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Abstract Let � be a convex co-compact group of isometries of a CAT(−1) space
X and let �0 be a normal subgroup of �. We show that, provided � is a free group,
a sufficient condition for � and �0 to have the same critical exponent is that �/�0 is
amenable.
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1 Introduction and results

Let � be a group of isometries acting freely and properly discontinuously on a
CAT(−1) space X. Roughly speaking, a CAT(−1) space is a path metric space for
which every geodesic triangle is more pinched than a congruent triangle in the hyper-
bolic plane; see [5] for a formal definition. Prototypical examples of CAT(−1) spaces
are simply connected Riemannian manifold with sectional curvatures bounded above
by −1 and (simplicial or non-simplicial) R-trees.

A fundamental quantity associated to � is its critical exponent δ(�). This is defined
to be the abscissa of convergence of the Poincaré series

℘�(s) =
∑

γ∈�
e−sdX (o,γo), (1.1)
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where o ∈ X and dX(·, ·) denotes the distance in X. In other words, the series con-
verges for s > δ(�) and diverges for s < δ(�). An equivalent definition is that

δ(�) = lim sup
T→+∞

1
T

log #{γ ∈ � : dX(o, γo) ≤ T}. (1.2)

A simple calculation shows that δ(�) is independent of the choice of x ∈ X.
Let ∂X denote the ideal boundary of X. The set {γo : γ ∈ �} accumulates on a

subset �� ⊂ ∂X (independent of o) called the limit set of �. Let C� = c.h.(��) ∩ X ,
where c.h.(��) is the geodesic convex hull of�� . We say that � is convex co-compact
if C�/� is compact. (If � is a Kleinian group, this agrees with the classical notion of
convex co-compactness.) In addition, we say that � is non-elementary if it is not a
finite extension of a cyclic group. These two conditions ensure that δ(�) > 0 and the
limit in (1.2) exists.

Now suppose that �0 is a normal subgroup of a convex co-compact group �. Then
�0 itself has a critical exponent δ(�0) and, clearly, δ(�0) ≤ δ(�). Our main result
addresses the question of when we have equality.

Theorem 1 If �/�0 is amenable then δ(�0) = δ(�).

The definition of amenable group is given in the next section.

Remark Equality of δ(�0) and δ(�)was previously known to hold when �/�0 is finite
or abelian [15]. (In fact, the results in ref. [15] are stated in the case where X is real
hyperbolic space but the proofs given there apply more generally.)

Since obtaining the results in this paper, we have learned that Theorem 1 has
been proved by Roblin [16], without the restriction that � is a free group, using
completely different methods. However, we feel that our alternative approach, based
on approximating δ(�) and δ(�0) by quantities related to random walks on graphs,
has independent interest. It is worth remarking that the equality of the two critical
exponents has been used recently in ref. [10].

We shall now outline the contents of the paper. In Sect. 1, we give definition of
amenable groups and introduce Grigorchuk’s co-growth criterion, interpreting it in
terms of a graph. In Sect. 2, we describe how to write the Poincaré series ℘�(s) and
℘�0(s) in terms of a subshift of finite type. We also introduce sequences of matrices
which are used to approximate δ(�) and δ(�0). In Sect. 3, we use ideas from the the-
ory of random walks on graphs, in particular [12], to show that, if �/�0 is amenable
then the respective approximations to δ(�) and δ(�0) agree at each stage, from which
Theorem 1 follows. In the final section, we consider that special case of X = H

n+1.
I am very grateful to the referee for suggesting numerous improvements to the

exposition.

2 Amenable groups and co-growth

Amenable groups were defined by von Neumann. A group G is said to be ame-
nable if there is an invariant mean on L∞(G, R), i.e. a bounded linear functional
µ : L∞(G, R) → R such that, for any f ∈ L∞(G, R),

(1) infg∈G f (g) ≤ µ(f ) ≤ supg∈G f (g); and
(2) for all g ∈ G, µ(g · f ) = µ(f ), where g · f (x) = f (g−1x).
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It is immediate from the definition that any finite group is amenable by setting

µ(f ) = 1
|G|

∑

g∈G

f (g).

The situation for infinite groups is more subtle and we shall restrict our discussion to
finitely generated groups.

A group with subexponential growth is amenable [2,7]. In particular, any abelian
or nilpotent group is amenable. However, there are examples of amenable groups
with exponential growth (e.g. the lamplighter groups [8]). In contrast, non-abelian
free groups and, more generally, non-elementary Gromov hyperbolic groups are not
amenable. It was conjectured by von Neumann that a group fails to be amenable only
if it contains the free group on two generators; however, a counterexample to this was
constructed by Ol’shanskii [11].

Grigorchuk related amenability to the property of co-growth of subgroups of free
groups. Let � (considered as an abstract group) be the free group on k generators
{a1, . . . , ak} and let |γ | denote the word length of γ , i.e. the length of the shortest
representation of γ as a word in a±1

1 , . . . , a±1
k . Clearly, we have that

lim
n→+∞ (#{γ ∈ � : |g| = n})1/n = 2k − 1.

Now suppose that�0 is a normal subgroup of�. Grigorchuk showed that the co-growth
c(�0), defined by

c(�0) := lim sup
n→+∞

(#{g ∈ �0 : |g| = n})1/n

is equal to 2k − 1 if and only if G = �/�0 is amenable [6] (see also [4]).
Grigorchuk’s result may be reinterpreted in terms of graphs. Let G denote the

graph consisting of one vertex and k oriented edges, labelled by a1, . . . , ak. The same
edges with the reverse orientation will be labelled a−1

1 , . . . , a−1
k , respectively. Write T

for the universal cover of G; then T is a 2k-regular tree. It is an easy observation that
� acts freely on T with quotient G. Furthermore, we may identify elements of word
length n in � with non-backtracking paths of length n in G. (A path (e1, . . . , en) is said
to be non-backtracking if, for each i = 2, . . . , n, the edge ei is not equal to ei−1 with
the reversed orientation.)

Now consider the action of the subgroup �0 on T and write G̃ = T /�0, for the
quotient graph; this is a G-cover of G. (In fact, G̃ is the Cayley graph of G with respect
to the generators obtained from a1, . . . , ak.) Then we may identify elements of word
length n in �0 with non-backtracking paths of length n in G̃ starting from and ending
at some fixed vertex. Grigorchuk’s result may then be reformulated as saying that the
growth rate of the number of paths of length n in G̃, starting from and ending at a
fixed vertex, is equal to the corresponding growth rate for paths in G if and only if
�/�0 is amenable.

The parallels between equality of these growth rates and equality of the critical
exponents is apparent. However, the “lengths” are different: word length |γ | in one
setting and the displacement d(o, γo) for the action on X in the other. Nevertheless,
this will provide the basis for our approach. In this context, we note that there exists
A > 1 such that

A−1|γ | ≤ d(o, γo) ≤ A|γ |. (2.1)
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We shall use several properties of the graph G̃. Firstly, provided it is not itself a tree
(which only occurs if�0 is trivial) G̃ has the property that “small cycles are dense” [12]:
there exists R > 0 such that, for each vertex u in G̃, the set B(u, R) = {v : dG(u, v) ≤ R}
contains a cycle. We also note that there is a number L(R) > 0 such that, for every
vertex u in G̃, #B(u, R) ≤ L(R).

Later we shall need to find paths joining vertices in G̃. Let cn(u, v) denote the
number of non-backtracking paths of length n in G̃ from u to v.

Lemma 2.1 [17] Let u, v be vertices of G̃. Then either

lim
n→+∞ cn(u, v)1/n = c(�0)

or

lim
n→+∞ c2n+δ(u,v)(u, v)1/2n = c(�0) and c2n+δ(u,v)−1(u, v) = 0,

where δ(u, v) = 0 if dG(u, v) is even and δ(u, v) = 1 if dG(u, v) is odd.

Corollary 2.1.1 Suppose that G is amenable (or even that c(�0) > 0) and let u, v
be vertices of G̃. Then there exists l(u, v) > 0 such that either cl(u,v)(u, v) > 0 or
cl(u,v)−1(u, v) > 0.

3 Shifts of Finite Type and Approximation

Recall that the free group � is given in terms of generators A = {a±1
1 , . . . , a±1

k }. We
shall form a subshift of finite type σ : � → �, where

� = {x = (xi)
∞
i=0 ∈ AZ

+
: xi+1 �= x−1

i , ∀i ∈ Z
+}

and σ is the shift map: (σx)i = xi+1. We call (x0, . . . , xn−1) ∈ An an allowed string
of length n if xi+1 �= x−1

i , i = 0, . . . , n − 2. We write �n for the set of all allowed
strings of length n, �≤n = ⋃n

m=0�m and �∗ = ⋃∞
n=0�n, where �0 is defined to be a

singleton consisting of an “empty string” ω. There is an obvious bijection between�n
and elements of � with word length n (and hence between � and �∗).

We make � ∪�∗ into a metric space by setting d(x, y) = 2−n(x,y), where

n(x, y) =
{

0, if x0 �= y0,
sup{n ≥ 0 : xm = ym, 0 ≤ m ≤ n}, otherwise

If f : � ∪�∗ → R is Hölder continuous with Hölder exponent α > 0 then we write

|f |α = sup

{
f (x)− f (y)

d(x, y)α
: x �= y

}
.

If we define σ(ω) = ω, the shift map extends to σ : � ∪ �∗ → � ∪ �∗ and σ(�n) =
�n−1, n ≥ 1. For a function f : � ∪ �∗ → R, we write f n(x) = f (x) + f (σx) + · · · +
f (σ n−1x).

Proposition 3.1 [9,13,14] There is a strictly positive Hölder continuous function r :
� ∪�∗ → R such that, if γ = x0 · · · xn−1 then

rn(x0, . . . , xn−1) = dX(o, γo).
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Remark An examination of the proof in ref. [14] shows that what is essential for the
proof is that X satisfies the Aleksandrov–Toponogov Comparison property. Thus, the
result holds if X is a CAT(−1) space.

An easy calculation then shows that

℘�(s) = 1 +
∞∑

n=1

∑

x∈σ−n(ω)\{ω}
e−srn(x).

Letψ : � → G = �/�0 be the natural homomorphism and, for x = (x0, . . . , xn−1) ∈
�n, write ψn(x) = ψ(x0) · · ·ψ(xn−1). We have

℘�0(s) = 1 +
∞∑

n=1

∑

x∈σ−n(ω)\{ω}
ψn(x)=e

e−srn(x).

We shall study the abscissas of convergence of the above two series via a sequence
of approximations to r. We define

rN(x) =
{

r(x), if x ∈ �n, n ≤ N,
r(x0, . . . , xN−1), otherwise.

Then ‖r − rN‖∞ ≤ |r|α2−α(N+1), where α > 0 is the Hölder exponent of r. Hence,
given ε > 0, we can choose N sufficiently large so that, for each x ∈ �∪�∗ and n ≥ 1,
|rn(x)− rn

N(x)| < nε.
We define δN and δ0

N to be the abscissas of convergence of℘N(s) and℘0
N(s), respec-

tively, where

℘N(s) = 1 +
∞∑

n=1

∑

x∈σ−n(ω)\{ω}
e−srn

N(x), ℘0
N(s) = 1 +

∞∑

n=1

∑

x∈σ−n(ω)\{ω}
ψn(x)=e

e−srn
N(x).

Lemma 3.1 We have limN→+∞ δN = δ(�) and limN→+∞ δ0
N = δ(�0).

Proof For γ = x0 · · · x|γ |−1 ∈ �, let xγ = (x0, . . . , x|γ |−1) ∈ �∗. Then, r|γ |(xγ ) =
d(o, γo), so, using this notation,

δ(�) = lim sup
T→+∞

1
T

log #{γ : r|γ |(xγ ) ≤ T}, δN = lim sup
T→+∞

1
T

log #{γ : r|γ |
N (xγ ) ≤ T}.

Fix ε > 0 sufficiently small that Aε < 1, where A is given by (2.1). Then, provided
N is sufficiently large, r|γ |(xγ ) ≤ r|γ |

N (xγ )+ |γ |ε ≤ r|γ |
N (xγ )+ Ar|γ |(xγ )ε and so

r|γ |(xγ ) ≤ r|γ |
N (xγ )

1 − Aε
.

Hence

#{γ : r|γ |
N (xγ ) ≤ T} ≤ #{γ : r|γ |(xγ ) ≤ (1 − Aε)−1T}

and so δN ≤ (1 − Aε)−1δ(�). Since we may take ε arbitrarily small, we conclude that
lim supN→+∞ δN ≤ δ(�). A similar argument gives the corresponding lower bound,
so we have limN→+∞ δN = δ(�). The same proof gives the result for δ0

N .
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Hence, to prove Theorem 1, it suffices to show that if G is amenable then δN = δ0
N ,

for each N ≥ 1. We shall do this in the next section. First we need to rewrite ℘N(s)
and ℘0

N(s) in matrix form.
For N ≥ 1, define matrices PN , indexed by �N ×�N , by

PN(x, y) =
{

e−δNrN(x0,x1,...,xN−1,yN−1), if xn = yn−1, n = 1, . . . , N − 1,
0, otherwise,

where x = (x0, x1, . . . , xN−1), y = (y0, y1, . . . , yN−1). (For N = 1, we set P1(x0, y0) = 0
whenever y0 = x−1

0 . For N ≥ 2 this is automatically avoided.) Each PN is irreducible
(and aperiodic). Also define another sequence of matrices QN , indexed by�≤N×�≤N ,
by

QN(x, y) =
{

e−δNrN(x0,x1,...,xN−1,yN−1), if xn = yn−1, n = 1, . . . , N − 1,
0, otherwise,

where, for x ∈ �m, we write x = (x0, . . . , xm−1,ω, . . . ,ω︸ ︷︷ ︸
N−m

). The matrices QN are not

irreducible. Note that PN is the restriction of QN to �N ×�N .
From the definition of QN , we have that, for n > N,

∑

x∈σ−n(ω)\{ω}
e−δNrn

N(x) =
∑

x∈�N

∑

a∈�1

Qn
N(x, (a,ω, . . . ,ω)).

Now, since PN is irreducible, the value of lim supn→+∞(Pn
N(x, y))1/n is independent of

x, y ∈ �N (in fact it is the spectral radius of PN). 
�

Lemma 3.2 For any x, y ∈ �N and a ∈ �1,

lim sup
n→+∞

(Pn
N(x, y))1/n = lim sup

n→+∞
(
Qn

N (x, (z,ω, . . . ,ω))
)1/n .

Proof We have

Qn
N(x, (a,ω, . . . ,ω)) =

∑

y∈�N

Qn−N
N (x, y) QN

N (y, (a,ω, . . . ,ω))

=
∑

y∈�N

Pn−N
N (x, y) QN

N(y, (a,ω, . . . ,ω)).

Since δN is the abscissa of convergence of℘N(s), we deduce that, for each x, y ∈ �N ,
lim supn→+∞(Pn

N(x, y))1/n = 1.
By the Perron–Frobenius Theorem, PN has 1 as an eigenvalue and an associated

strictly positive (row) eigenvector vN : vNPN = vN . In addition, we may suppose that
PN is normalized so that

∑

y∈�N

PN(x, y) = 1.

In other words, PN may be regarded as a matrix of transition probabilities between
elements of �N .
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Now we define another sequence of (infinite) matrices P̃N , N ≥ 1, indexed by
(�N × G)× (�N × G), by

P̃N((x, g), (y, h)) =
{

PN(x, y), if ψ(x0) = g−1h,
0, otherwise.

(Note that the exponent in the entries of P̃N is δN not δ0
N .) Each P̃N is locally

finite in the sense that, for each (x, g), there are only finitely many (y, h) such that
P̃N((x, g), (y, h)) > 0.

We also define a corresponding sequence of infinite matrices Q̃N , N ≥ 1, indexed
by

(
�≤N × G

) × (
�≤N × G

)
, by

Q̃N((x, g), (y, h)) =
{

QN(x, y), if ψ(x0) = g−1h,
0, otherwise.

We have
∑

x∈σ−n(ω)\{ω}
ψn(x)=e

e−srn
N(x) =

∑

x∈�N

∑

y∈�1

Q̃n
N((x, e),

(
(y,ω, . . . ,ω), e)

)
.

In Sect. 4, we shall prove the following lemma. 
�

Lemma 3.3 G is amenable if and only if lim supn→+∞(P̃n
N((x, e), (y, e)))1/n = 1.

This lemma implies that, provided G is amenable, δN = δ0
N , N ≥ 1. Combining this

with Lemma 2.1 gives Theorem 1.

4 An Auxiliary Estimate

In this section, we establish an estimate needed to complete the proof of Lemma 2.3
in Sect. 4.

Write Fixn = {x ∈ � : σ nx = x}. If x = (x0, x1, . . . , xn−1, x0, . . .) ∈ Fixn, write
x−1 = (x−1

n−1, . . . , x−1
1 , x−1

0 , x−1
n−1, . . .) ∈ Fixn.

Lemma 4.1 For each N ≥ 1, rn
N(x) = rn

N(x
−1) whenever x ∈ Fixn, n ≥ 1.

Proof For n ≥ N,

rn
N(x) = r(x0, x1, . . . , xN−1)+ r(x1, x2, . . . , xN)+ · · · + r(xn−1, x0, . . . , xN−2)

= d(o, x0x1 · · · xN−1o)− d(o, x1 · · · xN−1o)

+d(o, x1x2 · · · xNo)− d(o, x2 · · · xNo)

+ · · · + d(o, xn−1x0 · · · xN−2o)− d(o, x0 · · · xN−2o).

On the other hand,
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rn
N(x

−1) = r(x−1
n−1, x−1

n−2, . . . , x−1
n−N)+ r(x−1

n−2, x−1
n−3, . . . , x−1

n−N−1)

+ · · · + r(x−1
0 , x−1

n−1, . . . , x−1
n−N+1)

= d(o, x−1
n−1x−1

n−2 · · · x−1
n−No)− d(o, x−1

n−2 · · · x−1
n−No)

+d(o, x−1
n−2x−1

n−3 · · · x−1
n−N−1o)− d(o, x−1

n−3 · · · x−1
n−N−1o)

+ · · · + d(o, x−1
0 x−1

n−1 · · · x−1
n−N+1o)− d(o, x−1

n−1 · · · x−1
n−N+1o)

= d(o, xn−N · · · xn−2xn−1o)− d(o, xn−N · · · xn−2o)

+d(o, xn−N−1 · · · xn−3xn−2o)− d(o, xn−N−1 · · · xn−3o)

+ · · · + d(o, xn−N+1 · · · xn−1x0o)− d(o, xn−N+1 · · · xn−1o) = rn
N(x).

If n < N, the calculations become easier.
Consider the restriction rN : �N → R. We can define another function řN : �N → R

by řN(x0, . . . , xN−1) = rN(x
−1
N−1, . . . , x−1

0 ). Applying Livsic’s theorem for finite directed
graphs to the above result, we may deduce: 
�
Corollary 4.1.1 There exists u : �N−1 → R such that

rN(x0, x1, . . . , xN−1) = rN(x
−1
N−1, . . . , x−1

1 , x−1
0 )+ u(x1, . . . , xN−1)− u(x0, . . . , xN−2).

Lemma 4.2 There exists a constant C0 > 0 such that, for all (x, g), (y, h) ∈ �N × G and
n ≥ 1,

Pn
N((x, g), (y, h)) ≤ C0Pn

N((y̌, h−1), (x̌, g−1)),

where, if x = (x0, x1, . . . , xN−1) and y = (y0, y1, . . . , yN−1), we use the notation x̌ =
(x−1

N−1, . . . , x−1
1 , x−1

0 ) and y̌ = (y−1
N−1, . . . , y−1

1 , y−1
0 ).

We may take

C0 = exp
(
2δN sup{|u(x)| : x ∈ �N−1}

)
.

5 Random Walks on Graphs

In order to prove Lemma 3.3, we shall adapt work of Ortner and Woess on non-back-
tracking random walks on graphs contained in ref. [12].

For each N ≥ 1, we define an (undirected) graph SN with vertex set �N × G. Two
vertices (x, g) and (y, h)will be joined by an edge if and only if either P̃N((x, g), (y, h)) >
0 or P̃N((y, h), (x, g)) > 0. We note that SN is connected and that each vertex has degree
2k.

We may think of P̃N as defining a Markov process on SN . As part of the proof of
Lemma 3.3, we will show that P̃N has the following three properties [12]:

(1) P̃N has bounded range, i.e. there exists R > 0 such that if P̃N((x, g), (y, h)) > 0
then (x, g) and (y, h) are at distance ≤ R in SN .

(2) P̃N has a bounded invariant measure; i.e. there exists a function ν : �N ×G → R
+,

bounded above and below away from zero, such that, for all (y, h) ∈ �N × G,
∑

(x,g)∈�N×G

P̃N((x, g), (y, h)) ν((x, g)) = ν((y, h)).
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(3) P̃N is uniformly irreducible, i.e. there exist constants K > 0, ε > 0 such that, for
any pair of neighbouring vertices (x, g), (y, h) in SN , one can find k ≤ K such that
P̃k

N((x, g), (y, h)) ≥ ε.

We note that (1) holds immediately with R = 1.
To show (2), let recall that there is a strictly positive row vector vN = (vN(x))x∈�N

such that vNPN = vN . Define ν by ν((x, g)) = vN(x). Clearly this is bounded above and
below away from zero. A simple calculation shows it has the desired P̃N-invariance.

Finally, we show that P̃N is uniformly irreducible.

Lemma 5.1 P̃N is uniformly irreducible.

Proof Fix a number K (to be determined later). Let ε0 < 1 denote the smallest
positive entry of P̃N and let ε = εK

0 ; then, for every k ≤ K, each positive entry of
P̃k

N is greater than or equal to ε. Let (x, g) and (y, h) be neighbouring vertices in SN .
Without lose of generality, P̃N((x, g), (y, h)) > ε and P̃N((y, h), (x, g)) = 0. To complete
the proof we need to find a positive probability path of length at most K from (y, h)
to (x, g).

Observe that we can identify �N × G with the set of non-backtracking paths of
length N in G̃ and a positive probability path of length k in SN corresponds to a
non-backtracking path of length N + k in G̃. We therefore need to show that, for
any two non-backtracking paths (given by sequences of vertices) (u0, u1, . . . , uN) and
(v0, v1, . . . , vN) in G̃, there exists k ≤ K such that there is a non-backtracking path
of length k joining them to give a non-backtracking path from u0 to vN . It follows
from Corollary 2.1.1 that there is a non-backtracking path (uN , w1, . . . , wκ−1, v0), with
κ ≤ l(uN , v0), joining uN to v0. However, it is possible then when this is inserted
between the other two paths, backtracking occurs. To avoid this we shall use the
“small cycles are dense” property of G̃. (The following part of the proof is adapted
from the proof of Lemma 4.7 in ref. [12].)

First, we consider the beginning of the inserted path. If w1 �= uN−1 there is noth-
ing to do, so suppose that w1 = uN−1. Choose a neighbour z1 of uN which is not
equal to uN−1. By Lemma 4.3 of [12], (uN , z1)may be extended into non-backtracking
paths which reach infinitely many vertices. Since B(uN−1, R) is finite, we may choose
one of these paths, (uN , z1, . . . , zr), so that zr /∈ B(uN−1, R) but zi ∈ B(uN−1, R),
i = 1, . . . , r − 1 (with r ≤ L(R)+ 1. By the “small cycles are dense” property, there is
a cycle (c0, c1, . . . , cp−1, c0) in B(zr, R) (with p ≤ L(R)). Either

(a) zr = ci for some i = 0, 1, . . . , p − 1, or,
(b) by the definition of B(zr, R), there is a non-backtracking path (zr, a1, . . . , aq−1, c0)

(a1 �= zr−1) joining zr to c0 (with q ≤ R).

In case (a), we insert

(uN , z1, . . . , zr, ci+1, . . . , cp−1, c0, . . . , ci−1, zr, zr−1, . . . , z1, uN)

and in case (b), we insert

(uN , z1, . . . , zr, a1, . . . , aq−1, c0, c1, . . . , cp−1, c0, aq−1, . . . , a1, zr, zr−1, . . . , z1, uN)

between (u0, u1, . . . , uN) and (uN , w1, . . . , wκ−1, v0).
Now consider the end of the path (uN , w1, . . . , wκ−1, v0). If wk−1 �= v1 there is noth-

ing to do. On the other hand, if wk−1 = v1 then we carry out a similar construction to
that in the paragraph above.
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In this way, we have obtained a non-backtracking path starting with (u0, u1, . . . , uN)

and ending with (v0, v1, . . . , vN) with uN and v0 being joined in at most l(uN , v0) +
4(L(R)+ 1)+ 4R + 4L(R) steps.

To complete the proof, we need to show that this number may be bounded
independently of our initial choice of (x, g) and (y, h) (which determine uN and v0).
First, we note that there are only finitely many x and y in�N . Second, we observe that,
for any a ∈ G, P̃N((x, ag), (y, ah)) = P̃N((x, g), (y, h)), so, without loss of generality,
we may suppose that g = e. Since (y, h) is a neighbour of (x, g) in SN , this forces h to
be one of the finitely many elements ψ(a±1

1 ), . . . ,ψ(a±1
k ). Therefore, we may choose

K to be the maximum of l(uN , v0)+ 8L(R)+ 4R + 4, taken over this finite number of
choices.

Since P̃N has an invariant measure ν, it acts on the Hilbert space l2(SN , ν). Let
ρ2(P̃N) denote the spectral radius. Also, since P̃N is irreducible,

ρ(P̃N) = lim sup
n→+∞

(P̃n
N((x, g), (y, h)))1/n

is independent of (x, g) and (y, h) and ρ(P̃N) ≤ ρ2(P̃N).
To complete the proof of Lemma 3.3 (and hence of Theorem 1) we use the following

results from [12]. (See page 112 of [18] for the definition of an amenable graph.) 
�
Proposition 5.1 [12,Theorem 4.6] If SN is connected with bounded vertex degrees and
P̃N satisfies (1)–(3) then ρ2(P̃N) = 1 if and only if SN is amenable.

We have already seen that the hypotheses used in Proposition 5.1 are satisfied. The
next result relates ρ2(P̃N) and ρ(P̃N).

Proposition 5.2 ρ(P̃N) = ρ2(P̃N).

Proof The proof is a simple modification of the proof of Proposition 2.6 in ref. [12].
The hypothesis there is that one has a graph for which “small cycles are dense”; since
this holds for G̃, it also holds for SN . There are two differences from the proof in ref.
[12]:

(1) we consider a matrix PN = 1
2 (I + P̃N), where I is the identity matrix, and observe

that PN preserves ν (rather than the counting measure as in ref. [12]);
(2) we use Lemma 4.2: there exists a constant C0 > 0 such that, for all (x, g), (y, h) ∈

�N × G and n ≥ 1,

Pn
N((x, g), (y, h)) ≤ C0Pn

N((y̌, h−1), (x̌, g−1)),

where, if x = (x0, x1, . . . , xN−1) and y = (y0, y1, . . . , yN−1), we use the notation
x̌ = (x−1

N−1, . . . , x−1
1 , x−1

0 ) and y̌ = (y−1
N−1, . . . , y−1

1 , y−1
0 ). (In ref. [12], the inequality

is an equality with C0 = 1.)

Neither of these affect the proof. 
�
Together, these two results show that ρ(P̃N) = 1 if and only if SN is amenable. To

finish things off, we show that the latter condition is equivalent to the amenability of G.
Recall that a map f : X → Y between two metric spaces (X, dX) and (Y, dY) is

called a quasi-isometry if there exist A ≥ 1, B, C ≥ 0 such that,

(1) for all x, x′ ∈ X, A−1dX(x, x′)− B ≤ dY(f (x), f (x′)) ≤ AdX(x, x′)+ B; and
(2) for every y ∈ Y, there exists x ∈ X such that dY(y, f (x)) ≤ C.
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Proposition 5.3 SN is amenable if and only if G is amenable.

Proof We identify G with its Cayley graph C(G); G is an amenable group if and
only if C(G) is an amenable graph. Define a map fN : SN → C(G) on the vertices
by fN(x, g) = g and extend it to the edges by fN((x, g), (y, h)) = (g, h). This map is
clearly a quasi-isometry. Since, for graphs with bounded vertex degree, amenability is
an invariant of quasi-isometry [18,Theorem 4.7], the result is proved. 
�

6 Kleinian Groups

In this section, we shall discuss the relevance of our results for Kleinian groups acting
on the hyperbolic space H

n+1 and, in particular, for finitely generated Fuchsian results.
(These results are subsumed by those in ref. [16].)

We begin be describing the results of Brooks on amenability and the spectrum
of the Laplacian. Let N be a complete Riemannian manifold and let �N denote the
Laplace–Beltrami operator acting on L2(N). Then −�N is a positive self-adjoint oper-
ator on L2(N). If σ(−�N) denotes the spectrum of −�N then σ(−�N) ⊂ [0, +∞).
Let λ0(N) denote the bottom of the spectrum, i.e.

λ0(N) = inf σ(−�N).

If Ñ is a Riemannian cover of N then λ0(Ñ) ≥ λ0(N).

Theorem (Brooks [3]) Suppose that Ñ is a Riemannian cover of N. If π1(N)/π1(Ñ)
is amenable then λ0(Ñ) = λ0(N).

Remark Subject to certain conditions, in particular, if N is compact, Brooks also
showed the converse.

Let � be a Kleinian group, i.e. a discrete group of isometries of the real (n + 1)-
dimensional hyperbolic space H

n+1. We say that� is geometrically finite if it is possible
to choose a fundamental domain which is a finite sided polyhedron. We shall suppose
that � acts freely so that H

n+1/� is a smooth manifold and that � is non-elementary.
Then 0 < δ(�) ≤ n, with equality if and only if H

n+1/� has finite volume. As before,
�0 will be a normal subgroup of �.

In this setting, δ(�) is related to λ0(H
n+1/�) by the formula

λ0(H
n+1/�) =

{
δ(�)(n − δ(�)) if δ(�) > n/2,
n2/4 if δ(�) ≤ n/2

with an identical formula holding for �0. Thus, in the range δ(�) > n/2, the critical
exponent may be read off from the λ0 and vice versa, while for δ(�) ≤ n/2 the critical
exponent is a more subtle quantity.

Using the above relation, Brooks was able to deduce that, if � is geometrically
finite and δ(�) > n/2 then amenability of �/�0 implies that δ(�0) = δ(�) [3]. In
the case where � is a free group, we can remove the restriction that δ(�) > n/2. In
particular, this gives a complete result for finitely generated Fuchsian groups.

Theorem 2 Let � be a finitely generated Fuchsian group and let �0 be a normal sub-
group. If �/�0 is amenable then δ(�0) = δ(�).
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Proof First, we note that, for Fuchsian groups, if � is finitely generated then it is geo-
metrically finite. If H

2/� is compact then δ(�) = 1, so Brooks’s result applies. If H
2/�

is not compact then � is a free group. If H
2/� has a cusp then δ(�) > 1/2 [1], so again

Brooks’s result applies. In the remaining case, the result follows from Theorem 1. 
�
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