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Abstract We show that a strong form (the fully faithful version) of the generating
hypothesis, introduced by Freyd in algebraic topology, holds in the derived category
of aring R if and only if R is von Neumann regular. This extends results of the second
author (J. Pure Appl. Algebra 208(2), 2007). We also characterize rings for which the
original form (the faithful version) of the generating hypothesis holds in the derived
category of R. These must be close to von Neumann regular in a precise sense, and,
given any of a number of finiteness hypotheses, must be von Neumann regular. How-
ever, we construct an example of such a ring that is not von Neumann regular and
therefore does not satisfy the strong form of the generating hypothesis.

0 Introduction

The generating hypothesis was introduced by Peter Freyd [4] in algebraic topology,
where it is the assertion that any map f: X — Y of finite spectra that is 0 on stable
homotopy groups is in fact null homotopic. The generating hypothesis is widely con-
sidered to be one of the most important and difficult problems in stable homotopy
theory. It has many implications for the structure of the stable homotopy ring 7,.S°
of the sphere, implying for example that it is totally non-coherent [4] and that the
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790 M. Hovey et al.

p-completion n*Sg is a self-injective ring [7]. Somewhat surprisingly, Freyd proved
that the generating hypothesis in fact implies that the map

[X, Y] — Hom,_go (X, 7, Y)

from maps of finite spectra to maps of their stable homotopy modules is not only
injective but also surjective. That is, the generating hypothesis implies that the stable
homotopy functor is fully faithful on finite spectra.

One approach to understanding the generating hypothesis is to look at analogous
questions in other categories. Following the second author [9], we say that a ring R
satisfies the generating hypothesis if whenever f: X — Y is a map of perfect com-
plexes in the derived category D(R) of R and H,.f = 0, then f = 0. Recall that a
perfect complex is a bounded chain complex of finitely generated projective (right)
modules, and that f = 0 in D(R) exactly when f is chain homotopic to 0 (for maps of
perfect complexes). Perfect complexes are the algebraic analogue of finite spectra, as
they are the small objects in D(R). Thus, R satisfies the generating hypothesis exactly
when the homology functor is faithful on perfect complexes. Let us also say that R
satisfies the strong generating hypothesis if the homology functor is fully faithful on
perfect complexes.

The second author noticed [9, Sect. 4] that the homology functor is faithful on
all of D(R) if and only if all right R-modules are projective; that is, if and only if
R is semisimple. Since perfect complexes are the small objects of D(R) and finitely
presented modules are the small R-modules, it is natural to conjecture (as the second
author did in [9]) that the homology functor is faithful on perfect complexes (that is, R
satisfies the generating hypothesis) if and only if all finitely presented right R-modules
are projective; that is, if and only if R is von Neumann regular. The second author
verified that all von Neumann regular rings do satisfy the generating hypothesis, and
proved that if R satisfies the generating hypothesis and is either commutative or right
coherent, then R is von Neumann regular [9].

In this paper, we first prove that R satisfies the strong generating hypothesis if
and only if R is von Neumann regular. We then consider the generating hypothesis, in
effect asking whether the generating hypothesis implies the strong generating hypoth-
esis. We prove that R satisfies the generating hypothesis if and only if all short exact
sequences of finitely presented modules split, and all submodules of flat modules are
flat. This makes R close to von Neumann regular, and in fact if R is local or satisfies
one of several finiteness hypotheses it forces R to be von Neumann regular. However,
we construct an example of a ring that satisfies the generating hypothesis but is not
von Neumann regular. Over this ring, then, the homology functor is faithful on perfect
complexes but not full.

The authors would like to thank Grigory Garkusha for many helpful discussions,
and the referee for simplifying some of our arguments.

All R-modules M will be right R-modules in this paper, so that, for example, D(R)
is the unbounded derived category of right R-modules. The differential d in a chain
complex P will lower dimension, so that d,: P, — P,_;. We will denote ker d,, by
Z,P and imd, by B,,_{P. If M is an R-module, then D"(M) denotes the complex
which is M in degree n and n — 1 and O elsewhere, with d,, being the identity. "M
denotes the complex that is M in degree n and 0 elsewhere.
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The generating hypothesis in the derived category of a ring 791

1 The strong generating hypothesis

We begin by recalling the second author’s characterization of semisimple rings.

Lemma 1.1 Let P be an object of D(R). Assume H,P is projective for all n. Then
P =@, S"(H,P). Furthermore, for every object Q € D(R), the natural map

[P, Q] — Homg(H.P,H.Q)
is an isomorphism.

Proof If M is a projective R-module and Q is a complex, chain homotopy classes of
chain maps from $"M to Q are isomorphic to Homg (M, Z,,Q)/ Homgr(M, B, Q). This
embeds in Homg (M, H,Q), and the cokernel is a subgroup of Ext}Q(M, B,0) = 0.
Hence, if M is projective, then

[S"M, Q] = Homg (M, H,Q).

In particular, the identity map of H,P lifts to a map S"(H,P) — P. This gives us a
map

EB S"(H,P) — P

that is a homology isomorphism, hence an isomorphism in D(R). The second part now
follows easily. O

Proposition 1.2 A ring R is semisimple if and only if the homology functor is faithful
on D(R). Furthermore, in this case, the homology functor is in fact fully faithful on
D(R).

Proof If R is semisimple, then Lemma 1.1 implies that homology is fully faithful. For
the converse, take two R-modules M and N, and a projective resolution P of M. Then
an element of Ext*(M, N) is represented by a map from P to N, thought as a complex
concentrated in degree s. This map is necessarily 0 in homology when s > 0. Thus
Ext’(M,N) = 0 for all s > 0 and all M, N, so every R-module is projective and R is
semisimple. O

The analogue for the generating hypothesis is the following theorem.

Theorem 1.3 A ring R satisfies the strong generating hypothesis if and only if R is von
Neumann regular. In this case, the natural map

[P, Q] — Homg(H,.P, H,Q)
is an isomorphism for all perfect complexes P and arbitrary complexes Q.

Recall that R is von Neumann regular if and only if, for every x € R, there is a
y € R with x = xyx. The standard reference for von Neumann regular rings is [6]; the
book [8] takes an approach based on module categories, so contains some different
and useful results about von Neumann regular rings. A standard characterization is
that R is von Neumann regular if and only if all R-modules are flat if and only if all
finitely presented R-modules are projective. Note as well that von Neumann regular
rings are coherent.
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792 M. Hovey et al.

Proof Suppose R satisfies the strong generating hypothesis. Then,
anny ann,(Rx) = Rx

forallx € R, by [9, Proposition 2.7]. Now take x € R, and consider the perfect complex
P with P; = Rifi = 0,1 and P; = 0 otherwise, with the differential P; — Py being
left multiplication by x. This complex has Hy(P) = R/xR and H{(P) = ann,(x). By the
strong generating hypothesis, there exists a chain map ¢: P — P such that H{(¢) =0
and Hy(¢) = 1, the identity of R/xR. Translating, this means there exist elements
a,b € R such that xa = bx with a € anng ann,(x) (so that Hi(¢) = 0) and b = 1 + xc
for some ¢ € R (so that Hy(¢) = 1). But then a = dx for some d € R, so we have

xdx = xa = bx = (1 + x¢)x = x + xcx.

This means that x = x(d — c)x. Since x was arbitrary, R is von Neumann regular.
Conversely, suppose R is von Neumann regular, and P is a perfect complex. Since R

is coherent, H, P is finitely presented for all z, and thus must be projective. Lemma 1.1

then completes the proof. O

Recall from [9] that if R is either commutative or right coherent and R satisifes the
generating hypothesis, then R is von Neumann regular. Hence we get the following
corollary.

Corollary 1.4 If R is either commutative or right coherent, then R satisfies the generating
hypothesis if and only if R satisfies the strong generating hypothesis.

Recall that a full subcategory of a triangulated category is called thick if it is closed
under shifts, retracts, and cofibers; the thick subcategory generated by R consists of
the perfect complexes.

The special case of the following result when R is either commutative or right
coherent is proved in [9].

Corollary 1.5 A ring R satisfies the strong generating hypothesis if and only if, in D(R),
the thick subcategory generated by R is the collection of retracts of finite coproducts of
suspensions of R.

This corollary indicates how different the stable homotopy category must be from
the derived category of a ring if Freyd’s generating hypothesis is to be true, since there
are many finite spectra that are not retracts of finite coproducts of suspensions of the
sphere.

2 Rings that satisfy the generating hypothesis

Having dealt with the strong generating hypothesis, we now turn our attention to the
generating hypothesis. The objective of this section is to prove the following theorem.

Theorem 2.1 A ring R satisfies the generating hypothesis if and only if R has weak
dimension at most 1 and all finitely presented R-modules are FP-injective.

Weak dimension at most 1 is of course equivalent to the statement that submod-
ules of flat modules are flat. Recall that a module M is said to be FP-injective if
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The generating hypothesis in the derived category of a ring 793

Ext!(F, M) = 0 for all finitely presented modules F; thus all finitely presented mod-
ules are FP-injective if and only if all short exact sequences of finitely presented
modules split. FP-injective modules seem to have been introduced in [14]; a good
guide to the literature can be found in [3, Chap. 6]. An FP-injective module is some-
times called absolutely pure, because M is FP-injective if and only if every short exact
sequence

O—- M—->N-—-P—>0

is pure (that is, remains exact upon tensoring with any left R-module). See [8, Theo-
rem 4.89(5)] for a proof of this equivalence.

To compare the rings of Theorem 2.1 with von Neumann regular rings, the following
lemma is helpful.

Lemma 2.2 A ring R is von Neumann regular if and only if every R-module is FP-
injective.

This lemma is well-known, but does not appear in [6] or [8], so we include the proof
for the convenience of the reader.

Proof Suppose R is von Neumann regular, and M is an R-module. Choose a short
exact sequence £

O M—->1—-N-=0

where [ is injective. Since N is necesarily flat, this sequence is pure [8, Theorem 4.85].
Hence, if F is finitely presented, Hom(F, €) is still exact [8, Theorem 4.89(5)], and so
Ext!(F, M) = 0 and M is FP-injective.

Conversely, if every module is FP-injective, another application of [8, Theorem 4.89
(5)] shows that every short exact sequence is pure. Then [8, Theorem 4.85] shows that
every module is flat, as required. O

We now begin the proof of Theorem 2.1. Our first task is to characterize the homol-
ogy groups of perfect complexes.

Proposition 2.3 Suppose Ris aring. An R-module M is a homology module of a perfect
complex of R-modules if and only if there exists a finitely presented module F such that
M embeds in F and the quotient F /M embeds in a projective module. Furthermore, in
this case, there is a perfect complex P such that P, = O unlessn = 0,1,2 and M = H P.

Proof Suppose M = H, P, where each P; is a finitely generated projective module.
Then we have a short exact sequence

0— M — Pp/B.P % B, P — 0,

P, /B, P is finitely presented and B,,_1 P embeds in the projective module P,,_;.

Conversely, suppose M embeds in the finitely presented module F and the quotient
F/M embeds in the projective module Py, which we can assume is finitely generated
since F is so. Choose a presentation

P p B E S0
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794 M. Hovey et al.

of F,where Py and P; are finitely generated projectives. Define the map di: Py — Py
to be the composite
P4 F— F/M— P,

This defines a three-term perfect chain complex P. Pulling back the presentation of F
through the inclusion M — F shows that H{1P = M. O

We now take a significant step towards Theorem 2.1 by showing how FP-injective
modules arise.

Theorem 2.4 Let R be a ring, and let Q be an arbitrary object of D(R). Then the gener-
ating hypothesis with target Q is true in D(R) if and only if H,Q is FP-injective for all n.
In particular, R satisfies the generating hypothesis if and only if all homology modules
of perfect complexes are FP-injective.

The generating hypothesis with target O is the statement that any map f: P — QO
in D(R) where P is a perfect complex and H,f = 0 has f = 0. So R satisfies the
generating hypothesis if and only if R satisfies the generating hypothesis with target
Q for all perfect complexes Q.

Note in particular that this theorem and Lemma 2.2 imply that R satisfies the gen-
erating hypothesis with target Q for all (not necessarily perfect) Q if and only if R is
von Neumann regular.

Proof Suppose first that the generating hypothesis with target Q holds, and consider
a finitely presented module F and an integer n. Choose a finite presentation

PP, | > F—0

of F, so that, by letting P; = 0 for i # n,n — 1, we get a perfect complex P with
H,_{P = F.To prove that

Ext' (F, HyQ) =0,
it suffices to show that any map
f: Pu/Z,P — H,Q

extends to amap g: P,_; — H,Q with gd, = f, where d,, is the map induced by d,,.
Since P, is projective, there is a map ¢,: P, — O, such that the composite

P2 0, % 0,/B,0

is the composite

f i
P, % pP,z,PL H,0S 0,/B,0.
Now let ¢,_1: P,_1 — O,_1 be the zero map. Then ¢: P — Q is a chain map.
Indeed, write d,,: Q,, — Q,,_1 as d,, = rq, where r: Q,/B,Q — O,,_1. Then
dndn = rqey = rifp =0

since ri = 0. Furthermore, ¢ induces the zero map on homology, because if x € Z,, P,
then g¢,x = 0, so ¢,x is a boundary.
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The generating hypothesis in the derived category of a ring 795

If the generating hypothesis is true, then ¢ must be chain homotopic to 0. This
gives us maps D,,_1: P,y — O, and D,: P, — Q41 such that d,D,_1 = 0 and
D,_1dn,+d, 1Dy = ¢,.Since d,,: Q, — O, factors through Q,,/B,,Q asd, = dnq,
we conclude that d,qD,_; = 0, so there exists a map g: P,_; — H,Q such that
ig = qD,,_1. Of course, we claim that g is the desired extension. To see this, apply g to
the relation

anldn + dn+1Dn = ¢n
to get

qD,_1d, = ifp or igd, = ifp.

Writing d, = d,,p and using the fact that i is a monomorphism and p is an epimorphism,
we conclude that gd,, = f, as required.

Now suppose that every homology group of Q is FP-injective, and ¢p: P — QO
is a map of chain complexes that induces 0 on homology. We will construct a chain
homotopy D,: P, — Q41 such that d,,y1D, + D,_1d, = ¢, by induction on n.
Our induction hypothesis will be that we have constructed D; for i < n — 1 and that
¢n — Dy,_1d,, which is a map from P, to Q,, in fact lands in the boundaries B, Q. Get-
ting started is easy since P is bounded below. For the induction step, our hypothesis
gives us the commutative square below,

Pnt1

Po1/Zy P ———  Out1/Bp10

(l,Hrll JVdnJrl

P, e — B, 0
¢n_Dn—ldn

where ¢, 1 exists because ¢ is zero on homology, so must take cycles to boundaries.
We will construct a lifting D,,: P, — Qp+1/B,+10Q in this square. First of all, there is
obviously a map

E,: P, — Qn+1/Bn+1Q

such that d,, 11 E,, = ¢, — D,,_1d,, simply because P,, is projective. Then

dn+1 (¢n+1 - Endn+1) = dn+1¢n+1 - ¢ndn+1 + anldndn+1 =0.

Hence ¢,,+1 — End, 41 isamap from P, /Z, 1P to H, 1 Q. Since H,,;1Q is FP-injec-
tive, there is a map Fy,: P, — H, 10O such that F,,d,.1 = ¢,.1 — End, 1. Hence

E:En+Fn: Py — Q0y41/By+10

defines a lift in our commutative square.

We now choose D,: P, — Q4 lifting D,,, which we can do because P, is pro-
jective. Then one can easily check that d,, 1D, = ¢, — D,_1d,, and also, because
Dy,d,1 = ¢pi1, that ¢, — Dyd, 41 lands in B, Q. This completes the induction
step and the proof. O

We can now prove Theorem 2.1.

Proof of Theorem 2.1 Suppose the generating hypothesis holds in D(R). In view
of Theorem 2.4, we need only show that R has weak dimension at most 1. Since
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796 M. Hovey et al.

Tor,(—, M) commutes with direct limits, it suffices to show that the flat dimension of
any finitely presented module is at most 1. Since any finitely presented module is a
homology group of a perfect complex, it is enough to show that the cycles Z,, P and
the boundaries B, P are flat for all perfect complexes P and integers n. But Z, P is
itself a homology group of a perfect complex (simply truncate P by replacing all the
P; for i > n by 0), and so Theorem 2.4 implies that Z,, P is FP-injective. This means
that the short exact sequence

0—-2,P—P,— B, 1P—>0

is pure. Now choose a left R-module M and apply—®gM to this short exact
sequence. By purity, it remains exact, and so the Tor long exact sequence shows
that Torf(Bn,lP, M) = 0. Since M was arbitrary, B,,_1P is flat. But then Z,P, as a
kernel of a surjection of flat modules, is also flat.

Conversely, assume R has weak dimension at most 1 and all finitely presented
R-modules are FP-injective. We need to show that an arbitrary homology group M
of a perfect complex is FP-injective, by Theorem 2.4. By Proposition 2.3, there is a
finitely presented module F and an exact sequence

0>M-—>F—F/M— 0,

where /M embeds in a projective module. Since R has weak dimension at most 1,
F/M is flat. But then the above exact sequence is pure [8, Theorem 4.85]. Applying
Hompg (N, —) to this sequence we get a long exact sequence

0 — Homgr(N,M) — Homg(N, F) — Homg(N, F/M)
— Exth(N,M) — Exth(N,F) — ---

If N is finitely presented, though, the map Homg (N, F) — Hompg(N, F/M) is sur-
jective, since our original sequence is pure [8, Theorem 4.89(5)]. By hypothesis,
ExthL (N, F) = 0, so we conclude that Exth (N, M) = 0. Thus M is FP-injective. o

3 Examples and counterexamples

In this section, we give conditions under which rings that satisfy the generating hypoth-
esis must be von Neumann regular, and also give an example of a ring that satisfies
the generating hypothesis yet is not von Neumann regular, and thus does not satisfy
the strong generating hypothesis.

Theorem 3.1 A ring R is von Neumann regular if and only if the generating hypothesis
holds in D(R) and finitely generated flat submodules of projective right R-modules are
projective.

Proof Assume that the generating hypothesis holds in D(R) and finitely generated
flat submodules of projectives are projective. Suppose M is finitely presented, so that
we have a short exact sequence

0O—-—K—->P—->M-—0

where P is a finitely generated projective and K is finitely generated. Since R has weak
dimension < 1 by Theorem 2.1, K is a finitely generated flat submodule of a projective
module. By hypothesis, then, K is projective, and hence finitely presented. Since M
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The generating hypothesis in the derived category of a ring 797

is FP-injective by Theorem 2.1, our short exact sequence splits, and M is projective.

Thus every finitely presented module is projective, so R is von Neumann regular.
Conversely, if R is von Neumann regular, then any finitely generated submodule

of a projective module is projective [8, Example 2.32(d)]. ]

This immediately gives the following corollary, implicit in [9].

Corollary 3.2 A ring R is von Neumann regular if and only if R satisfies the generating
hypothesis and is right coherent.

Proof If R is right coherent, then a finitely generated submodule of a projective
module is finitely presented. If it is also flat, then it is projective. O

There are a great many rings where finitely generated flat modules are known to be
projective [11]. The following theorem contains some cases of this, which are some-
what less satisfactory since not all von Neumann regular rings satisfy the hypotheses.

Theorem 3.3 Suppose the generating hypothesis holds in D(R) and one of the following
hypotheses holds.

(1) Ris local (unique maximal right ideal).

(2) R is semiperfect (every finitely generated module has a projective cover).

(3) Risreduced (no nonzero nilpotents) and has finite uniform dimension (R contains
no infinite direct sum of nonzero right ideals).

(4) R has zero Jacobson radical and finite uniform dimension.

(5) R is right nonsingular (the only element whose right annihilator is essential in R
is 0) and has finite uniform dimension.

(6) R is simple (no nontrivial two-sided ideals) and has finite uniform dimension.

Then R is von Neumann regular.

Note that these conditions may not all be independent of each other. For example,
the authors suspect that if R is both right FP-injective (as it must be if it satisfies
the generating hypothesis) and has finite uniform dimension, then R may have to be
semiperfect.

Proof For a local, semiperfect, or right nonsingular ring with finite uniform dimen-
sion, every finitely generated flat module is projective; the local case is due to Endo
and can be found in [8, Theorem 4.38]. The semiperfect case is due to Bass and is [8,
Exercise 4.21]. The right nonsingular case is due to Sandomierski [13, Corollary 1,
p. 228]. Every reduced ring is right nonsingular by [8, Lemma 7.8]; since the sin-
gular elements form a two-sided ideal, every simple ring is also right nonsingular
[8, Section 7A]. If R is FP-injective, or in fact only has Ext! (R/aR,R) =0foralla € R,
then having zero Jacobson radical is equivalent to being right nonsingular, by [10,
Theorem 2.1]. O

Not every von Neumann regular ring has finite uniform dimension. They all, how-
ever, are right nonsingular [8, Corollary 7.7]. This leads to the following theorem.

Theorem 3.4 A ring R is von Neumann regular if and only if it satisfies the generating
hypothesis, is right nonsingular, and its maximal right ring of quotients Q is a flat left
R-module.
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798 M. Hovey et al.

The maximal right ring of quotients of R is the endomorphism ring of the injective
hull of R as a right R-module, and is much studied in ring theory. See [8, Sect. 13] for
an introduction. When R is right nonsingular, Q is just equal to the injective hull of R.

Proof Sandomierski [13, Theorem 2.9] proves that if R is right nonsingular and the
maximal right ring of quotients Q is flat as a left R-module, then finitely generated
flat submodules of free R-modules (and hence also of projective R-modules) are
projective. Theorem 3.1 completes the proof. O

Theorem 3.5 There exists a ring S that satisfies the generating hypothesis but is not von
Neumann regular.

Of course, such a ring will not satisfy the strong generating hypothesis. Before
proving this theorem, we need the following lemmas.

Lemma 3.6 Every principal right ideal of a ring R is flat if and only if whenever ab = 0
in R there is an x € R such that ax = 0 and xb = b.

Proof Consider the short exact sequence

ax
0 — ann,a - R — aR — 0.

By [8, Theorem 4.23], aR is flat if and only if for every b € ann,a, there is a map
0: R — ann,(a) with 6(b) = b. Translating, this means that aR is flat if and only if
whenever ab = 0, there is an x such that ax = 0 and xb = b. O

Lemma 3.7 A ring R has weak dimension < 1 if and only if for every integer m and
every pair of m x m matrices A, B over R with AB = 0, there is an m x m matrix X
over R such that AX = 0and XB = B.

Proof In view of Lemma 3.6, the matrix condition of this lemma is equivalent to
every principal right ideal of M,,(R) being flat, for all m > 1. We will use the Morita
equivalence between R and M,,(R) to prove that this is equivalent to R having weak
dimension < 1. Indeed, if R has weak dimension < 1, so does M,,(R) [8, p. 481], and
so every ideal of M,,(R) is flat.

Conversely, suppose every principal right ideal of M, (R) is flat for all m > 1.
Suppose [ is an m-generated right ideal of R. Then I corresponds under the Morita
equivalence to a principal right ideal of M,,(R) [8, Remark 17.23(C)]. This princi-
pal ideal is flat, and so [ is flat as well, since Morita equivalences preserve flatness
[8, p. 481].

Hence all finitely generated ideals of R are flat. Since Tor commutes with direct
limits, all ideals of R are flat. But then R has weak dimension < 1 [8, Lemma 4.66].

]

Proof of Theorem 3.5 We will use the method of [12], who introduce and study indis-
crete rings. For us, the salient property of indiscrete rings is that all finitely presented
modules over an indiscrete ring are FP-injective [12, Theorem 2.4]. Thus, we must
find an indiscrete ring that also has weak dimension one. The construction given in
[12, p. 359] begins with a finite-dimensional algebra R of finite representation type
over an infinite field F. Because we want to end up with something of weak dimension
one, we will take R to have right (and left) global dimension 1. For example, we can
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The generating hypothesis in the derived category of a ring 799

take R to be the ring of 2 x 2 upper triangular matrices over F, which is a classical
example of a ring of right (and left) global dimension 1 that is not von Neumann
regular [8, Example 2.36].

The method of [12] is then to construct a map 7: R — M,R and then let S = R,
be the direct limit

S = Ry = colim(R > MR Y% ppor 225

Then Prest et al. [12] show that S is always indiscrete. Now, in our case, R has global
dimension 1, and therefore all of the MR also have global dimension 1 since they are
Morita equivalent to R. Now, if we take a pair of m x m matrices A, B over S with
AB = 0, then we can choose k large enough such that A, B are actually matrices over
M kR, and AB = 0 as such matrices. Then Lemma 3.7 shows that there is a matrix X
over M, xR, and hence over §, with AX = A and XB = 0. Thus Lemma 3.7 implies
that S has weak dimension < 1, and § cannot be von Neumann regular because R is
not (see [12, p. 359)). ]

The indiscrete rings of [12], of which our counterexample S is one, have been gen-
eralized by Garkusha and Generalov [5] to the class of almost regular rings, in which
all (left or right) finitely presented modules are FP-injective. The indiscrete rings are
the simple almost regular rings.

We also note that the ring S of Theorem 3.5 is in fact weakly semihereditary in
the sense of Cohn [2, p. 13]. This means that if A and B are (not necessarily square)
matrices such that AB = 0, then there is an idempotent matrix E such that AE = A
and EB = 0. Since hereditary implies weakly semihereditary, each M, (R) in the above
proof is weakly semihereditary, and so the same argument shows that § is as well. One
can then use (the left module version of) Lemma 3.7 to see that weakly semihereditary
implies weak dimension < 1.

We now turn to some questions we have not been able to answer. First of all, the
stable homotopy category in topology is more like D(R) for a graded ring R (or, better
yet, a differential graded algebra R), though, it must be stressed, these categories are
still much simpler than the stable homotopy category. We have not considered the
generating hypothesis for these R.

We could ask whether there is a ring R that satisfies the generating hypothesis
for right R-modules but not left R-modules. Such a ring could not be von Neumann
regular, of course.

Also, recall that there is a conditionally convergent spectral sequence whose E»
term is Exty* (H. P, H, Q) converging to D(R)(P, Q). It seems intuitively evident that
for the strong generating hypothesis to hold, this spectral sequence must collapse to
the 0-line for perfect complexes P and Q. This is in fact true, since in this case R
is von Neumann regular, hence coherent, so the homology groups H, P are finitely
presented modules and therefore projective.

However, the situation for R satisfying the generating hypothesis but not the strong
generating hypothesis is less clear. To satisfy the generating hypothesis, it must be that
every element of Ext**(H, P, H,Q) with s > 0 does not survive the spectral sequence.
But in order not to satisfy the strong generating hypothesis, there must be an element
of Hom*(H,P, H,Q) for some perfect P and Q that supports a differential. It would
be intriguing to understand how this happens.

Finally, one could define R to satisfy the n-fold generating hypothesis if whenever
fi,...,fn are composable maps of perfect complexes such that H.(f;) = 0 for all i,
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then f, o --- o fi = 0 in D(R). If we ask for this condition to hold for all n-tuples of
composable maps with H.f; = 0, not just maps between perfect complexes, then the
second author has shown in his thesis, using work of Christensen [1], that R has pro-
jective dimension < n. One could then ask for an analogous characterization of rings
R, probably in terms of weak dimension, that satisfy the n-fold generating hypothesis,
or some strong version of the n-fold generating hypothesis.
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