R, we just say p is a box type.

So if p is a box type over C, then p has a unique extension to Sn(R∪C) and the
open R-definable boxes containing p imply this extension.
Note that if ā ∈ Rn, then {tp(ā/R)} is a neighborhood of tp(ā/R), which does
not contain an open box.

Proposition 1.15 Let R be o-minimal and let C be a subset of an elementary
extension of R. If p ∈ Sn(R), then the following conditions are equivalent:

(i) For some (hence for each) realization ᾱ of p we have rkR,C(ᾱ) = n.
(ii) p is a box type over C.

(iii) If p1, . . . , pn are the projections of p onto the coordinate axis, then each pi
is a cut of R and p is the unique n-type over R ∪ C containing each pi.

Proof Obviously each of the conditions (i) and (ii) imply dim p = n.
(i)⇒(ii). By induction on n. If n = 1, then p is omitted in R〈C〉, thus (ii)

holds. For the induction step, let ᾱ to be an n− 1-tuple and let β be an element,
such that p is realized by ᾱˆβ with rkR,C(ᾱβ) = n. By the induction hypothesis,
tp(ᾱ/R) is a box type over C. Let X be an R ∪ C-definable set which contains
tp(ᾱ, β/R ∪ C). Since dim ᾱ, β/R ∪ C = n, we can suppose that X is an open
cell (F, G)Y , where F, G and Y are R ∪ C-definable. We have F(ᾱ) < β. As
tp(β/R) is omitted in R〈Cᾱ〉, there is some a1 ∈ R with F(ᾱ) ≤ a1 < β. Similar
we can find some a2 ∈ R with β < a2 ≤ G(ᾱ). Since tp(ᾱ/R) is a box type over
C, there is an open R-definable box Y0 ⊆ {b̄ ∈ Y | F(b̄) ≤ a1, a2 ≤ G(b̄)} with
tp(ᾱ/R) ∈ Y0. Finally Y× (a1, a2) is an open box, which contains tp(ᾱ, β/R∪C)

and which is contained in X.
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(ii)⇒(i). We do again an induction on n. If n = 1, then (ii) implies that p is
omitted in R〈C〉, thus rkR,C(α) = 1 for all realizations α of p. Assume p ∈ Sn(R)

is a box type over C and ᾱˆβ is a realization of p. Certainly tp(ᾱ/R) is a box type
over C and by the induction hypothesis rkR,C(ᾱ) = n− 1. We have to show that
tp(β/R) is omitted in R〈Cᾱ〉: Let F be an R ∪ C-definable map, say F(ᾱ) < β.
Let Y ⊆ Rn−1 be an open box and let a1 < a2 ∈ R with p ∈ Y × (a1, a2) and
Y × (a1, a2) ⊆ {(b̄, b′) ∈ Rn | F(b̄) < b′}. That is F(b̄) ≤ a1 for all b̄ ∈ Y, hence
F(ᾱ) ≤ a1 < β.

(ii)⇔(iii) If p1, . . . , pn are the projections of p and each pi is a cut over R,
then the intersection of all open boxes containing p in Sn(R∪C) is the set of all
n-types q ∈ Sn(R ∪ C) which contain p1, . . . , pn. ��

The next corollary and the subsequent remark will not be used later on.
They relate the notion “box type” to the real spectrum (cf. [1]), for the reader
who is aquainted with this point of view. Recall that quantifier elimination
for real closed fields says that for every real closed field R, the natural map
Sn(R) −→ Sper R[t], t = (t1, . . . , tn) is a bijection. We say that an element
p ∈ Sper R[t] is a box type if the corresponding n-type is a box type.

Corollary 1.16 If R is a real closed field and p ∈ Sper R[t], t = (t1, . . . , tn) is a
box type such that R is archimedean in the real closure of p, then p is minimal
and maximal in Sper R[t].

Proof Since dim p = n, p is minimal in Sper R[t]. On the other hand, if q ∈
Sper R[t] is different from p then there is an open box B containing p and not
containing q. Since R is archimedean in the real closure of p, we can find a
smaller open box B′ containing p with B′ ⊆ B. Hence p does not specialize
to q. ��

Observe that the converse of Corollary 1.16 fails in general. The reason is that
a semi-algebraic homeomorphism Rn −→ Rn respects the topology of Sper R[t]
– hence minimal, maximal points are mapped to minimal, maximal points – but
not the property “p is a box type”.

In other words, box types cannot be detected with the topology of Sper R[t].

Proposition 1.17 Let R ≺ M and let B, C ⊆ M such that B is�R,C-independent.
Then tp(B/R∪C) is the unique extension of tp(B/R). In particular tp(B/R∪C)

is an heir of tp(B/R) (cf. [4], p. 292, for the definition of “heir”)

Proof We may assume that B = {b1, . . . , bn} is finite and we do an induction
on n. If n = 1, then tp(b1/R ∪ C) is the unique extension of tp(b1/R), since
b1 �R C. In the induction step we have: tp(b1, . . . , bn/R ∪ C) is the unique
extension of tp(b1, . . . , bn/R) (from the induction hypothesis) and tp(bn+1/R ∪
C ∪ {b1, . . . , bn}) is the unique extension of tp(bn+1/R) (since B is �R,C-
independent). These two properties are equivalent to the property that tp
(b1, . . . , bn+1/R ∪ C) is the unique extension of tp(b1, . . . , bn+1/R). ��
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1.2 Behavior of�R under base change

First a reminder on the functional version of the Marker–Steinhorn Theorem.
Recall that an elementary extension R ≺ S of o-minimal structures is called
tame, if every s ∈ S, which is R-bounded, is infinitely close to an element of R
wit respect to R.

Theorem 1.18 Let R ≺ S be a tame extension of o-minimal expansions of fields.
Let V be the convex hull of R in S and let λ : S −→ R ∪ {∞} be the place
according to V. Furthermore let X ⊆ Sn and F : X −→ S be definable in (S, V)

with parameters from S. For a subset Y of Sn let H(Y) := ⋃
y∈Y y + mn

V denote
the set of all points of Sn which are infinitely close to a point of Y with respect to
R. Then

(i) The composed map

λF : F−1(V) ∩ Rn −→ Sn F−→ S
λ−→ R ∪ {∞}

is R-definable. λF is the unique map F−1(V) ∩Rn −→ R with the property
(λF)(ā) = λ(F(ā))(ā ∈ R ∩ F−1(V)).

(ii) There is a decomposition Rn = E ∪· D ∪· D′ ∪· C of Rn in R-definable sets,
such that:
(a) F is positive infinite on H(D).
(b) F is negative infinite on H(D′).
(c) F − (λF)S is infinitesimal on H(C) and
(d) dim E < n.

Proof This is [5], Theorem 3.3. ��
Proposition 1.19 Let R ≺ S be o-minimal expansions of fields and let B be from
an elementary extension of S such that b �R S for all b ∈ B.

(i) If B is�S-independent then B is�R-independent.
(ii) If R is tame in S, then B is�S-independent if and only if B is�R-indepen-

dent.

Proof (i) Suppose B is �S-independent and not �R-independent. By induc-
tion on n we may assume that there are b, b1, . . . , bn such that {b1, . . . , bn} is
�R-independent and such that F(b1, . . . , bn) and b realize the same cut of R
for some R-definable map F : Rn −→ R. By assumption, F(b1, . . . , bn) and b
realize the same cut of S, hence {b, b1, . . . , bn} is�S-dependent, a contradiction.

(ii) Now suppose R is tame in S. Let V be the convex hull of R in S and let
λ : S −→ R ∪ {∞} be the place according to V. Suppose B is �R-independent
and not�S-independent. Again, by induction we find b, b1, . . . , bn ∈ B such that
{b1, . . . , bn} is�S-independent, but for some S-definable map F : Sn −→ S, the
element F(b1, . . . , bn) induces the same cut over S as b. Let Z := F−1(V) ∩ Rn
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and λF : Z −→ R as in Theorem 1.18 (i). Let Rn = E∪· D∪· D′ ∪· C of Rn be a
decomposition as in 1.18(ii).

Since F(b1, . . . , bn) = b is R-bounded, there is an S-definable set Z0 such
that F is R-bounded on Z and such that Z0 ∈ tp(b1, . . . , bn). By Proposition 1.15
and since {b1, . . . , bn} is �S-independent, there is an S-definable, open box
O such that O ⊆ Z0 \ E and such that O ∈ tp(b1, . . . , bn). Since bi �R S
(1 ≤ i ≤ n), we may shrink O so that O is R-definable. From Theorem 1.18
(ii) we get that F − (λF)S has values in mV on H(O) ⊇ OS. But then also
F(b1, . . . , bn)−λF(b1, . . . , bn) is infinitesimal with respect to R. Since the cut of
b over R is not definable and F(b1, . . . , bn) realizes this cut, also λF(b1, . . . , bn)

realizes this cut. Since λF is R-definable, {b, b1, . . . , bn} is�R-dependent. ��
Lemma 1.20 Let R ≺ S be o-minimal expansions of fields and let b be from an
elementary extension of S.

(i) If S is dense in S〈b〉 and b �R S then R is dense in R〈b〉.
(ii) If R is dense in R〈b〉 and S does not contain infinitesimal elements with

respect to R, then S is dense in S〈b〉.
Proof (i) Suppose there are α, β ∈ R〈b〉, α < β with (α, β) ∩ R = ∅. We
may assume that α, β 
∈ R. Since S is dense in S〈b〉 there is some s ∈ S with
α < s < β, thus tp(s/R) = tp(α/R). Since α ∈ R〈b〉 \ R there is an R-defin-
able map f : S〈b〉 −→ S〈b〉 such that f (α) = b. Hence f (s) realizes tp(b/R), a
contradiction.

(ii) Suppose S is not dense in S〈b〉 and S does not contain infinitesimal ele-
ments with respect to R. Take α, β ∈ S〈b〉\S with α < β such that (α, β)∩S = ∅,
in particular tp(α/S) = tp(β/S). Let f : S −→ S be S-definable such that
f (α) = b. Then f is strictly monotonic on the realizations of tp(α/S), hence
γ := f (β) 
= b is a realization of tp(b/S). Say b < γ . Since S does not con-
tain infinitesimal elements with respect to R there is some m ∈ R such that
0 < m < γ − b. Then b < b +m < γ and there is no element in R between b
and b+m. ��
Proposition 1.21 Let R ≺ S be an o-minimal expansions of fields and let B, D ⊆
S. Let B be�R-independent such that R is neither dense nor tame in R〈b〉 for all
b ∈ B. If D is another �R-independent set such that R is dense in R〈d〉 for each
d ∈ D, then R〈B〉 is dense in R〈B ∪D〉 and B ∪D is�R-independent.

Proof We may assume that B = {b1, . . . , bn} and D = {d1, . . . , dk} are finite.
First observe that R is archimedean in R〈B〉, otherwise by induction, bn is infi-
nitely close to some c ∈ R〈b1, . . . , bn−1〉 and R is archimedean in R〈b1, . . . , bn−1〉.
But then either bn has a definable type over R or c and bn have the same type
over R, a contradiction to our assumption.

By Lemma 1.20 (ii) applied to R ≺ R〈B〉 and d1, R〈B〉 is dense in R〈B, d1〉. By
Lemma 1.20(ii) applied to R ≺ R〈B, d1〉 and d2, R〈B, d1〉 is dense in R〈B, d1, d2〉.
Continuing in this way we see that R〈B〉 is dense in R〈B ∪D〉.

Now we prove by induction on n that B∪D is�R-independent. Suppose we
know that {b1, . . . , bn−1}∪D is�R-independent. Suppose tp(bn/R) is realized in
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R〈{b1, . . . , bn−1}∪D〉. Since B is�R-independent, tp(bn/R〈b1, . . . , bn−1〉) is real-
ized in R〈{b1, . . . , bn−1}∪D〉. Since R〈b1, . . . , bn−1〉 is dense in R〈{b1, . . . , bn−1}∪
D〉, also R〈b1, . . . , bn−1〉 is dense in R〈B〉. By Lemma 1.20 (i), R is dense in R〈bn〉
a contradiction. ��

2 V-limits

Let K ⊆ L be ordered fields. In this section we study elements b of L \K which
become limits of Cauchy sequences of K after passing to some residue field of
a convex valuation ring V of K. It turns out that this property only depends on
the cut that b generates over K, these cuts are then called V-limits.

We first recall some notions from [9]. If X is a totally ordered set, then a cut
p of X is a tuple p = (pL, pR) with X = pL ∪ pR and pL < pR. If Y ⊆ X then
Y+ denotes the cut p of X with pR = {x ∈ X|x > Y}. Y+ is called the upper
edge of Y. Similarly the lower edge Y− of Y is defined.

Definition 2.1 Let p be a cut of an ordered abelian group K, The convex sub-
group

G(p) := {a ∈ K|a+ p = p}

of K is called the invariance group of p (here a+ p := (a+ pL, a+ pR)).
If K is an ordered field, then the convex valuation ring

V(p) := {a ∈ K|a·G(p) ⊆ G(p)}

is called the invariance valuation ring of p. If s 
∈ K is from an ordered field
extension of K then we write G(s/K) and V(s/K) for the invariance group and
the invariance ring of the cut induced by s on K.

Definition 2.2 Let K be a divisible ordered abelian group and let p be a cut of
K. We may define the signature of p as

sign p :=
⎧
⎨

⎩

1 if there is a convex subgroup G of K and some a ∈ K with p = a+G+
−1 if there is a convex subgroup G of K and some a ∈ K with p = a−G+
0 otherwise

Since K is divisible we cannot have a+G+ = b+H− for a, b ∈ K and convex
subgroups G, H of K. Hence the signature is well defined.

In what follows the units of a ring A will be denoted by A∗.

Definition 2.3 Let K be an ordered field and let V ⊆ K be a convex valuation
ring with maximal ideal mV. A cut p of K is called a V-limit if sign p = 0 and if
there is some a ∈ K∗ such that G(p) = a·mV. Observe that V(p) = V in this case.

If in addition G(p) = mV and m+V ≤ p ≤ V+, then p is called a properV-limit.
Observe that m+V < p < V+ in this case, as sign p = 0.
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An element b from an ordered field extension L of K is called a (proper)
V-limit if b 
∈ K and if the cut of b induced on K is a (proper) V-limit.

The next proposition states some reformulations of the notion “proper V-limit”.
First some notations. If K is an ordered field, then a sequence (aα)α<λ of ele-
ments of K is called a Cauchy sequence, if it is a Cauchy sequence with respect
to the order topology of K. Observe that for a non-trivial convex valuation ring
V of K, a Cauchy sequence with respect to V in the valuation theoretic sense (cf.
[8]) is a Cauchy sequence in our sense. Recall, if (aα)α<λ is a Cauchy sequence,
then a subsequence of (aα)α<λ is a Cauchy sequence with respect to V in the
valuation theoretic sense.

An element b from an ordered field extension of K is the limit of a Cauchy
sequence (aα)α<λ of K if

∀ε ∈ K, ε > 0 ∃α0 < λ ∀α > α0 |b− aα| < ε.

If T is an o-minimal extension of the theory of real closed fields, then a con-
vex valuation ring V of a model R of T is called T-convex, if V is the convex
hull of an elementary substructure of R. In this case, every maximal definably
closed subfield K ⊆ V is an elementary substructure of R (cf. [2]).

If T is the theory of real closed fields, then all convex subrings of R are
T-convex.

Proposition 2.4 Let L ⊆ M be an extension of ordered fields, let W ⊆ M be
a convex subring and let V := W ∩ L. Let K ⊆ W be a subfield such that
K/mW = V/mW. The following are equivalent for every b ∈ M:

(i) b is a proper V-limit.
(ii) b ∈ W∗ and b/mW is the limit of a Cauchy sequence of V/mV without limits

in V/mV.
(iii) b is the limit of a Cauchy sequence of K without limits in K.
(iv) b 
∈ K and K is dense in the ordered group K + bK.
(v) b 
∈ K, sign(b/K) = 0 and G(b/K) = {0}.

Proof We may assume that b > 0.
(i)⇒(v) First we prove that b 
∈ V+mW . Suppose b−a ∈ mW for some a ∈ V,

say a < b. Since sign b/L = 0 and G(b/L) = mV , there is some c ∈ V, c > mV
with a+ c < b. Hence mV < c < b− a ∈ mW in contradiction to V = L ∩W.

This proves b 
∈ K and for all c ∈ K, a ∈ V with c − a ∈ mW we have c < b
iff a < b.

Let c ∈ K, c > 0. We prove that c 
∈ G(b/K). Let v ∈ V with c − v ∈ mW ,
say v < c. Then v > mV , since c > 0. Since G(b/L) = mV there is some
a ∈ V>0 such that a < b < a + v. Let c1 ∈ K with c1 − a ∈ mW . Then also
a + v − (c + c1) ∈ mW and by what we have shown, a < b < a + v implies
c1 < b < c1 + c. Thus c 
∈ G(b/K) as desired.

It remains to show that sign(b/K) = 0, say sign(b/K) ≥ 0. Since G(b/K) = 0
it is enough to find for every element c ∈ K with c < b an element c1 ∈ K, c1 > 0
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with c+ c1 < b. Let a ∈ V with c− a ∈ mW . Then a < b and from sign(b/L) =
0, G(b/L) = mV we get some v ∈ V, v > mV with a+ v < b. Take c1 ∈ K with
c1 − v ∈ mW . Then c1 > 0 and c+ c1 < b since c+ c1 − (a+ v) ∈ mW .

(v)⇒(i). First we prove that b 
∈ L+mW . Suppose b−a ∈ mW for some a ∈ L.
Since sign(b/K) = 0, there is some v ∈ V with b < v. But then also a ∈ V. Let
c ∈ K with a− c ∈ mW . Then b− c ∈ mW and there is no element in K between
b and c. This implies that the cut of b over K is definable, a contradiction to
sign b/K = 0.

Hence b 
∈ L + mW ⊇ V + mW = K + mW . We prove G(b/L) = mV . First
let v ∈ mV , v ≥ 0 and suppose there is some l ∈ L with b < l < b + v. Then
l − b ∈ mW in contradiction to b 
∈ L+mW . Hence mV ⊆ G(b/L). Conversely
let a ∈ V, a > mV and take c ∈ K with a − c ∈ mW . Then c > 0 and since
G(b/K) = 0 there is some c1 ∈ K, c1 > 0 with c1 < b < c1 + c. Let a1 ∈ V with
a1 − c1 ∈ mW . Then a1 < b < a1 + a, hence a 
∈ G(b/L).

Thus we know G(b/L) = mV and it remains to show that sign(b/L) = 0.
Suppose there is some a ∈ V such that the cut η of b over L is a ± m+V , say
η = a+m+V . Let c ∈ K with a− c ∈ mW . Then c < b. Since sign(b/K) = 0 there
is some c1 ∈ K, c1 > 0 with c + c1 < b. Let a1 ∈ V with c1 − a1 ∈ mW . Then
a+ a1 < b and a1 > mW ⊇ mV , in contradiction to η = a+m+V .

So we know that (i) is equivalent to (v). The equivalences (i)⇔(ii)⇔(iii) and
(iv)⇔(v) are easy and left to the reader. ��
Remarks Observe that an ordered field K need not be dense in K(b) if b is the
limit of a Cauchy sequence of K without limits in K. For example if K = Q,
ε 
= 0 is infinitesimal and b = √

2+ ε. Also, a field K as in Proposition 2.4
cannot be found inside V in general. For example if L = Q(

√
2+ ε), where ε is

infinitesimal and V is the convex hull of Q in L. Then Q is the unique subfield
of V and V/mV ∼= Q(

√
2).

Here is another reformulation of the notion “proper V-limit” in terms of
so-called distinguished Cauchy sequences as explained in [8], section D:

If (K, V0) is a valued field, then a sequence (aα)α<λ is called distinguished
Cauchy sequence if (aα)α<λ is a pseudo Cauchy sequence of the valued field
(K, V0), such that aα ∈ V0 for all α and such that for some valuation ring V of
K with V0 � V the (aα−aβ)/V∗

0 are unbounded in the convex subgroup V∗/V∗
0

of K∗/V∗
0 .

We call V the valuation ring associated to (aα)α<λ.

Corollary 2.5 In the situation of Proposition 2.4, let V0 � V be another convex
valuation ring. Then b is a proper V-limit if and only if b is the pseudo limit of
a distinguished pseudo Cauchy sequences of the valued field (L, V0) which does
not have a limit in L and which has V as associated valuation ring.

Proof Easily from Proposition 2.4. ��
Proposition 2.6 Let L ⊆ M be an extension of ordered fields, let W ⊆ M be
a convex subring and let V := W ∩ L. Let K ⊆ W be a subfield such that
K/mW = V/mW and let b ∈ M. Then
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(i) b is a V-limit if and only if there are a1, a ∈ L, a 
= 0 such that a1 + ab is a
proper V-limit.

(ii) If b is a V-limit and a V′-limit, where V′ is a convex valuation ring of L,
then V = V′.

(iii) If L, M are models of an o-minimal extension T of the theory of real closed
fields, K, L ≺ M and if V is T-convex, then K is dense in K〈b〉 if b is a proper
V-limit.

Proof (i) If a1, a ∈ L, a 
= 0, then a straightforward computation shows that
G(a1 + ab/L) = a·G(b/L) and sign(b/L) = sign(a1 + ab/L).

So if a1, a ∈ L, a 
= 0, such that a1 + ab is a proper V-limit, then sign(b/L) =
sign(a1+ab/L) = 0 and from G(a1+ab/L) = mV we get G(b/L) = 1

a G(ab/L) =
1
a G(a1 + ab/L) = 1

a ·mV , hence b is a V-limit.
Conversely if b is a V-limit, a0 ∈ L∗ and G(b/L) = a0·mV , then G(b·a−1

0 /L) =
mV , so there is a1 ∈ L with a1 < b·a−1

0 < a1 + 1. Then a1 − b·a−1
0 is a proper

V-limit and we may take a := −a−1
0 .

(ii) If b is a V-limit and a V′-limit, where V′ is a convex valuation ring of
L, then G(b/L) = a ·mV and G(b/L) = a′ ·mV′ for some a, a′ ∈ L∗. But then
mV′ = a

a′mV and this is only possible if V = V′.
(iii) Suppose b is a proper V-limit and K is not dense in K〈b〉. Let a, c ∈ K〈b〉

with a < c and (a, c)∩K = ∅. We may assume that a, c 
∈ K. There is a K-defin-
able map f : K −→ K such that f (a) = b. As a and c realize the same cut over
K, b and f (c) realize the same cut over K. Moreover f is strictly monotonic in
[a, c] ⊆ K〈b〉, say b < f (c). Since sign b/K = 0 by Proposition 2.4(v), there is
some d ∈ K with 0 < d < f (c) − b. As (b, f (c)) ∩ K = ∅ we get d ∈ G(b/K), a
contradiction to G(b/K) = 0 (cf. Proposition 2.4(v)). ��
Proposition 2.7 Let T be an o-minimal expansion of fields in the language L ,
let R |� T and let V be a set of T-convex valuation rings of R. For each V ∈ V
let KV ⊆ V be a maximal definably closed subfield of V. Let S  R and for each
V ∈ V let BV ⊆ S be a set of proper V-limits.

Then
⋃

V∈V BV is�R-independent if and only if BV is�KV -independent for
all V ∈ V .

Proof We write B := ⋃
V∈V BV . By Proposition 2.4 each b ∈ BV has signature

0 over KV . Hence b �KV R for all b ∈ BV . So if B is �R-independent, then
BV is�R-independent and by Proposition 1.19, BV is�KV -independent for all
V ∈ V .

For the converse we may assume that V is finite, say V = {V1, . . . , Vn} and
V1 � · · · � Vn. Let Bi ⊆ BVi be finite. It is enough to prove by induction on n
that B = B1 ∪ · · · ∪ Bn is �R-independent if each Bi is �KVi

-independent. If
n = 1, then we know this from Proposition 1.19(ii).

Induction step. Let Li ⊆ Vi be a maximal definably closed subfield of Vi
with L1 ⊆ · · · ⊆ Ln+1. From the case n = 1 we know that each Bi is �R-inde-
pendent. By what we have above, Bi is �Li -independent. By Proposition 2.4,
each b ∈ Bi is a Vi ∩ Ln+1-limit. By the induction hypothesis, B1 ∪ · · · ∪ Bn is
�Ln+1 -independent.
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By Proposition 2.6(iii), Ln+1 is dense in Ln+1〈b〉 for each b ∈ Bn+1. On
the other hand if b ∈ B1 ∪ · · · ∪ Bn, then Ln+1 is neither dense nor tame in
Ln+1〈b〉. By Proposition 1.21, B1∪· · ·∪Bn∪Bn+1 is�Ln+1 -independent. Again
by Proposition 1.19, B1 ∪ · · · ∪ Bn ∪ Bn+1 is�R-independent. ��

3 The completion of an o-minimal structure

Proposition 3.1 Let T be an o-minimal extension of the theory of real closed
fields. Let R ≺ M be models of T. Then there is a model S of T with R ≺ S ≺ M,
such that:

(i) R is dense in S.
(ii) If R′ is an elementary substructure of M, R ≺ R′ and if R is dense in R′,

then there is an elementary embedding R′ −→ S over R.

The embedding in (ii) is unique. If R ≺ S′ ≺ M and S′ has properties (i) and
(ii), then there is a unique R-isomorphism S −→ S′.

Proof Let X ⊆ M be the set of all α ∈ M, such that R is dense in R〈α〉. Let B be
a �R-basis of X over R. We claim, that S := R〈B〉 has the required properties.
Clearly R is an elementary substructure of S.

By Proposition 1.21, R is dense in S. Let R′ ≺ M be an elementary extension
of R, such that R is dense in R′. Let B′ be a transcendence basis of R′ over R.
Clearly B′ is an �R-basis of R′. By the choice of B, the type of every b′ ∈ B′
over R is realized in R〈B〉. By Proposition 1.8 we know that tp(B′/R) is real-
ized in R〈B〉 = S. Hence tp(R′/R) is realized in S and there is an elementary
R-embedding R′ −→ S.

Both additions are obvious. ��
Corollary 3.2 Let T be an o-minimal extension of the theory of real closed fields.
Let R ≺ R̃ ≺ M be models of T, suppose that R is archimedean in R̃ and R̃ is
tame in M. We provide R̃ with the topology induced by the ordering of R̃. Let S
be the topological closure R in this topology. Then R ≺ S ≺ R̃ ≺ M and S fulfills
the conditions (i) and (ii) of Proposition 3.1, both for R and R̃ as well as for R
and M. We have

S = {α ∈ R̃ | R is dense in R〈α〉}

Proof Let R ≺ S1 ≺ M as in Proposition 3.1 and let S1 ≺ S̃1 ≺ M, such that
S1 is archimedean in S̃1 and S̃1 is tame in M. Since S̃1 and R̃ are isomorphic
over R we can suppose that S1 ⊆ R̃ = S̃1 (T is an expansion of RCF). Since
R is archimedean in R̃, S1 is contained in R = S. If α ∈ R, then R is dense
in R〈α〉. If α ∈ R̃, such that R is dense in R〈α〉, then by Lemma 1.20, the set
S1 is dense in S1〈α〉. By the choice of S1 we get therefore α ∈ S1. This proves
S1 = S = {α ∈ R̃ | R is dense in R〈α〉}. ��
Proposition 3.1 applied to a sufficiently large, elementary extension M of R
yields
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Corollary 3.3 Let T be an o-minimal extension of the theory of real closed fields
and let R be a model of T. Then there is a model S  R with:

(i) R is dense in S.
(ii) If R′ is an elementary extension of R and R is dense in R′, then there is an

elementary embedding R′ −→ S over R.

The embedding in (ii) is unique. S is uniquely determined up to a unique R-iso-
morphism by conditions (i) and (ii). ��
The model S in Corollary 3.3 is the largest elementary extension of R, such that
R is dense in S. S is not dense in any proper elementary extension of S. S is
called the completion of R and is denoted by R̂

We get S by Corollary 3.2 in the following manner: choose R ≺ R1 ≺ M such
that R is archimedean in R1 (i.e. R1 is the convex hull of R), R1 is tame in M
and M is |R1|+-saturated. Take

S = {α ∈ R1 | R is dense in R〈α〉}

Since R is dense in R〈α〉 if and only if R is dense in the field R(α) (by Prop-
ositions 2.4 and 2.6(iii)), the underlying field of the completion of R does not
depend on the theory T.

If V is a convex valuation ring of R and V̂ is the convex hull of V in R̂, then
the valued field (R̂, V̂) is the completion of the valued field (R, V).

4 Definition of the Pseudo Completion

Theorem 4.1 Let T be an o-minimal expansion of fields in the language L , let
R |� T and let V be a set of T-convex valuation rings of R (the case R ∈ V
is not excluded). For each V ∈ V let KV , LV ⊆ V be maximal definably closed
subfields of V.

Let S  R so that S contains completions K̂V of KV and L̂V of LV for all
V ∈ V . Then

(i) There is an L -isomorphism ϕ : R〈⋃V∈V K̂V〉 −→ R〈⋃V∈V L̂V〉 over R
sending R〈K̂V〉 onto R〈L̂V〉.

(ii) If KV = LV for each V ∈ V and ϕV denotes the unique L -isomorphism
ϕV : K̂V −→ L̂V over KV, then there is a unique L -isomorphism ϕ :
R〈⋃V∈V K̂V〉 −→ R〈⋃V∈V L̂V〉 over R extending all the ϕV.

(iii) The product map

⊗

R
V∈V

(R⊗KV K̂V) −→ S

which sends
(∑

r1i ⊗ b1i
)⊗· · ·⊗ (∑

rki ⊗ bki
)

to
(∑

r1i ·b1i
)·· · ··(∑ rki ·bki

)

is injective.
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Proof Let BV ⊆ K̂V be a basis of K̂V over KV in the sense of T. Since KV is
dense in K̂V , BV is �KV -independent. By Proposition 2.7, B := ⋃

V∈V BV is
�R-independent. Moreover by Proposition 2.6(iii), for V ∈ V and b ∈ BV , the
cut of b over R is realized by some cb ∈ L̂V and in the situation of (ii) we must
take cb := ϕV(b). Then, by Proposition 1.8, there is an elementary R-embedding
ϕ : R〈B〉 −→ R〈⋃V∈V L̂V〉 sending b to cb for each b ∈ BV , V ∈ V .

In order to prove that ϕ is surjective and that ϕ(R〈K̂V〉) = R〈L̂V〉 it is enough
to show that CV := {cb|b ∈ BV} is a basis of L̂V over LV in the sense of T.
Clearly CV is independent over LV . Let l ∈ L̂V \LV , l 
∈ CV . Then l is a V-limit,
so tp(l/KV) is realized in K̂V . Then also tp(l/R) is realized in R〈BV〉, hence
tp(l/R) is realized in R〈CV〉. This means that CV ∪ {l} is �R-dependent and by
Proposition 1.19, CV ∪ {l} is �LV -dependent. Since l ∈ L̂V and LV is dense in
L̂V this is only possible if l ∈ LV〈CV〉.

This proves (i) and (ii).
(iii). First we show that R⊗KV K̂V −→ S is injective, i.e. R and K̂V are line-

arly disjoint over KV . Since BV is�KV -independent, BV is�R-independent by
Proposition 2.7. Since tp(b/KV) is omitted in R for all b ∈ BV it follows that BV
is �KV ,R-independent. By Proposition 1.17, tp(BV/R) is an heir of tp(BV/KV).
This property implies that every linear equation with coefficients in K̂V which
has a solution in R, also has a solution in KV . Hence R and K̂V are linearly
disjoint over KV .

It remains to show that the domains R⊗KV K̂V are linearly disjoint over R.
By what we have shown we may identify R⊗KV K̂V with R[K̂V] ⊆ S. Moreover
we may assume that V is finite, say V = {V1, . . . , Vn}. We write Bi for BVi .
Since

⋃n
i=1 Bi is �R-independent, the type tp(Bn/R ∪ B1 ∪ · · · ∪ Bn−1) is an

heir over R (c.f. Proposition 1.17). Again it follows that every linear equations
with coefficients in R〈B1 ∪ · · · ∪Bn−1〉 which has a solution in R〈Bn〉, also has a
solution in R. By induction on n we get (iii). ��
Definition 4.2 In the situation of Theorem 4.1 the model R〈⋃V∈V K̂V〉 of T is
called the pseudo completion of R with respect to V .

By Theorem 4.1 this model of T is up to an R-isomorphism independent of
S, KV and K̂V ; it can be constructed in the following way. Let A be the ring

A :=
⊗

R
V∈V

(R⊗KV K̂V).

Then A is an R-algebra without zero divisors and there is an injective R-algebra
homomorphism f from A into an elementary extension of R. Then the pseudo
completion is the definable closure of f (A).

If T is the theory of real closed fields then the pseudo completion is the real
closure of the quotient field of A with respect to any ordering.
The next proposition describes in what sense the pseudo completion is minimal.
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Proposition 4.3 Let T be an o-minimal expansion of fields in the language L ,
let R |� T, let V be a family of T-convex subrings of R and let R′ be the pseudo
completion of R with respect to V . Let S  R be an elementary extension of R.

(i) Suppose each cut of R, which is a V-limit for some V ∈ V is realized in S.
Then there is an elementary embedding R′ −→ S over R.

(ii) For each V ∈ V , let W(V) be the convex hull of V in S. Let W be a set of
T-convex valuation rings of S with W(V) ∈ W for all V ∈ V and let S′ be
the pseudo completion of S with respect to W . Then there is an elementary
R-embedding R′ −→ S′.
If W is precisely the set of all W(V) with V ∈ V and for each V ∈ V , the
residue field of V is equal to the residue field of W(V), then we can choose
this embedding ϕ so that S′ is the definable closure of S ∪ ϕ(R′).

Proof For V ∈ V let KV ⊆ V be a maximal definably closed subfield of V.
(i). Let BV ⊆ K̂V ⊆ R′ be a transcendence basis of K̂V over KV (V ∈ V ).

Pick some V ∈ V. By assumption and Proposition 2.6(iii), for b ∈ BV the cut of
b over KV is realized in S. Since KV is dense in K̂V , BV is �KV -independent.
By Proposition 1.8, K̂V can be embedded into S over KV . By Theorem 4.1, R′
can be embedded over R into S.

(ii). Let LV ⊆ W(V) be a maximal definably closed subfield of W(V)

containing KV for every V ∈ V . Since KV is archimedean in LV it follows
from Lemma 1.20(ii), that there is a (unique) elementary KV-embedding ϕV :
K̂V −→ L̂V . By Theorem 4.1 we may assume that S′ contains the definable
closure of S[⋃V∈V L̂V]. By Theorem 4.1, R′ is R-isomorphic to the definable
closure of R[⋃V∈V ϕ(K̂V)] in S′.

Now suppose W is precisely the set of all W(V) with V ∈ V and for each
V ∈ V , the residue field of V is equal to the residue field of W(V). Then
LV = KV and S′ is R-isomorphic to the definable closure of S[⋃V∈V K̂V]. ��

By Example 5.11 below, a pseudo completion R′ of a pure real closed field
R is in general not minimal in the sense that any R-endomorphism of R′ is
an automorphism. Moreover it is unclear if R′ is uniquely determined up to
an R-isomorphism by the minimality demand of Proposition 4.3(i); this is the
content of the open problem 5.12 at the end of the paper.

5 Completion in stages of polynomially bounded structures

An o-minimal expansion R of a field is called polynomially bounded if every
definable function R −→ R is ultimately bounded by some polynomial. Here
all polynomially bounded structures are additionally assumed to have an
archimedean prime model. In particular, pure real closed fields are polyno-
mially bounded. If R is polynomially bounded, then every convex subring is
Th(R)-convex (cf. [2]).
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Definition 5.1 Let K be an ordered field and let V be a set of convex valuation
rings of K. We say that K is complete in stages with respect to V if all residue
fields of elements of V are complete.

By Proposition 2.4, K is complete in stages with respect to V if and only if
there are no V-limits in any ordered field extension of K, for all V ∈ V .

For ordered fields, this definition is more general than the definition of Ri-
benboim [8]. Let V be a convex valuation ring of an ordered field. Then the
valued field (K, V) is complete in stages in the sense of Ribenboim ([8], section
D) if and only if K is complete in stages with respect to

{
W ⊆ K|W is a convex valuation ring with V � W

}

in our sense. This follows from Corollary 2.5 together with [8], section D,
Théorème 3, which says that the valued field (K, V) is complete in stages if
and only if every distinguished pseudo Cauchy sequence of (K, V) has a pseudo
limit in K.

In this section we construct a completion in stages of R with respect to V
for a polynomially bounded expansion R of a real closed field and a set V of
convex valuation rings of R. This is a smallest elementary extension S which
is complete in stages with respect to the set of convex hulls of the V ∈ V . We
get S by iterating the construction of the pseudo completion. Before we can do
this, we have to compute the residue fields and the value groups of the pseudo
completion.

Proposition 5.2 Let R be polynomially bounded and let s be an element from an
elementary extension of R, s 
∈ R. The following are equivalent.

(i) sign(s/R) = 0.
(ii) If G is a convex subgroup of (R,+), then G+ is omitted in R〈s〉.

(iii) If W is a convex valuation ring of R〈s〉, then the value group of W is equal
to the value group of W ∩ R.

Proof Clearly (ii) implies (i). Also (ii) implies (iii), since an element R〈s〉which
is not in the value group of W ∩ R is the edge of a convex subgroup of R.

Conversely suppose α ∈ R〈s〉 realizes G+ for a convex subgroup G of (R,+).
The proposition is proved if we show that sign(s/R) 
= 0 and that w(α) is not in
the value group of V(α/R), where w is the valuation of R〈s〉 with respect to the
convex hull W of V(α/R) in R〈s〉 .

In order to see this, let r ∈ R and suppose α/r ∈ W∗, say α/r > 0. Then there
are y, z ∈ V with 0 < α/r < y and 0 < r/α < z, thus 0 < r/z < α < y·r. Hence
r/z ∈ G and zy·r/z 
∈ G in contradiction to z·y ∈ V(α/R).

Hence w(α) is not in the value group of V(α/R). By the valuation property
([3]) there must be some b ∈ R such that w(s − b) is not in the value group
of V(α/R). But then s − b realizes the edge of a convex subgroup of R, i.e.
sign(s/R) 
= 0. ��
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Lemma 5.3 Let R be polynomially bounded and let s be from an elementary
extension of R with sign(s/R) = 0. If F : R −→ R is R-definable with F(s) 
∈ R,
then there are a, b ∈ R, a < s < b such that F is differentiable in (a, b) and for all
r ∈ R with a < r < b we have

G(F(s)/R) = F ′(r) · G(s/R).

Proof By C1-cell decomposition and since the cut of s over R is not definable,
we may assume that F is C1 in an open neighborhood of [a, b] for some a, b ∈ R
with a < s < b. We write F ′ for the derivative of F in [a, b]. If F is a linear
map in some interval (c, d) with c, d ∈ R, c < s < d the lemma holds since
G(ys + z/R) = yG(s/R) for all y, z ∈ R, y 
= 0. Hence we may assume that
F ′(s) 
∈ R.

Let W be the convex hull of V in R〈s〉. Since sign(s/R) = 0, Proposition 5.2
implies that the value group of W is equal to the value group of V. Hence there
is some z ∈ R such that z·F ′(s) ∈ W∗. We may replace F by z·F, hence we may
assume that F ′(s) ∈ W∗, say F ′(s) > 0. Since F ′(s) 
∈ R, Proposition 5.2 gives us
c, d ∈ V, mV < c < d with c < F ′(s) < d. By shrinking (a, b) if necessary we
may assume that F|[a,b] : [a, b] −→ [F(a), F(b)] is a strictly increasing homeo-
morphism with F ′(x) ∈ (c, d) on [a, b]. We prove G(F(s)/R) =·G(s/R); this also
proves the lemma, since G(s/R) = F ′(r)·G(s/R) for all r ∈ R, a < r < b.

In order to show G(s/R) ⊆ G(F(s)/R) we take g ∈ G(s/R), g > 0, r ∈ R with
a < r < s and we show that F(r) + g < F(s). Since F ′(x) > c in [a, b] we know
that F(x) > F(r)+c·(x− r) for x ∈ (r, b). Since g ∈ G(s/R) and c ∈ V∗, we know
that r + g/c < s, hence F(x) > F(r) + c·(x − r) ≥ F(r) + g for x ∈ (r + g/c, b)

and F(s) > F(r)+ g as desired.
Conversely let y ∈ R with y > G(s/R). Then also y/d > G(s/R) and there

is some r ∈ (a, b) with r < s < r + y/d. Since F ′(x) < d in [a, b] we know that
F(x) < F(r)+d·(x−r) for x ∈ (r, b). Hence also F(x) < F(r)+d·(x−r) < F(r)+y
for all x ∈ R with r < x < min{b, r+y/d}. Since r < s < min{b, r+y/d} it follows
F(r) < F(s) < F(r)+ y, thus y 
∈ G(F(s)/R) as desired. ��

Lemma 5.4 Let R ≺ S be polynomially bounded, such that sign(s/R) = 0 for all
s ∈ S\R. Let α be from an elementary extension of S and let F : S −→ S be S-defin-
able such that F(α) 
∈ S. Suppose sign(α/S) = 0 and the cuts of α and F(α) over
R are omitted in S. Then there is some c ∈ R∗ such that G(F(α)/R) = c·G(α/R).

Proof By Lemma 5.3 applied to S and α we get some s ∈ S∗ with G(F(α)/S) =
s ·G(α/S). Let V = V(α/R) and let W be the convex hull of V in S. By assump-
tion and by Proposition 5.2, there is some c ∈ R∗ such that c/s ∈ W∗. Since
the cut of α over R is omitted in S, G(α/S) contains G(α/R). Since S does not
realize the upper edge of G(α/R), G(α/S) is the convex hull of G(α/R) in S.
This implies that V(α/S) contains V = V(α/R). Again, since S does not realize
the upper edge of V, V(α/S) is the convex hull of V in S. Thus c/s is a unit in
V(α/S) = W and s·G(α/S) = s·(c/s)·G(α/S) = c·G(α/S).
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By Proposition 5.2, sign F(α)/S = 0, hence also G(F(α)/S) is the convex
hull of G(F(α)/R) in S. Thus G(F(α)/S) = c · G(α/S) implies G(F(α)/R) =
c · G(α/R). ��
Corollary 5.5 Let R be polynomially bounded, let s1, . . . , sn be from an ele-
mentary extension of R with rkR(s1, . . . , sn) = n and sign(si/R) = 0 for all
i ∈ {1, . . . , n}. If F : Rn −→ R is R-definable and F(s1, . . . , sn) 
∈ R, then
sign(F(s1, . . . , sn)/R) = 0 and G(F(s1, . . . , sn)/R) = c ·G(si/R) for some i ∈
{1, . . . , n} and some c ∈ R.

Proof For i ∈ {1, . . . , n} the cut of si over R is omitted in R〈s1, . . . , si−1〉. As
sign(si/R) = 0 it follows that sign(si/R〈s1, . . . , si−1〉) = 0. Then by induction on
n, Proposition 5.2 implies that every s ∈ R〈s1, . . . , si〉 \ R has signature 0.

Let α := F(s1, . . . , sn). Since α 
∈ R there is some i ∈ {1, . . . , n} such that α ∪
({s1, . . . , sn}\{si}) is a�R-basis of R〈s1, . . . , sn〉. Say i = 1. Let S := R〈s2, . . . , sn〉.
Since the cuts of α and s1 over R are omitted in S and sign(s1/S) = 0, we can
apply Lemma 5.4. Hence G(α/R) = c·G(s1/R) for some c ∈ R∗. ��

Now we compute the residue fields and the value groups of convex valuation
rings of the pseudo completion of a polynomially bounded structure:

Theorem 5.6 Let R be polynomially bounded and let S be the pseudo completion
of R with respect to a set V of convex subrings of R.

(i) Every s ∈ S \ R is a V-limit for a unique convex valuation ring V of R and
this ring is in V .

(ii) Let V0 be any convex valuation ring of R. Then the convex hull W0 of V0 in
S is the unique convex valuation ring of S lying over V0. The value group of
W0 is the value group of V0 and
(a) if V0 � V for all V ∈ V , then the extension (R, V0) ⊆ (S, W0) of valued

fields is immediate;
(b) if V ⊆ V0 for some V ∈ V , then W0/mW0 is the pseudo completion of

V0/mV0 with respect to {V/mV0 |V ∈ V , V ⊆ V0}.
Proof (i) follows from Corollary 5.5, since S is the definable closure of a �R-
independent set of elements, each being a V-limit for some V ∈ V (cf. Propo-
sitions 2.7 and 2.4). The uniqueness statement holds by Proposition 2.6(ii).

(ii) By (i), every s ∈ S\R is a V-limit for some V ∈ V , in particular sign(s/R) =
0. By Proposition 5.2, no edges of convex subgroups of R are realized in S. Con-
sequently W0 is the unique convex valuation ring of S, lying over V0 and W0
must have the same value group as V0.

In order to see (a) and (b) let KV ⊆ V be a maximal definably closed subfield
for each V ∈ V ∪ {V0}.

(a) Suppose V0 � V for all V ∈ V . Let s ∈ W0. We have to show that the cut p
of s over KV0 is definable. Suppose p is not definable. If G(s/KV0) = 0, then s is a
V0-limit by Proposition 2.4. By (i), s is a V-limit for some V ∈ V . Since V 
= V0
this is impossible (cf. Proposition 2.6(i)). Hence G(s/KV0) 
= 0 and V(s/KV0) is
a proper convex valuation ring of KV0 . Since p is omitted in R, G(s/R) is the
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largest convex subgroup of R with G(s/R)∩KV0 = G(s/KV0). This implies that
V(s/R) is a convex valuation ring, lying over V(s/KV0). As V(s/KV0) is proper
it follows V(s/R) ⊆ V0. On the other hand – by (i) – V(s/R) ∈ V and this
contradicts our assumption on V0.

(b) By Theorem 4.1 we may assume that KV0 ⊆ KV for every V ∈ V with
V0 ⊆ V. For V ∈ V with V ⊆ V0, any maximal definably closed subfield of
V ∩KV0 is also a maximal definably closed subfield of V (this is so, since such a
field L is archimedean in V ∩KV0 and tame in KV0 – as V ∩KV0 is archimedean
in V and KV0 is tame in R, also L is archimedean in V and tame in R). So by
Theorem 4.1 we may assume that KV ⊆ KV0 for all V ∈ V with V ⊆ V0, too. Let
V ′ := {V ∈ V |V ⊆ V0} and let R′ := R〈⋃V∈V ′ K̂V〉 be the pseudo completion
of R with respect to V ′.

First we prove (ii) (b) for V ′ and W′
0 := W0 ∩ R′. By Theorem 4.1 it is

enough to show that KV0〈
⋃

V∈V ′ K̂V〉 is a maximal definably closed subfield of
W′

0. In order to prove this it suffices to take V1, . . . , Vn ∈ V ′ and finite sub-
sets Bi ⊆ KVi independent over KVi (1 ≤ i ≤ n) and to show that KV0〈B〉 is
a maximal definably closed subfield of W0 ∩ R〈B〉. By Proposition 2.7, the Bi
are mutually disjoint and their union B is �KV0

-independent. Hence for each
b ∈ B the cut p of b over KV0 is omitted in KV0〈B\ {b}〉. Since p is not definable,
the unique extension to KV0〈B \ {b}〉 is not definable as well. This shows that
KV0〈B \ {b}〉 is archimedean in KV0〈B〉. Hence, by induction, KV0 is archime-
dean in KV0〈B〉 and KV0〈B〉 is a subfield of W0. Since R〈B〉 is generated by
B and dim R〈B〉/R is greater or equal to the dimension of the residue field of
W0 ∩ R〈B〉 over V0/mV0 (cf. [2]), KV0〈B〉 must be a maximal definably closed
subfield of W0 ∩ R〈B〉.

Hence we know that the residue field of W′
0 = W0 ∩ R′ is the pseudo com-

pletion of V0/mV0 with respect to {V/mV0 |V ∈ V , V ⊆ V0} and it remains to
show that (R′, W′

0) ⊆ (S, W0) is immediate. But this follows from a., since by
Theorem 4.1, S is the pseudo completion of R′ with respect to the set of convex
hulls of all V ∈ V with V0 � V. ��

Example 5.7 The pseudo completion R′ of a real closed field R with respect to
a set V of convex valuation rings of R, containing R, is not complete in general.
In particular, if V ′ denotes the set of convex hulls of elements from V in R′,
then R′ need not be complete in stages with respect to V ′.
To see an example, let K be a real closed field with completion K̂ 
= K and let
� be a divisible subgroup of (R,+) containing 1 ∈ R. We also assume that � is
an ordered subgroup of (K,+). In this situation we can equip the generalized
power series field K̂((t�)) with the derivative

(∑
aγ tγ

)′ =
∑

aγ ·γ ·tγ−1.

Let R be the real closure of K(tγ |γ ∈ �) in K̂((t�)) and let V be the convex hull
of K in R. The completion R̂ of R is
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R̂ =
{ ∞∑

n=0

antγn |an ∈ K, γn ∈ � and γn →∞ (n →∞)

}

.

Hence the pseudo completion of R with respect to {V, R} is R̂〈K̂〉. We claim that
for x ∈ K̂ \K, the element

exp(x·t) :=
∞∑

i=0

xi

i! t
i

is not in R̂〈K̂〉. Since exp(x·t) is in the completion of K̂(tγ |γ ∈ �) ⊆ R̂〈K̂〉, this
will show the incompleteness of R̂〈K̂〉. We use a differential algebraic argument:

Lemma 5.8 Let K ⊆ L be ordinary differential fields of characteristic 0, let
y, x ∈ L, y 
= 0 such that x is transcendental over K. Suppose g, h ∈ K[x], with
y′ = g·y and x′ = h. If g 
∈ K and deg g ≥ deg h, then y and x are algebraically
independent over K. Here the degree is the degree with respect to x.

Proof Suppose y is algebraic over K(x). Let fd−1, . . . , f0 ∈ K(x) be rational
functions, such that

μ(T) := Td + fd−1Td−1 + · · · + f0

is the minimal polynomial of y over K(x). Then

0 = μ(y)′ = d·yd−1 ·y′ + f ′d−1yd−1 + fd−1 ·(d− 1)·yd−2y′ + · · · + f ′1y+ f1y′ + f ′0
= d·g·yd + (f ′d−1+fd−1 ·(d− 1)·g)·yd−1 + · · · + (f ′1+f1g)y+f ′0=:η(y).

Since x′ ∈ K(x), K(x) is a differential subfield of L and η(y) = 0 is an algebraic
relation of y over K(x) of degree d. Hence η(y) = d·g·μ(y) and a comparison of
the constant coefficients with respect to y implies f ′0 = d·g·f0. Let P, Q ∈ K[T]
with f0 = P(x)/Q(x), Q(x) 
= 0. Since y 
= 0, P(x) 
= 0. From f ′0 = d·g·f0 we get

Q(x)·P(x)′ − P(x)·Q(x)′ = d·g·P(x)·Q(x).

Since x′ = h and deg g ≥ max{1, deg h}, P(x)′ is a polynomial in x of degree
< deg P+ deg g. Also deg Q(x)′ < deg Q+ deg g, hence deg(Q(x)·P(x)′ − P(x)·
Q(x)′) < deg P+ deg Q+ deg g = deg(d·g·P(x)·Q(x)), a contradiction. ��
Now we prove exp(x·t) 
∈ R̂〈K̂〉. Let B ⊆ K̂ be a transcendence basis of K̂ over
K containing x and let C be a transcendence basis of R̂ over R. By Proposi-
tion 2.7, B ∪ C is a transcendence basis of R̂〈K̂〉 over R and B ∩ C = ∅. Let
L := R̂〈B \ {x}〉. The field R̂ is a differential subfield of K̂((t�)), equipped with
the derivative introduced above (thus (tγ )′ = γ · tγ−1 for γ ∈ �). Since L is
obtained from R̂ by adjoining constants to R̂ and then taking the real closure,
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L is also a differential subfield of K̂((t�)). Moreover x is transcendental over L.
Since exp(x·t)′ = x·exp(x·t) and x′ = 0, Lemma 5.8 implies that exp(x·t) and x are
algebraically independent over L. Hence exp(x·t) 
∈ L〈x〉 = R̂〈K̂〉 as desired.

��
In the example above, the pseudo completion of S := R̂〈K̂〉 with respect to

{S, W}, where W is the convex hull of V, is the completion of K̂(tγ |γ ∈ �).
More generally, if R is polynomially bounded, V is a set of convex valuation

rings of R, let R′ be the pseudo completion of R with respect to V and let
V ′ be the set of convex hulls of elements from V in R′. We write (R, V )′ for
(R′, V ′). We define for each ordinal α the pair (R(α), V (α)) by (R(0), V (0)) :=
(R, V ), (R(α+1), V (α+1)) := (R(α), V (α))′ and for a limit ordinal α we take R(α) =⋃

β<α R(β) and V (α) := {⋃β<α V(β)|V ∈ V }.
Let V0 ⊆ ⋂

V∈V V be a convex subring and let V(α)
0 be the convex hull of V0

in R(α).

Claim The extension (R(1), V(1)
0 ) ⊆ (R(α), V(α)

0 ) is immediate for all α ≥ 1.

Proof By induction on α, where the limit step is obvious. Suppose we know
that (R(1), V(1)

0 ) ⊆ (R(α), V(α)
0 ) is immediate for some α ≥ 1. We show that

(R(α), V(α)
0 ) ⊆ (R(α+1), V(α+1)

0 ) is immediate. If V0 
∈ V , then V(α)
0 
∈ V (α) and

we can apply Theorem 5.6(ii)(a).
Hence we may assume that V0 is the least element in V. Then also V(α)

0 is

the least element of V (α). By Theorem 5.6(ii)(b), V(1)
0 has a complete residue

field. By induction, V(α)
0 has a complete residue field, too. Hence R(α+1) is the

pseudo completion of R(α+1) with respect to V (α) \ {V(α)
0 }. But then again by

Theorem 5.6(ii)(a) , (R(α), V(α)
0 ) ⊆ (R(α+1), V(α+1)

0 ) is immediate. ��
From the claim it follows that R(α) can be embedded as a field into the max-

imal immediate extension of the valued field (R(1), V(1)
0 ). Consequently there

must be some ordinal α with R(α) = R(α+1).

Definition 5.9 The completion in stages of R with respect to V is defined to be
the elementary extension R(α) for an ordinal α with R(α) = R(α+1).

By construction, the completion in stages is complete in stages with respect
to the family of convex hulls of the rings from V . Moreover the properties of
the pseudo completion from Theorem 5.6 are inherited by the completion in
stages:

Theorem 5.10 Let R be polynomially bounded and let S be the completion in
stages of R with respect to a set V of convex subrings of R.

(i) Every s ∈ S \ R is a V-limit for a unique convex valuation ring V of R and
this ring is in V .

(ii) Let V0 be any convex valuation ring of R. Then the convex hull W0 of V0
in S is the unique convex valuation ring of S lying over V0. The value group
of W0 is the value group of V0 and
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(a) if V0 � V for all V ∈ V , then the extension (R, V0) ⊆ (S, W0) of valued
fields is immediate;

(b) if V ⊆ V0 for some V ∈ V , then W0/mW0 is the completion in stages of
V0/mV0 with respect to {V/mV0 |V ∈ V , V ⊆ V0}.

(iii) Let S′ be an elementary extension of R and for each V ∈ V let W′
V be the

convex hull of V in S′. If S′ is complete in stages with respect to {W′
V |V ∈ V },

then there is an elementary embedding ϕ : S −→ S′ over R.

Proof For an ordinal α, let R(α) and V (α) be as in the construction of S above.
First we prove (ii). Let V0 be any convex valuation ring of R and let V(α)

0 be the
convex hull of V0 in R(α). By induction on α we get from Theorem 5.6 that V(α)

0
is the unique convex valuation ring of R(α), lying over V0 and the value group of
V(α)

0 is the value group of V0. Moreover item (ii)(a) follows immediately from
Theorem 5.6(ii)(a) by induction on α.

(ii)(b) By Theorem 5.6(ii)(b) for every ordinal α, V(α+1)
0 /m

V(α+1)
0

is the pseudo

completion of V(α)
0 /mV(α)

0
with respect to {V(α)/mV(α)

0
|V ∈ V , V ⊆ V0}. By

induction on α we get that V(α)
0 /mV(α)

0
is the α-fold iterated pseudo completion

of V0/mV0 with respect to {V/mV0 |V ∈ V , V ⊆ V0}. This easily implies (ii)(b)
(i) The uniqueness statement is obviously true.
By induction on α we prove that every x ∈ R(α) \ R is a V-limit for some

V ∈ V . For α = 1 we know this from Theorem 5.6(i). For limit ordinals there
is nothing to do. Now suppose x ∈ R(α+1). If the cut of x over R is realized in
R(α), then by the induction hypothesis, x is a V-limit for some V ∈ V . Hence
we may assume that the cut of x over R is omitted in R(α). Since R(α+1) is the
pseudo completion of R(α) with respect to V (α), Theorem 5.6(i) gives us some
V ∈ V such that x is a V(α)-limit. Thus sign(x/R(α)) = 0 and for some a ∈ R(α),
G(x/R(α)) = a ·mV(α) . Since the cut of x over R is omitted in R(α), we have
sign(x/R) = 0.

Since the value group of V(α) is the value group of V, there is some r ∈ R such
that r/a ∈ (V(α))∗. Hence a·mV(α) = r·mV(α) . Since the cut of x over R is omitted
in R(α) and G(x/R)+ is omitted in R(α), G(x/R(α)) = r·mV(α) is the convex hull
of G(x/R). Since mV(α) is the convex hull of mV , it follows that G(x/R) = r·mV .
Together with sign(x/R) = 0, this means that x is a V-limit.

(iii) Since W′
V is the convex hull of V and the residue field of W′

V is com-
plete, for every maximal definably closed subfield K of V there is a completion
of K inside W′

V . By Theorem 4.1, there is an elementary embedding of R(1)

into S′ over R. By an obvious induction this can be iterated until we reach the
completion in stages. ��

If V is finite of size n, then R(n) is complete in stages with respect to V (n).
This follows from Theorem 5.6 by induction on n: if V = {V1, . . . , Vn} with
V1 � · · · � Vn, then by Theorem 5.6(ii) (b), V(1)

1 has a complete residue field.

Thus R(2) is the pseudo completion of R(1) with respect to {V(1)
2 , . . . , V(1)

n }.
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Moreover V(1)

1 ⊆ V(2)

1 is immediate by Theorem 5.6(ii)(a) Hence by induction,
R(n) is complete in stages with respect to V (n).

Example 5.11 One might ask if the pseudo completion or the completion in
stages S of a real closed field R with respect to a set of convex valuation rings is
minimal in the sense that every R-embedding S −→ S is surjective. This is not
true in general. Look at the following example.

Let R = R0〈μ〉 be the real closure of Q(μ), where μ is infinitesimal and let
S be the pseudo completion of R with respect to the valuation ring V := the
convex hull of Q in R. Then S is R〈μ〉, which is the completion in stages of R
with respect to the valuation ring V, too. We now construct a proper real closed
subfield R of R〈μ〉, which contains μ and which is isomorphic over R0〈μ〉 to S.
In particular R realizes every cut of R0.

Let T ⊆ R be a transcendence basis over R0 and let B = {b1, b2, . . .} be a
countable subset of T. Let

R := R0〈(T \ B) ∪ {μ, b1 + μb2, b2 + μb3, . . .}〉.

Then b1 
∈ R, otherwise there is some n ∈ N such that b1 ∈ R1 := R0〈(T \
B) ∪ {μ, b1 + μb2, . . . , bn + μbn+1}〉. But then b1, . . . , bn+1, μ ∈ R1, hence R1
has transcendence degree ≥ n+ 2 over R0〈T \ B〉, which is not possible.

R is isomorphic to S over R0〈(T \ B) ∪ {μ}〉, the isomorphism is given by
sending bi to bi + μ·bi+1 (observe that T ∪ {μ} is�R0 -independent and bi and
bi + μbi+1 realize the same cut over R0. Then use Proposition 1.8).

Open Problem 5.12 Let S be a real closed field containing R, of transcendence
degree 1 over R. Let S0 be a real closed subfield of S which realizes every cut
of Q. Is S0 isomorphic to S?

More general, let S be the pseudo completion of a real closed field and let
ϕ : S −→ S be an R-algebra homomorphism. Let S0 be a real closed field with
ϕ(S) ⊆ S0 ⊆ S. Is S0 isomorphic to S over R? In the example above, R is the
real closure of Q(μ), where μ is infinitesimal and S is the pseudo completion
of R with respect to the valuation ring V := the convex hull of Q in R. Then
S = R〈μ〉 also is the completion in stages of R with respect to {V}.
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