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Abstract. In this paper two kinds ofumulant processesre studied in a general
setting. These processes generalize the cumulant of an infinitely divisible random
variable and they appear as #gonential compensatof a semimartingale. In a
financial context cumulant processes lead to a generdtizedher transforme

also provide some new criteria for uniform integrability of exponential martingales.
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1 Introduction

Any exponential semimartingale, i.e. any process of the f®rmexp(X) for some
semimartingaleX, can be written as stochastic exponenfiak £(X) for some
semimartingaleX . The proces¥ is calledstochastic logarithnof S orexponential
transformof X. If X is a special semimartingale, then its predictable part of finite
variation K will be denoted thd_.aplace cumulant process X. This process is
closely linked to theexponential compensataf X, i.e. the unique predictable
processK of finite variation such thatxp(X — K) is a local martingale. In fact,

K is the exponential transform df. These notions and their properties are the
subject of the subsequent section.

Manuscript received: January 2001; final version received: November 2001



398 J. Kallsen, A.N. Shiryaev

The question of uniform integrability of local martingates (X — K') plays an
important role in statistics and finance because they appear as candidates for den-
sity processes. Among others, Gihman and Skorohod (1972), Grigelionis (1971),
Liptser and Shiryaev (1972), Novikov (1972, 1975, 1979, 1980), Jacod @&naii
(1976), Kazamaki (1977, 1978a,b, 1979)eivin (1978), [epingle and Mmin
(1978a,b), Mmin and Shiryaev (1979), Kabanov et al. (1979, 1980), Okada (1982),
Yan (1980, 1982a,b), Kazamaki and Sekiguchi (1982, 1983), Stummer (1993), Jer-
schow (1994), Kramkov and Shiryaev (1998) contributed to thisissue. In Sect. 3, we
show that the cumulant process naturally leads to a hierachy of sufficient criterions
for uniform integrability ofexp(X — K), which includes in particular Novikov-
and Kazamaki-type conditions in the sense of Revuz and Yor (1999), Propositions
VIII.1.14 and VIII.1.15.

In mathematical finance, measure transformations with density pré&ﬁ;st
= exp(¥ X;—k(9)t) for some given Evy process( and real numbers$, k(«) have
been considered under the nafgscher transfornfior contingent claim pricing
(cf., e.g., Gerber and Shiu 1994; Madan and Milne 1991; Eberlein and Keller 1995;
Chan 1999). This concept can be generalized to integ"gajl§dXS of alarge class
of semimartingales if the cumulaht)¢ is replaced with the cumulant process of
fd ¥4dX . This approach is discussed in Sect. 4.

We generally use the notation of Jacod and Shiryaev (1987) (henceforth JS) and
Jacod (1979, 1980). The transposed of a vector or matisxdenoted as ™ and
its components by superscripts. In particuthr, X denotes the stochastic integral
of 9 relative to X. Increasing processes are identified with their corresponding
Lebesgue-Stieltjes measure.

2 Cumulant processes
2.1 Stochastic exponential and logarithm

In this section we review and introduce some notions of stochastic calculus that
turn out to be useful for the study of exponential semimartingales. Firstly, we recall
the definition of thestochasticor Doléans-Dade exponentiaf a semimartingale.

Definition 2.1 Let X be a real-valued semimartingale. Ttechastic exponential
£(X)isdefined as the (up to indistinguishability unique) soluticio the stochastic
differential equation

Z=1+7Z_ X

The mappingX — £(X) can be inverted. In analogy to real calculus, we call its
converse thetochastic logarithnof X (cf., also Foldes 1990; Choulli et al. 1998;
Kallsen and Shiryaev 2000).

Lemma 2.2 LetZ be a semimartingale such that Z_ areR \ {0}-valued. Then
there exists an up to indistinguishability unique semimartingélevith Xo = 0
andZ = Z,E(X). Itis given by
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ProofW.l.o.g.Z, = 1. The existence and explicit form &f follows from1+ Z_ -
(4 2)=1+4(Z_4)-Z = Z.Now letX be any semimartingale wit, = 0
andZ = £(X).ThenX = (4~Z_)- X = - - (Z_-X) = - Z, whichyields
the uniqueness. a

Definition 2.3 We call the procesX in the previous lemmatochastic logarithm
of Z and writeL(Z) := X.

The following lemma summarizes some properties of these processes.

Lemma 2.4 LetX, Z be real-valued semimartingales such tfatZ_ areR\ {0}-
valued. Then the following statements hold.

L £(X) = exp(X — X — §(X¢, X)) [[,c.(1 + AXJem 2%

2. L(Z) =1og(| ) + 57 - (2°,2°) = < (log(| 2= |) + 1 — £=)

3. IfAX > —1,theng(X) = exp(X — Xo— 1 (X, X¢)+ (log(1+) —z) # ).
4. L(Z) =1og(| £ ]) + 5z - (2°,2°) — (log (|1 + 2=[) — £=) * u”

5. If AX # —1 outside some evanescent set, ti¢6(X)) = X — X,.

6. £(L(2)) = £

Proof

1. JS, 1.4.64

2. By Itd’s formula (cf., JS, 1.4.57 and Goll and Kallsen 2000, Lemma A.5), we
havelog(|Z]) = log(|Zol) + 2= - Z — ghe - (2, 2) + ¥, (l0g(|Zs]) —
log(|Zs—|) — ZS%AZS), which yields the assertion.

. This follows from Statement 1.

. This follows from Statement 2. B L

. ForZ:=¢(X)wehavel(Z) =} Z=, (1+Z_ - X)=X — Xo.

. This holds by definition. O

(o206 I~ OV)

For the study of exponentials of semimartingales the following notions will
prove useful.

Definition 2.5 For any real-valued semimartingatlewith Xy = 0, we callX :=

L(exp( X)) theexponential transforrof X . Conversely, we calk := log(£(X))
the logarithmic transformof any real-valued semimartingale with X, = 0 and
AX > —1.

Exponential and logarithmic transforms can be determined explicitly:

Lemma 2.6 Let X be a real-valued semimartingale witki, = 0 and letX :=
L(exp(X)) be its exponential transform (i.eX is the logarithmic transform of

X). Then we have:
1.)N(:)~(+%<)~(C,)~(C>+(em—l—x)*,ux )
2. X =X — 5{X°X) + (log(1 + z) —2) » p*
3. AX =e2X —1
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4. AX =log(1 + AX)

Proof
1. Note thatAZ = Z_(e2X —1) for Z := exp(X) and hencélog(|1 + X |) —
F)xp? = (z—e®+1)xp~ . FromI9's formula, it follows thatZ® = e~ - X¢

(cf., e.g., the proof of Corollary A.6 in Goll and Kallsen (2000)), which implies
that > - (Z°, Z°) = (X*°, X°). The claim follows now from Statement 4 in

Lemma 2.4.
2. This follows directly from Statement 3 in Lemma 2.4.

3. Thisis implied by Statement 1.
4. This is implied by Statement 2. a

For some processes these transforms are of a simple form:

Lemma 2.7

1. If X €V is continuous, then its exponential and logarithmic transforms coin-

cide with X
2. If X is a real-valued Evy process with characteristic triplét, ¢, F') relative

to some truncation functioh : R — R, then its exponential transfordy is
again a Levy process. Its characteristic tripléi, ¢, F') is given by

b=b+ g + /(h(ef — 1) — h(z))F(dz),

F(@Q) = /1@(6”” —1)F(dx) for G € B.

Conversely, the logarithmic transforii of a Levy processt with AX > —1
and characteristic tripletb, ¢, F') is again a levy process, with triple, ¢, F')
as follows:

b=10— g + /(h(log(l + 1)) — h(z))F(dz),

F(G) = /1a(log(1 + 2))F(dz) for G € B.
(By Lévy processve refer to a PIIS in the sense of JS, 11.4.1, 11.4.19.)

Proof

1. This follows immediately from Lemma 2.6 becausé and,~ vanish in this

case.
2. Goll and Kallsen (2000), Lemma A.8 a
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2.2 Special semimartingales

To prepare our study of exponential semimartingales, we review some properties
of special semimartingales. We introduce some notation but do not state any new
results here. Recall that a real-valued semimartingale is csledialif it can be
written asX = Xy, + M + V for some local martingald/ and some predictable
processV of finite variation, both starting at 0. Put differently( is a special
semimartingale if there exists a predictable prodéss )V such thatX — X, —

V € Mj,.. We call the unique proceds the compensatoor drift processof

X and we writeDX := V (for drift or Doob-Meyer decomposition). Whether a
semimartingale is special or not, is an integrability property of the big jumps as the
following lemma shows.

Lemma 2.8 Let X be a real-valued semimartingale. Denote by the compen-
sator of the measure of jumps &f. Then the following statements are equivalent.

1. X is special.
2. (Jz]2 AJz]) xvX €V
3. 1{\a:|>1}"T| xvX ey

Proof The equivalence4>2 is stated in JS, 11.2.29. Note that predictable processes
in)V belong toAy. (cf., JS, 1.3.10). The equivalence=3 follows from the fact
that(|z|? A 1) x X €V for any semimartingalé& (cf., JS, 11.2.13). O

For the following, let us slightly extend the notion of a drift process.

Definition 2.9 Let X be a semimartingale iR? andy € L(X) such that) " - X
is a special semimartingale. Then we call its compensatadriftgprocess of X in
¥ and we writeDX (9) := DV "X,

Remark If X and9" - X in the previous definition are special, thén® (9) =
9T - DX (cf., Jacod 1980, Proposition 2). Hespecial semimartingalanddrift
processin R are to be interpreted componentwise. Note, however,that X
may not be special even K is special (and vice versa).

A simple property of drift processes is given in the following

Lemma 2.10 Lety € L(X),A € L(¥T-X)besuchthat\y) - X = X- (97 - X)
is special. TheD? X (\) = DX (\0).

Proof This follows from\ - (97 - X) = (M) T - X (cf., e.g., Goll and Kallsen
(2000), Proposition A.1). O

The drift process can be expressed explicitly in terms of semimartingale char-
acteristics. LetX be a semimartingale iR?. We assume that the characteristics
(B, C,v) of X relative to some fixed truncation functiégn: R? — R? are given
in the form

B=b-A C=c-A v=AQF, (2.1)
whereA € A, is a predictable processjs a predictabléR¢-valued process;
is a predictableR?*?-valued process whose values are non-negative, symmetric
matrices, andF is a transition kernel fronf2 x R, P) into (R%, B%). By JS,
Proposition 11.2.9 such a representation always exists.
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Lemma 2.11 Letd € L(X) such thaty " - X is special. Then we have:

1. DX(19) 6(19) A, wheres(9); =9 by + [ 9] (z — h(z))F(dx)
2. ADX (), = [ 9] 2v({t} x dx)

Proof For real-valued\ andy = 1cf., JS, I1.2.29. In the general case, observe that
the characteristics af " - X relative to some truncation functidn : R — R are

of the form (2.1) withb, = 9, b, + [(h1 (9] ) — 9] h(z))Fi(dz) andFy(G) =
[1c(¥/] ) Fy(dz) instead ob, andF;(-) (cf., Kallsen and Shiryaev 2000, Lemma
2.5). O

2.3 Exponentially special semimartingales

A main subject of this paper aexponentially special semimartingalieghe sense
of the following

Definition 2.12 Let X be a real-valued semimartingalg.is calledexponentially
specialif exp(X — Xj) is a special semimartingale.

As in the case of special semimartingales (cf., Lemma 2.8), this property can be
expressed in terms of the compensated measure of jurhps X.

Lemma 2.13 Let X be a real-valued semimartingale. Denoteiby the compen-
sator of the measure of jumps &fand byh : R — R a truncation function. Then
the following statements are equivalent.

1. X is exponentially special.
2. (" —1—h(z)xvX €V
3. 1{$>1}€r xvX ey

Proof SetX := L(exp(X — Xo)). By Jacod (1979), (2.51) is a special semi-
martingale if and only itxp(X — Xj) is a special semimartingale.

1=-3: By Statement 3 in Lemma 2.6 we have thhX = ¢4X — 1. From
Lemma 2.8 follows thate” - 1‘1{|ez,1‘>1} x X = ‘.’II|1{|I|>1} xvX €V .lIn
particular, we havée® — 1)1,y xv* €V . Sincely,~qy v~ €V , thisimplies
ezl{x>1} xvX ey,

3=2:Note thah < e —1—h(x) < e"1,~13 + M(1A2?) for some constant
M € R, which is independent of € R. Since(1 A z2) x vX €V holds for any
semimartingale] (,~ 11 e” x vX €V implies(e” — 1 — h(z)) xvX €V .

2=1: Statement 1 in Lemma 2.6 implies that= —Xo+ (X% X) + (e”
1—h(z)* (pX —vX) + (¥ — 1 — h(z)) x ¥ + (X — (:U—h(x)) uX). Since
all components are special semimartingales, this is tru&’fas well. a

The counterpart of the compensator of a special semimartingale is defined in
the following

Definition 2.14 Let X be areal-valued semimartingale. A predictable probess
V is calledexponential compensatof X if exp(X — Xo — V) € M .
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Put differently, we decomposep(X — X,) = MU whereM € M, and

U = exp(V) is a positive predictable process of finite variation. Well-known
results on the multiplicative decomposition of semimartingales yield that such a
representation exists if and onlydtp(X — X)) is a special semimartingale:

Lemma 2.15 A real-valued semimartingal® has an exponential compensator if
and only if it is exponentially special. In this case, the exponential compensator is
up to indistinguishability unique.

Proof Suppose thafX is exponentially special. By Jacod (1979), (6.19), there
exists a unique positive processof finite variation such that/y = 1 and M :=
M € M joc. Sinceexp(X — Xg) > 0 andexwf]%xo) = M_ < oo, we
haveU_ > 0. Therefore}V :=log(U) €V .

Conversely, suppose thetis an exponential compensator®f Sinceexp(V)
is of finite variation, the special semimartingale propertykond the uniqueness
of V follows again from Jacod (1979), VI.2a and (6.19). O

In the following, we want to determine exponential compensators explicitly.

2.4 Laplace cumulant processes

For R?-valued infinitely divisible random variableX, we haveE(eﬂTX) =
exp(k(¥9)) for ¥ € R9, wherek (1)) denotes the cumulant of in 9 (if it exists).
Below, this notion is generalized to semimartingales and leads to the so-called
Laplace cumulant procesé modification of this process allows to determine ex-
ponential compensators explicitly. For a closely related complex counterpart (the
Fourier cumulant procedswve refer the reader to Kallsen and Shiryaev (2000).

Let X be a semimartingale iR¢. We assume that the characteristies C, )
of X are given in the form (2.1).

Definition 2.16

1. Lety € L(X) such that) " - X is exponentially special. Thieaplace cumu-
lant processf(X (9) of X in ¥ is defined as the compensator of the special
semimartingalgy™ - X)~ = L(exp(¥T - X)), i.e. KX (9) := D@ X~ For
¥ =1wewrite KX := KX(1).

2. Themodified Laplace cumulant process* (v) of X in ¢ is the logarithmic
transform of KX (1), i.e. KX (0) := log(E(KX(9))). Ford = 1 we write
KX .= KX(1).
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Remarks

1. From the proof of Statement 2 in Theorem 2.18 below it follows #i&t(+)
is a well-defined predlctable process of finite variation.

2. Observe that the mapplngSH DX andX — KX are dual in the sense that
(KX)~ = DX, where™ denotes the exponential transform.

3. Atheorem by Yor states th&( X )E(Y) = £(X + Y + [X,Y]) for any real-
valued semimartingaleX,Y (cf., Jacod 1979, (6.4)). This fact can also be
interpreted in terms of a duality: A simple calculation shows that the mappings
(X,Y)— X +Y +[X, Y]and(X,Y) — X +Y are dual in the sense that
(X+Y)"=X+Y +[X,Y].

The following two statements summarize some properties of the cumulant processes
and their explicit form in terms of the characteristicsXf They correspond to
Lemmas 2.10 and 2.11, respectively.

Lemma 2.17 Lety € L(X),A € L(¥"-X)besuchthat\y) - X = X- (97 - X)

is exponentially special. Theii? X (1) = KX (A9) andK? X (X) = KX (\).

Proof This follows fromexp(A- (97 - X)) = exp((A9) T - X) (cf., e.g., Goll and
Kallsen 2000, Proposition A.1). a

Theorem 2.18 Lety € L(X) such that) " - X is exponentially special. Then the
following statements hold.
1. I?X(ﬂ) = %(19) . A, Where%(’ﬂ)t = ﬂ:bt + %ﬁjctﬂt + f(@ﬁ;rz -1 -
ﬁTh( ))Ft( x) _
EX(9) = K¥(9) + X< (log(1 + AK¥ (9),) — AKX (9),)
EX(9) = KX(0 )Tl AT -1 - AKX (9),)
AKX (9), f( 7T D({t} x da) = W (),
AKX (9), = <1+AKX< )i) = log(1 + ( 1)
. If X is quasi- Ieft-continuous,theﬁx( ) = KX (¥).

G)Ln-b_w!\J

Proof

1. ByLemma2.6,wehav@' - X)~ =9" - X + 10" X097 - X + (e —
1— ) p° . From Goll and Kallsen (2000), Propositions A.2 and A.3, it
follows thaty " - X =97 - X+ 9 Txlpc * (X —v) +9Txla(z) * u™ +
97 - B for someA € P ® B andB = B + (z1ac(z) — h(z)) * v. Since
WX 9T X =W W) - Aand(e® — 1 —2) « p¥ X = (e* — 1 —
2)# (X — XY 4 (e ® — 1 — 9T 2) x v, straightforward calculations
yield that (97 - X)~ equals(¥Tb + 29T + [(e7® =1 — 9 Tala(z) -
9T h(z))F(dz))- A+9 T 21 (z)+p~ uptoalocal martingale. Sin¢g " - X )~
is a special semimartingale, JS, 1.4.23(iii) yields thatr1 A (z) * uX € Ajoc
and henced 214 (z)| * ¥ € A L. Thisin turn means "z14(z) x p¥ =
ITaxla(x) * (uX —v) + 9T x1(z) * v (cf., IS, 11.1.28). Together, we have
that (07 - X)~ equals(¥ b+ 10T cd + [(e? * — 1 — 9T h(z))F(dz)) - A
up to indistinguishability, which yields Statement 1.
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2. From Statement 1 we havek X (9), = 9] AB+ [(e?' *—1—9] h(z))v({t}
xdz).SinceAB; = [ h(z)v({t}xdx)(cf.,IS,11.2.14), thisimplies\ KX (),
= [ — Dw({t} x da:) > —1, hencel + AKX (9); > 0. From JS,
1.4.63 it follows thaTS(IN(X (9)) = exp(KX(9)+ Y, . (log(1+ AKX (9) ) —
AKX (9),)), which yields Statement 2.

3. Inview of AKX (¢9) = AKX (9) +1log(1+ AKX (9)) — AKX () = log(1+

AKX (9)), this follows from Statement 2.
. This has been shown in the proof of Statement 2.

. This follows from the proof of Statement 3.
. Inview of JS, 11.1.19, this follows from Statements 2 and 4. O

(02042 I N

We are now ready to determine the promised explicit form of the exponential
compensator in terms of Laplace cumulant processes.

Theorem 2.19Let 9 € L(X) such thaty " - X is exponentially special. Then
KX (¥) is the exponential compensatordf - X. More specifically,

Z =exp(®' - X — KX(¥9))

B exp(¥" - X)
E(KX(9))
eﬁT‘” -1
=&l X ———— (W =) | € Mige,
1+ W(9)

wherel (9), := [(e?'* — 1)v({t} x dux).

Proof Step 1if we setS := exp(d ' - X) and denote bys its predictable pro-
jection, thenH := - — ;5 is locally bounded by Jacod (1979), (6.19). This
implies thatH - S is a special semimartingale (cf., Jacod 1979, (2.51)). Since
7Sy = B(Si|Fio) = Si- + E(AS|Fio) = Si— (1 + B(e¥ A% —1|F,)) =
Si—(1+W(9),) by JS,1.2.28 and 11.1.26, it follows tha = < (1 — ) =

L WO _ 1t pH-S denotes the drift process &f - S, we have thatADHS =

S—14W(9)
HADHS) = (A(H - S)) = H?AS) = HES — S_) = g:vv(j()é) In particular,
9Tz _ W (9) (W(ﬂ) )2 H-S
we have|(e 1)1+W(19 \ =D < ). =D < ADJ” eV,
follows that(e —- 1) 1+W 19) € Gloe(pX) and
(eﬂT‘” -1 7W,(£9) *(pX —v) = Z(eﬁ:AXS —-1- W(ﬂ)s)iwﬁs‘)s
1+ W) < 14+ W(J)s

(cf., JS, 1.3.10 and 11.1.28).

Step 2DefineY := 9" - X — KX (¢¥). By Statement 1 in Lemma 2.6 we have
thatL(exp(Y)) = 97 - X — KX(0) + (07 - X, 07 - X) + 3 _ (e —1—
AY,). SinceedYs — 1 — AY, = A0 X _ 1 _ AWT - X), + AKX (), +
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AW -X)s (e~ AKX (@) _ 1) and in view of Theorem 2.18 and Step 1, straightfor-
ward calculations yield (exp(Y)) = 9T - X + 3(97 - X, 9T - X°) + (e * —1—

T 2)epX —KX(9)—(e? =—1) 1%%) *(uX —v). From Goll and Kallsen (2000),
Propositions A.2 and A.3, itfollows that” - X =97 - X¢+9 T2l q0 % (X —v)+
Il (z)xpX +97-Bforsomed € PoB?andB = B+ (21 ac (x)—h(x))*v.
Similarly, Statement 1 in Theorem 2.18 and Proposition A.3 in Goll and Kallsen

(2000) yieldK X (9) = 9T - B+ (97 -X¢, 9T -X) +(e? * —1-9T 1 e (2)) #v.
Together, it follows that (exp(Y)) = 9T - X¢ + fiv;@;) « (X =) € Mge. I
view of exp(KX (9)) = E(KX (1)), the proof is complete. O

loc
If Z is the density process of a probability meashife< P, then the following
result is useful for the application of Girsanov’s theorem for semimartingales as in
JS, 111.3.24.

Lemma 2.20 Let ¥ and Z be as in Theorem 2.19. Defire := 9 and the P-
measurable functiol’ : 2 x R, x R? — R, by
9z

Y(t,z) := S —
1+ W (9),
If fo(~|75) is defined as in JS, Ill.3c and if we set := v({t} x R?) and
Y, == [Y(t,z) v({t} x dz), then we have
1. (a) YZ_ = M (ZP),

(b) (Z¢, X"y = (Z_c"B) - Afori=1,...,d,

2. 2= (57 X4 =14 o) 05 - 0))
Proof

1. NotethatZ = Z_ eXp(ﬁTAX AKX(4)) by definition. In view of Theorem
2.18, thisequalg_ <

. Moreover, we have = AX;(w )forMP -almost
W (9)

J _
all (w,t,z) € 2 x Ry x R% Together, it follows that/ Z = UZ_HTW) =

UZ_Y M¥,-almost everywhere for any non-negatWemeasurabIe function
U. This implies the first statement.
The second statement follows immediately fréth = Z_ - (97 - X¢) =
(Z-8)7
2. Straightforward calculations yield — ¢+2.(?)
1+W (9)

andhencd” — 14 Y=¢ o lacny
19 z_q
1+W(9)
. From the definition of the stochastic integral with respegito— v

_ e19 r_1 _ _

= o) fora # 1. Fora = 1 we haveY 1+ T2 <1y =
W ()

W ()

it follows that W(ﬂ(;) * (1 — v) = 0 because the integrand does not depend

onz. In view of Theorem 2.19, we are done. O
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loc
Corollary 2.21 SupposethaP’ < Pis aprobability measure with density process
Z as in Theorem 2.19. Then ti&-characteristic§ B’, C’, ') of X are given by

9 x
B’ :Bi+ci'a9-A+hi(:c)<eA—1) svfori=1,....d
1+ W(9)
c'=C
9T 2
’ e
V — ———— - .
1+ W)
Proof Lemma 2.20 and JS, 111.3.24 O

2.5 Derivatives of cumulant processes

Theorem 2.19 shows that cumulant processes play an important role for the study of
exponential martingales. We consider now its derivative with respécsitace it is
needed in the following sections. By Theorem 2.18, we haveithiaty) = (1) A
with )

R0, = 9] b, + iﬂjcmt + /(eﬁ?fﬂ —1 -9/ h(z))F,(dx).

If we may differentiate under the integral sign, then the derivative of the mapping
R? — R, ¥ — &(9)(w,t) equalsDr(V)(w,t) = (Dik(),..., Dgf(9))(w,t)
with

D), = bl + i, + / (@16 ® — bi(2))Fy(da).

Even in cases where it is not obvious whether differentiation and integration may
be exchanged, the following definition makes sense.

Definition 2.22 Let¥ € L(X) suchthaty™ - X is exponentially special and such
that|z’e” © — hi(z)| xv €V fori = 1,...,d. Thederivative of KX in ¢ is
defined as th&?-valued proces® KX (¢9) = (D1 KX (9),..., DgK* (¥)) where
D; KX () := D;#(¥) - Aand

DiR(9) := bl 4 9y + /(x’éﬂri — hi(x))Fy(dx)

fori=1,...,d.

We want to define a derivative fdk * () as well. If the mappin®R? — R,
V= AKX (9)(w,t) = F(9)(w,t)AA(w,t) is differentiable, then the mapping

R? — R, ¥ — log(1 + AKX (9)(w,t)) is differentiable as well with derivative

D(log(1 + AKX (9),)) = MDAKXW)“ In view of Statement 2 in

Theorem 2.18, we are led to define the derivativéaf («) as follows.
Definition 2.23 Let¥ € L(X) such thatT - X is exponentially special and such

that [zie” ' ® — hi(z)| v €V fori = 1,...,d. Thederivative of K~ in o is
defined as th&“-valued proces® K * () = (D1 K~ (), ..., DaK* (9)) where
DlKX(’ﬂ) = L . DiKX(19).

1+W (%)
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Proposition 2.24 Let¥ € L(X) suchtha¥" - X is exponentially special and such
that|zie? @ — hi(z)|xv €V fori=1,...,d. Then the derivatives ok X and

KX in ¢ are well-defined predictable processes whose components are of finite
variation.

Proof Sinceb’- A = B and(cid)- A = (Xic 97 . X¢), itfollows thatD; K (1)
is a well-defined predictable proces3/in

If we setZ := exp(¥' - X) and denote byZ its predictable projection,
theni is locally bounded by Jacod (1979), (6.19). Sifige = E(Z;|F;-) =
7+ B(AZ|Fi) = Z, (14 E(e ﬁTAXf—1|ft ) = Zi_(1+ W(9),) by JS,

1.2.28 and 11.1.26, it follows that- +W(19)) and hence aIsW is locally

bounded. Thereforew € L(D;KX(9)) fori = 1,...,d. This implies that

D; KX (9) is a well-defined predictable procesg/inas well. a

Proposition 2.25 Under the conditions of Definition 2.23 we halleK X (9) =
D;k(¥) - A, where

xleﬁ T

1+ W),
Proof By Definitions 2.23 and 2.22, we have; K~ () =

Dik(9); = bl + iy + / ( - hi(x)) Fy(dx).

7 T,
1+W(19) (B +9

C g (zie? e —hi(x)) v). Note that- W(;) B — (1IVV(V19(39)M( 7)) kv =

e L) 1+w<19 (ABi — [ hi(z)v({s} x dx)) = 0 by JS, 11.2.14 and

the fact that{W( ) # 0} is a predictable thin set. Moreover—-— - C = C

THW (9)
because& is continuous. Together, it follows th&, KX (9) = B' + 9T - C* +
i 619T“c i _ .
(x W) — h'(z)) *v = D;r(V) - A. O
Remarks

1. If X is quasi-left-continuous, then the derivativeso¥ and KX coincide.
2. LetX be areal-valued exponentially special semimartingale:eff — h(x)| %
v eV ,then
~ ~ 1
DKX(1) - K¥(1) = 50+ ((x —1)e" +1)xv

3. If Z := ¥ is areal-valued local martingale, then we hai (1) = KX (1) =
0andW(1) = 0 (cf., Theorems 2.19 and 2.18).|lfe” — h(z)| *v €V , then

DKX(1) = DK¥(1) = %C +((z—1)e” +1) =
= %6‘+((1+x)log(1+x) — ) x U,

where (B, C, ) denotes the characteristics of the local marting&lavith
Z = E(X) (cf., Lemma 2.6).
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The following result shows how to calculat&ik™® X (1) in terms of DK X (-),
which is useful in view of the conditions on uniform integrability in Sect. 3.

Lemma2.26 Let ¥ € L(X) be such that)" - X is exponentially special and
such thatjzie? ' — hi(z)| v € V fori = 1,...,d. Moreover, suppose that
|9Tze? ® — hy(9T )| v €V for some truncation functioh; : R — R. Then

DE? X(1)=9T - DKX(¥)

and
DE? X(1)=9T - DKX ().

Proof From Definition 2.22 and Kallsen and Shiryaev (2000), Lemma 2.5 it fol-
IowsthatDK’”T'X(l) = DF(1)- AwhereDr(1) := 19Tb+19'|'c19+f(79'rme197m_

9T h(z))F(dz) = 9TDkK(). Since |[DE(1)] - A € V, we have that
0 e L(DKX( ) andDK? X (1) =97 - DKX(9). In view of DK? X (1) =
1+W(19) DK?"X(1), the second statement follows as well. O

3 Uniform integrability of exponential local martingales

In this section, we consider positive local martingales of the fﬁ(lﬁ) or equiv-

alently exp(X), whereX denotes the logarithmic transform af, They play an
important role in statistics and finance because they appear as natural candidates for
density processes. Sin€¢X) is a supermartingale (cf., e.g., Jacod 1979, (5.17)),

it converges to some random varialleX ) .. Wlth E(£(X)s) < 1. To define a
probability measuré®’ ~ P via its denS|ty = £(X)o is only possible if

E(X)s = 1, or equivalently, if£(X) is a unlformly integrable martingale. This
explains why the question of uniform integrability has received so much attention
(cf., the references in the introduction).

Roughly speaking, one may distinguish two kinds of sufficient conditions for
uniform integrability. Predictablecriteria (as e.g., Novikov’s condition) depend
only on the characteristics of, wherea®ptionalconditions (as e.g., Kazamaki's
condition) involveX directly and not only its characteristics. Our conditions below
will be formulated in terms ofX while the literature focuses mainly oxi. In the
predictable case or for continuous processes, the two viewpoints lead essentially
to the same results. For processes with jumps, however, we obtain new kinds of
optional criteria. Note that all proofs are relegated to the end in this section.

Our setting is as follows. LeX be aR?-valued semimartingale and Iét ¢
L(X) be such that T - X is exponentially special. We want to obtain sufficient
conditions forexp(¥" - X — KX (9)) € M, to be a uniformly integrable mar-
tingale. Since this process equatp (Y — KY (1)) for Y := 9T - X, it suffices to
consider the case thaf is R-valued and? = 1. The reason to consider arbitrary
9 in the first place is that density processes of the above type appear frequently in
applications (cf., Sect. 4).



410 J. Kallsen, A.N. Shiryaev

From now on letX be areal-valued semimartingale that is exponentially special
and whose characteristics are of the form (2.1)./8¢) := K*(-) and

Z :=exp(X — K(1)).

We start by defining a number of prospective sufficient conditions for uniform
integrability of Z.

Definition 3.1 Leta € [0,1], § € (0,1). We define the following integrability
conditions:

I(a,1+ 6)**= : We say that Conditiotd(a, 1 + 6)'* holds if (1 + 6) X is expo-
nentially special and if there exists some- 0 such that

sup {E(exp ((1 +e) (a((l +0)Xr — K(1+6)r)

a

+1 ; (K(1+0)r — (1 + 5)K(1)T)>)> : T finite stopping tim%

< 0.

I(a, 1)< ;. We say that Conditior (a, 1) holds if |ze® — h(z)| * v €V and
if there exists some > 0 such that

sup {E (exp <(1 +¢) <aXT +(1—-a)DK(1)r — K(l)T>>> :
T finite stopping tim% < 00.
I(a,1) : We say that Conditiod(a, 1) holds if|ze* — h(z)| xv €V and
sup {E(exp (aXT + (1 —a)DK(1)r — K(I)T>> :
T finite stopping tim% < 00.

I(0,1+ ¢) : We say that Conditioi(0, 1 + §) holds if (1 4+ §) X is exponentially
special and

teRL

sup E(exp (;(K(l +0)— (14 5)K(1)t)>> < 0.

1(0,1) : We say that Conditiord (0, 1) holds if |xze® — h(z)| * v €V and

sup E<exp (DK(I)t - K(l)t>> < o0.

teR,
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Table 1. Relationships

0 10, 1)+ 32 100, 1)
1(0,1-)
Al 134 132 U 34
a I(a,1)1ts = I(a,1)
Al V34 V34
a I(@ 1)t = I(a,1)
A ge (»y) L34
1 e 2 [zem| 2210,

I(0,1-) : We say that Conditiod(0, 1—) holds if

lim sup & log (E(exp <(15((1 —§)K(1) — K(1— (s)t)») = 0.

410 teR

Remarks

1. Note thatl (0, 1) is defined twice. But sinc® K (1) — K (1) is an increasing
process, the two definitions coincide (cf., Proposition 3.15fer1).

2. The conditiond (a, 1+ §)**¢ andI(0, 1+ J) are rather of auxiliary nature than
of interest on their own.

For a = 0 the above criteria depend only on the cumulant process and hence
the characteristics oK. Therefore, they are predictable conditions which makes
them handy for applications.

Theorem 3.2 We havel (0,1)'*¢ = 1(0,1) = I1(0,1-) = Z € M, where the
last statement means th&tis a uniformly integrable martingale.

For continuous local martingales, Conditié0, 1)! ¢ goes back to Liptser and
Shiryaev (1972). Novikov (1972, 1975) anéjingle and Mmin (1978b) showed
that 7(0, 1) suffices to conclude thaf is a uniformly integrable martingale. The
slight generalization td(0, 1—) has been shown in Yan (1982b) for continuous pro-
cesses. The general version of Conditigf, 1—) is, to the best of our knowledge,
new.

In the case: # 0 we obtain optional criteria which are usually weaker than the
predictable conditions above. Therefore they may be helpfulin cases where the latter
do not hold. In order to understand the criteria let us start with the essentially trivial
casea = 1, where the conditions are close to the desired uniform integrability.
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Proposition 3.3 We havel (1,1)!7¢ = Z ¢ M = I(1,1).

Now observe that fob < a < 1 the conditiond (a, 1) (resp.I(a, 1)) are some
kind of convex combination af(1, 1) andI (0, 1) (resp.(1, 1)< andl(0, 1)*¢).
The following lemma shows that the marés increased, the weaker the conditions
get.

Lemma 3.4 Leta,a € [0, 1] witha < a.

1. If ConditionI(a,1)!*¢ holds anda < 1, then Condition/(a, 1)'*¢ holds as
well.
2. If ConditionI(a, 1) holds, then Conditiod (a, 1) holds as well.

One may wonder whether Statement 1 in the previous lemma holds alse-far
This is not the case as the following example shows.

Example 3.5Let f : R — R be some continuous function withf (z)dz < oo,
[|ze*| f(x)dr < oo, and [ (19 f(z)dz = oo for anye > 0. Moreover,
let L be a real-valued &vy process with characteristic triplgt, 0, F') where F’
has Lebesgue densitfy andb := — [(e® — 1 — h(z))F(dz). Since KX (1) =
f(L(l) = 0, it follows thate’” is a local martingale and hence a martingale (cf.,
e.g., Kallsen 2000, Lemma 4.4). Therefarep{ E(exp(Xr)) : T finite stopping
time} < oo for X := (La1)ier, . Note thatK* (1) = 0 and DK (1), =
(1At) [((z—1)e®+1) f(z)dx is bounded by some constant. By choosing < 1,
it follows that ConditionI(a, 1)'*¢ holds for X and anya € (0,1). However,
Theorem 2 in Wolfe (1971) yields thdt(e(*+2)11) = oo for anye > 0. Hence,
ConditionI(1,1)!*¢ does not hold.

Note that Conditiorf (a, 1)'* obviously impliesl (a, 1). The reason to intro-
ducel(a, 1)'*¢ as well is that Conditior (a, 1) is only sufficient if X does not
have too many large negative jumps.

Theorem 3.6 Leta € [0, 1]. If ConditionZ(a, 1)1 *< holds, thenZ € M.

Theorem 3.7 Suppose thak is quasi-left continuous and that there exist some
m, M € R with v(R; x (—o0,m]) < M P-almost surely. Lets € [0,1). If
ConditionI(a, 1) holds, thenZ € M.

At first, the condition on the large negative jumps im Theorem 3.7 looks quite
unnatural. However, it cannot be dropped in general. In the following example,
I(a, 1) holds for anya € [0, 1], butZ is not a uniformly integrable martingale.

Example 3.8Let N be a standard Poisson process in the sense of JS, 1.3.26 and
denote byT its first jump time. DefineX := — fo tdN/}'. Obviously, X is ex-

ponentially special ands(a), = (e — 1) v = — [} (1 — e7*)ds for
anya € (0, 1]. Moreover, we havd K (1), — K(1); = ((z — 1)e®* + 1) x 1y, =
~5)_ (1—¢-95) < ¢~9%. Straight-

JEM (1= (14 s)e=*)ds. Note that(1 — (1+s)e

forward calculations yield K (1) — K(1) < 2 — K(a) and—K(1) < 1 — K(a).
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Sinceexp(aX — K (a)) is a supermartingale, we hati¥exp(a X+ — K(a)r)) <1
for any finite stopping tim&” (cf., JS, 1.1.39). This implies that

E<exp (aXT + (1 —a)DK(1)r — K(l)T)>
- E(exp <aXT —aK(1)r + (1 —a)(DK(1)r — K(Uﬂ))

< ezle<eXp (aXT — K(a)T>) < ea

for any finite stopping tim&. Therefore, Conditiofi(a, 1) holds for any: € (0, 1].

On the other hand, we will prove that:= exp(X — K (1)) is not a uniformly
integrable martingale. It suffices to show thiat < 1 P-almost surely, wher&
denotes the limit of the positive supermartingZleOn [0,T) we haveN; = 0
and henceX; — K(1); = t — (1 — e™%). From AXy = —T it follows that
Xr —K(l)T =Xp_ —K(l)T, + AXT = —(]. —e_T) < OOI"I{O <T< OO}
SinceX — K(1) = (X — K(1))7, we haveZ,, < ¢ = 10on{0 < T < co}.
Therefore, it suffices to prove that< T' < oo P-almost surely. But this is evident
becausd’ is the first jump time of a standard Poisson process.

Letusrelate Theorems 3.6 and 3.7 to the literature. Kazamaki’s criterion for con-
tinuous local martingales is equivalent to Conditﬁ@ 1) (cf., Kazamaki 1979).
Similarly, the subsequent generalization by Kazamaki and Sekiguchi (1982) corre-
sponds td(a, 1) in the continuous case. Note that Conditidits, 1), I(a, 1)+
for a # 0 depend onX, whereas similar criterions in the literature involve the local
martingaleM := (X — K (1))~ which satisfiesZ = £(M) (cf., e.g., lepingle and
Mémin 1978b,a; Okada 1982; Yan 1982a). Sidcend M coincide only in the
continuous case, one cannot generally compare these two kinds of conditions. We
feel that the conditions derived frofi instead ofM are the more natural ones.

Counterexamples in &pingle and Mmin (1978b), VI.2 and Jacod (1979),
Exercices 8.12-8.14 show that Conditid(0, 1) is “optimal” in the following
sense. For any € (0, 1), they present continuous and discontinuous proceksses
such thatZ = exp(X — K(1)) is not a uniformly integrable martingale but

sup E(exp((l —e)(DK(1); — K(l)t))) < oo (3.1)
teRy

holds. This implies that Conditiofi(0, 1) cannot be improved by a factar— e.
From (3.1) and Proposition 3.11 it follows that

sup {E(exp ((1 —e) (aXT +(1-a)DK(1)r — K(l)T)>> :

T finite stopping tim% < 00

foranya € [0, 1]. Therefore Conditiot (a, 1) cannot be improved by a factbr-¢
either.
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In the following example, Kazamaki-type criterions are derived for a particular
class of pure jump processes.

Example 3.9Let X be a purely discontinuous local martingale with jumps of fixed
sizez € (—1,00) \ {0}. SetZ := £(X). We want to determine a factar > 0
such that the condition

sup{ E(exp(aXr)) : T finite stopping timé < oo (3.2)

suffices to ensure that is a uniformly integrable martingale. (Note that for con-
tinuous local martingales, the “right” factordis= % 5 by Kazamaki's criterion.)

Firstly, we write the compensator of the measure ofjump‘é asz/ = A®ez
with A € Ajo.. Note thatX is quasi-left-continuous, becaugervX ({T} x dz) =

E(AXp|Fr_) = 0impliesv™ ({(T,Z)}) = 0 for any predictable stopping time
T (cf., JS, 1.L1.26, 1.2.27, 11.1.17, 11.1.19). IX denotes the logarithmic transform
of X, then&(X) = exp(X) and KX (1) = 0 by Theorem 2.19. The application
of Remark 3 following Proposition 2.25 yieldB K~ (1) = ((1 + ) log(1
x) — x)A. Starting e.g. from Lemma 2.6, straightforward calculations yields that
X = 10g(1+§))? + (log(1 + z) — ¥)A. By Theorem 3.7, a sufficient criterion for
Z e Mis sup{E(exp(aXT + (1 —a)DKX(1))) : T finite stopping timé < oo.

If we chooses := % thena X, + (1 —a) DK (1) is a multiple of

X. It follows that a sufficiently large factor in Condition (3.2) is

_ (14+7)log(1+7) —55.

%2

Note thata ~ % if the jump size is close to 0, which corresponds approximately
to Kazamaki’s criterion for continuous local martingales. In Yan (1982a), (7), the
factor max(1, 2%) is proposed, which is strictly larger than The criterion in
Okada (1982) leads to the facterabove, but he requires uniform integrability of
the sef{exp(aX): T finite stopping time, which is slightly stronger.

Let us summarize the sufficient conditions of this section in the following

Corollary 3.10 Leta € [0,1). For Z to be a uniformly integrable martingale, any
of the following conditions suffices.

1(0,1)
(0,1—
(a, 1)
(a,1
(R

3

:b.w!\’!—‘

I(0
I
I(a,1) if X is quasi-left continuous and if there exist someM € R with

v X (—o0,m]) < M P-almost surely

Table 1 provides an overview about the relationships between the conditions in this
paper.
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3.1 Proofs

We start with some auxiliary results.

Proposition 3.11 Let (U;);c1, (V;)icr be families of random variables, moreover
a,a € [0,1] witha < @.

1. Leta < 1 ande € (0,1]. If sup;c; E(exp(U;)) < o0 andsupzel E(exp((1+
e)(al; + (1 — a)V;))) < oo, then there exists son# € (0, 1] such that
sup;e; E(exp((1 + &) (al; + (1 — a)V3))) < oo.
. If sup;c; E(exp(U;)) < oo andsup;c; E(exp(al; + (1 — a)V;)) < oo, then
sup;c; E(exp((al; + (1 —a)V;)) < oo.

Proof

1. W.l.o.g. choose so small thatl +¢)a < 1. Moreover, le€ € (0, ) such that

=045 < 1+e. We haveexp((1+2)(@U; + (1 - @)V;)) = exp(§=2(1+

E)U;) exp(1=2 (1 + 8)(alU; + (1 — a)Vy)). If we seta := =99 thena > 1
and1=2 = 1 —aa~!. From Holder's inequality withs = “*y)“ and; :=

1-1.— a—(1+§)ﬁ
p a

it follows that

E(exp((1+8)@U; + (1 —a)V;))

< Blexp@ (oo (M0 D 1)) 9

Easy calculations yield thgt+220-9) % < 1+e¢. Inview of the
assumptions, this implies that the right-hand side of inequality (3.3) is bounded
uniformly iné € I. This proves the first claim.

2. This is shown as Statement 1 if we replace with 0. O

Proposition 3.12 Let U be a real-valued random variable witf(¢V) = 1 and
E(|UleY) < oc. If ¥ € [0, 1), thenti5 log(E(e”Y)) > —E(UeY).

Proof Step 1\We will show that the mappin{), 1] — R, ¥ — E(e’Y) is differ-
entiable in 1 with derivativeZ (Ue"): For any sequenc@?,, )en With J,, T 1 we
have < o ‘e — UéY for n — co. By convexny of the mappm@ — e’V we
have\" " ‘P | < UeY forU > 0and|" "o “’ | < |" —" | < 1forU < 0.
Hence domlnated convergence yields the clalm

Step 2:Step 1 and the chain rule yield that the mappfng[(), 1] =R, 90—

log(E(e’Y)) is differentiable in 1 with denvauva% E(UeY). For\ €

[0,1],9,9 € (0, 1] we have) f (9)+(1—\) £ (9) = log((E(e IV (E(eV)) ).
By Holder's inequality with; := X,  := 1 — 1 = 1 - ) this dominates
log(E((e?U)*(e?U)1=2)) = f(M + (1 — A)J). Thereforef is convex. Together,
we obtain thatog(E(e”V)) > log(E(eV)) + (9 — 1)E(UeY) = (9 — 1)E(UeY)
for anyd € [0, 1]. a
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Proposition 3.13 For any predictable procesg €V the following holds.

1. KXtV (9) = KX (9) + 9V for anyd € R.
2. (1 -0 KX+ (1) - KX+V(1-9)) = 1((1 - 6)K (1) — K(1 - 4)) forany
5 € (0,1).
3. If(1+5)X is exponentially special, thep( KX +V (1+6) — (1+8) KX 1V (1))
(KX(l +0) — (1+6)KX(1)).
4. If |xe — h(z)| v €V, then|ze® — h(z)| * vXTV €V and DKX+V (1) —
KX*tV(1) = DK(1) — K(1).

Proof Lemma 2.15 and Theorem 2.19 yield the firstassertion, which in turnimplies
Statements 2 and 3. For the last assertion assume wW.c-g— K (1) and denote

by (B,C, ) the characteristics ok + V. Obviously, we haves'’ = C. Since
IG(A(X + V)) = 1(;(AX + AV)1{4X750} + IG(AV)(l — I{AX;éO}) for any

G € Bwith0 ¢ G,wehavelg(z)+7 = 1g(z+AV s+ .o 1a(AV)(1—ay),

wherea, := v({s} x R). Itfollows that1C' + ((z — 1)e® + 1) xv = 1C + <(:c -

AK (1) — 1)er=AK0) 4 1) sv+ 3 (1 (AK(1), — 1)e2KW:) (1 — as).
A straightforward calculation yields that this expression eql%aﬂiﬂ—

1+W(1)
—€x+1)*V+ZS§.( (1 )S—log(1+W( )s))- Inviewof DK (1) = B+ C +
(1+W(1) h(z))xvandK(1) = B+ 3C+(e* =1 —h(z))xv+ 3 . (log(1+

W(1)s) — W(1),) (cf., Proposition 2.25 and Theorem 2.18), it follows that +
((x—1)e"+1)*v = DK(1)— K(1) €V . Inparticular((z —1)e* +1)*xv €V .
Sincele” — 1 — h(x)| * 7 €V , this implies thatze® — h(x)| *7 = |(x — 1)e® +
1+e”—1—h(x)|*7 €V . But by Remark 3 following Proposition 2.25, we have
DEX+V (1) — KX*V(1) = 10+ ((z — 1)e” + 1) 7, which completes the proof
of Statement 4. O

Proposition 3.14 Let X be quasi-left-continuous ande® —h(x)|*v €V . More-
over, suppose that there exist someM € R with v(Ry x (—oo,m]) < M P-
almost surely. For any € (0, 1) there exists some real numbere (0, co) such
that

14+«
)

((1 —§K(1) - K(1— 5)) <aM + <DK(1) - K(1)>.

Proof W.l.o.g.m < 0. Fora € Ry setg, : R = R,z — e*(z — 1) + 1 —
(1 +a)(e$(%_” 1) + 1). Note thatg, (0) = 0. Moreoverg., (z) > em(
1+ a)(1—=46)zx) > 0forz > 0if ais so small thatf1 + a)(l —9) <
Straightforward calculations yielg,, (z) > e (%*‘” —ale™ -1+ x))
for x < 0. This implies thatyo(z) > 0 for anya € R. Sincee™* — 1+ z is
bounded or{m, 0] andlimwﬁo(mfl*&”)/(e‘m —1+2) =4d > 0, we have
go(z) > 0forz € [m,o0) if @ > 0 is chosen small enough. Now let > 0
be so small thafl + a)(1 — ) < 1 andg,(z) > 0 for z € [m, o). Note that



The cumulant process and Esscher’s change of measure 417

o () = go() — a(e” (=62 —1) +1) > —a(e(z — 1)+ 1) > —aforz < 0.
Therefore

aM + (DK(1) — K(1)) — —2((1 - §)K (1) — K(1 - §))

=aM + %C(l —(1+a)(1—=90))+galz)*v

> aM +0+ ga(x)l[m,oo)(z) * U+ goz(x)l(—oo,m) (SE) * vV
>aM+0—-aM =0,

which proves the claim. O
Proposition 3.15 Letd € (0, 1] and suppose thdte® — h(x)| x v €V . Then

(DK(l) - K(l)) - (15<(1 —§K(1) - K(1— 5)) (3.4)

is a non-negative increasing process.

Proof Step 1:Because of Proposition 3.13 we can repla€ewith X — K(1).
Consequently, we may w.l.0.g. assume thiatl) = K (1) =0 andW(l) = 0.

Step 2:As in the proof of Proposition 3.14 it follows th@ & (1) — K (1) —
LH(-6)K1)~K(1-8)) = LC(1—(1-8))+go(x)*v. Sincel —(1—6) = § > 0
andgo > 0, we have that this process is increasing. B

Step 3:Since (3.4) andK (1) — K(1) — £((1 — §)K (1) — K(1 — 5)) grow
identically outside the thin se{W(l) #0}U {/V[7(1 —4) # 0} (i.e., the stochastic
integral ofl{w(l)zw(k&)zo} with respect to both processes coincides), it remains
to be shown that the jumps of (3.4) are non-negative. S/W\(ccé) = 0, we have
ADK (1) = K1)+ 5(1=0)K(1) = K(1 = 9)))e = [((z — 1)e” + Dw({t} x
dz)+ +log(1+ [(e*=9® —1)v({t} x dz)) (cf., Remark 3 following Proposition
2.25 and Theorem 2.18). This equdlse®Q(dz) + % log([ e =97Q(dx)) if we
define the probability measué¥-) := v({t} x-)+(1—v({t} xR))eo (). Note that
[e"Q(dx) = 1+ W(1) = 1. Proposition 3.12 yields log( [ ¢ =97Q(dx)) >
— [ ze*Q(dz). Altogether, it follows that the jumps of (3.4) are non-negativel

Now we turn to the proof of the sufficient conditions for uniform integrability.

Proof of Proposition 3.3The assertion follows immediately from JS, 1.1.47 and
Jacod (1979), Exercise 1.12. O

Proof of Lemma 3.4The claims follow from Doob’s stopping theorem (cf., JS,
1.1.39) and Proposition 3.11. O

Lemma3.16 Leta € [0,1), 6 € (0,2 — 1). If Condition(a,1 + §)'*< holds,
thenZ € M.
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Proof W.l.o.g. K(1) = 0 (cf., Proposition 3.13). Choose> 0 as in the defi-

nition of ConditionI(a,1 + §)**¢ and letz := 1+o+e Definea € (1,00) by
a = 175 Note thatexp((1 + ) X) = exp((1 —a )5 ((1+0)X — K(1 +
8)) exp(a  HEE((14+6)X —K(140)) + ﬁgK(l—M)).Application of Holder’s
inequality with := (1 — o) and; :=1— - yields

E(exp((1 +&)X7))

< (E(exp«l o)Xy — K(1+ 6>T>>>p (35)
1+ aé
<E<6Xp <1 Fad(l+e) L

(w0, 001+ 50000

for any finite stopping timél". The first expectation on the right-hand side of
Inequality (3.5) is bounded by 1 becauge+ 0)X — K(1 + ) is a positive
supermartingale (cf., JS, 1.1.39). Note tlﬂl\% < 1+e¢. Hence, Condition
I(a, 1+ 6)**< implies that the second integral is bounded uniformly over all finite
stopping timed". In view of Proposition 3.3, we are done. a

Proof of Theorem 3.8/N.l.o.g.a # 1, K(1) = 0 (cf., Propositions 3.3 and 3.13).
SinceZ is a non-negative local martingale and hence a supermartingale, we only
have to prove thak(Z..,) > 1.

Step 1:Choosed > 0 so small thatz + 6 < 1 and set) := ﬁ 1. Let
Y = (1 - 4)X. In view of Proposition 3.15, straightforward calculations yield
thata((1 +6)Y — KY (1 +90)) + =LKV (1+ 6) — (1+0)KY (1) < aX +

(1—a)DK(1). Therefore, Conditiod (a, 1 + §)1+ holds forY instead ofX and
henceexp(Y — KY (1)) € M by Lemma 3.16.
1—-a—3da

Step 2:Sinceesp( — KY (1)) = Z&7 7 liminfy o exp (22—

X — K(1 - 6)t), Step 1 and the application ofdttler’s inequality with% =

l1—a—da 1.1 _ 1 _ 5 \
YT anda =1-7=1% yields

1< (E(Zs))? liminf <E(exp (aXt - %K(l - 5)t>)> %. (3.6)

t—o00

Sincel — 1for§ — 0, it remains to be shown that the second factor converges to
1ford — 0.

Step 3:By Proposition 3.15, we have ; K(1 — §) < DK(1). Since Condi-
tion I(a, 1) implies I(a, 1), it follows thatE(eXp(aXt LS8 K(1—6))) <
E(exp(aX¢ + (1 — a)DK(1);)) is bounded uniformly irt. Smce1 — 0 for
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& — 0, this implies that the second factor on the right-hand side of Inequality (3.6)
converges to 1 as desired. O

Proof of Theorem 3.WV.l.o.g. K (1) = 0 (cf., Proposition 3.13).
Step 1:Defined, § andY as in Step 1 of the proof of Theorem 3.6. Applying
Proposition 3.14 instead of Proposition 3.15 in that proof, we k@{e+ §)Y —

KY(1+0)) + 54KV (1+46) — (1 +0)KY (1) < aX + 174 DK (1) + 1§ M

for somen. > 0. Choose > 0 so small that +¢ < fjfa andseti ;= a(l+¢). It

follows that(1-+¢)((a(1+0)Y — K (1+8))+ 152 (K (148)— (14+3) K (1))) <

aX + (1 —a)DK(1) + aM. Hence Conditior (@, 1 + §)' < holds forY instead
of X, which implies thatxp(Y — KY (1)) € M by Lemma 3.16.
Step 2:Z € M follows now as in Steps 2 and 3 of the proof of Theorem 3.6.
O

Lemma 3.17 Leté € (0, 1). If ConditionI(0,1 + §) holds, thenZ € M.

Proof W.l.o.g. K(1) = 0 (cf., Proposition 3.13). Sincg is a non-negative local
martingale and hence a supermartingale, we only have to prov&{iat) > 1.
Step 1:Define the local martingal& := exp((1 + )X — K(1 +4)). By JS,
1.3.10 there exists a sequence of stopping tifis.cny With S, T oo P-almost
surely andk (1 + 8); < non|0, S,,]. Fixn € N. SinceZ is a supermartingale, we
haveE((Z5+)1+%) = E(Zs, ar exp(K (146)s, A7) < e™ for any finite stopping
time 7. By Jacod (1979), Exercise (1.12) and JS, 1.1.47, this implies4fatis a
uniformly integrable martingale.
Step 2Forn € N andt € R, we haveZs, a¢l(s, <o} = 'ngj‘i)_l exp(135
K (14 8)s,nt)1(s,<c0}- Application of Holder's inequality with; := 15 and

1i=1- 1 = {5 yields

=

sup E(Zs, ntl{s,<oc}) < ( sup E(anm))
teR, teR,

1 q
< sup E(exp <6K(1 + 5)Sn/\t> 1{Sn<m})> . 3.7)
teR L

The first factor on the right-hand side is dominated by 1 becAisa supermartin-
gale. From Theorem 2.18 it follows th&t(1 + ) = K(14+6) — (1 +0)K (1) is
increasing. Conditioti(0, 1+¢) implies thatP(S,, < co) — 0forn — co. Domi-
nated convergence and once more Condifi@n 1+ ) yields that the second factor
on the right-hand side of Inequality (3.7) converges to Qifer oo. From Fatou’s
lemma we conclude that(Zs, 1¢s, <cc}) — 0 for n — oo. SinceE(Z,) =
E(Z3r) + E(Zools, <o0}) = E(Zs,1(5,<00}) = 1= E(Zs,nt1{s,<c0}), WE
obtainE(Z,) = 1. O

Proposition 3.18 ConditionI(0, 1) implies ConditionZ (0, 1—).

Proof This follows from Proposition 3.15. O
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Lemma 3.19 If Condition (0, 1—) holds, thenZ € M.

Proof W.l.o.g. K (1) = 0 (cf., Proposition 3.13). Sincg is a non-negative local

martingale and hence a supermartingale, we only have to prov&(iat) > 1.
Step 1.Choose) € (0,1) so small thatup,cp, E(exp(—3K(1-6))) < oc.

LetY := (1 —46)X andj = X5 — 1. It follows that £ (K (1 + 6) — (1 +

§)KY (1)) = —3K(1 — ). Therefore Condition (0, 1 + ) holds forY" instead
of X, which implies thatxp(Y — KY (1)) € M by Lemma 3.17.
Step 2Sinceexp(Y — KY (1)) = Z' % exp(—K (1 —6)), Step 1 and Blder’s

inequality with% =1-9 and% =1- % = § yield that

1= Elexp(Y — K¥ (1))a) < (B(Zo0))' ™ <E(exp (— %K(l - 5)m>)>6.

Note that the second factor on the right-hand side converges todl fer0 by
Condition(0,1—). Sincel —§ — 1 for § — 0, it follows that E(Z.,) > 1 as
desired. 0

Proof of Theorem 3.Zhis follows from Proposition 3.18 and Lemma 3.19. O
Proof of Corollary 3.10Theorems 3.2, 3.6, 3.7 O

4 Esscher’s change of measure in finance

If a probability spacd (2, F, P) and a random variabl& are given, probability
measures®y with Radon-Nikogm density %72 := exp(¥X — k(1)) for some

real numberd), k() are calledEsscher transfornbecause they were applied by
Esscher in the actuaries (cf., Esscher 1932). This concept has been transferred to
finance by Gerber and Shiu (1994) and others. Suppos&tisa real-valued vy

process. If () denotes the cumulant of, thenZ? := (exp(9.X; — tk(V)))ier,

is the density process of some probability measﬁ;elﬁc P foranyd € R. In
finance one is particularly interested in so-cakeplivalent martingale measutes
i.e. measure®* ~ P such that some given security price processecomes a
martingale or at least a local martingale.

Fix aterminal timel’ € R and suppose thatis of the formS = Sy exp(X).
Then a necessary and sufficient condition(8),<[o, 7 to be aPy-martingale is

k(9 +1) — k(9) =0

(cf., Shiryaev 1999, VII.3c). This kind of measure change has been considered by
Madan and Milne (1991), Gerber and Shiu (1994), Eberlein and Keller (1995). A
closely related security model 8 = Sp&(X) if AX > —1. In fact, any such
positive proces$ = So&(X) can be written a$' = S, exp(X) for some other
Lévy process’? and vice versa (cf., Goll and Kallsen 2000, Lemma A.8). In this
case, a necessary and sufficient condition ), |o,7) to be aPy-martingale is

K (9) = 0.
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The corresponding measuPg minimizes the relative entropy among all equivalent
martingale measures (cf., Miyahara 1999; Chan 1999) and it can be used to deter-
mine optimal portfolios relative to exponential utility (cf., Kallsen 2000). Note that
the two measure transformations above generally differ although they correspond
to the same class of security price models. Whereas Gerber and Shiu (1994) used
the notionEsscher transfornmn the first case, Chan (1999) applied the same name
to the second setting.

In this section we want to extend this approach to general semimartingales. More
specifically, suppose thaf is aR?-valued semimartingale whose characteristics
are of the form (2.1). For an§ € L(X) such that) " - X is exponentially special,
define a local martingale

Z? = exp(®" - X — KX(0)).

If it is a uniformly integrable martingale (cf., the previous section), then it is the
density process of some probability measiie ~ P. As in the Lévy process
setting, we want to determine necessary and sufficient conditions for BSme
valued securities price proceSs= (S, ..., S?) to be aPy-local martingale.

Firstly, let us consider the case

St = Slexp(X") fori=1,...,d (4.1)
with S§ € R\ {0}.

Theorem 4.1 Lety € L(X) be suchthat T - X is exponentially special and such
thatZ? is a uniformly integrable martingale. Defii®, ~ P by its Radon-Nikogim
density4l2 := Z% and set)? := (9',... 9"~ 9" + 1,0+, ... 99)T. Then
the processeS’ = Sj exp(X*) are Py-local martingales if and only if9()) T - X

is exponentially special and

KXWy - KX@)=0fori=1,...,d. (4.2)
In this case we calPy an Esscher martingale transform for exponential processes

Proof By JS, 11.3.8,exp(X?) is aPy-local martingale if and only iéxp(X*) ZY =
exp((W)T - X — KX(¥9)) is a Py-local martingale. By Lemma 2.15 and The-
orem 2.19 this is the case if and only(i#?)T - X is exponentially special and
KX(9@) = KX () up to indistinguishability. O

Theorem 4.2 If d = 1, then the Esscher martingale transform for exponential
processes is unique (provided that it exists).

Proof Step 1Letd,d € L(X)besuchthat- X, (J+1)-X,9-X, (J+1)-X are
exponentially special and such thg, P; are Esscher martingale transforms for
exponential processes. Th&N (¥ +1) — KX (9) =0 = KX (9 + 1) — KX (V)
(cf., Theorem 4.1). In particulag(¥ +1) —&(9) = 0 = (I +1) —K(J) (P® A)-
almost everywhere onthe gef A = 0} (cf., Theorem 2.18). Onthe sef\A # 0}
we haveAKX (9 + 1) — AKX (¥) = 0 = AKX (9 + 1) — AKX (). In view
of Theorem 2.18, this implie8 = b + ¢+ ¢ + [((e® — 1)e”® — h(z))F(dz)
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Dy ({tyxdz
on the se{ AA = 0} and0 = log ltﬁ(;zz;q)i)({ig;z; ) on the sef{ AA # 0}.

Parallel statements hold for.

Step 2:Fix (w,t) € 2 x [0,T] and lety < 9 in (w, ) w.l.o.g. Firstly, suppose
thatAA; (w) = 0. Since[ | (e® —1)e?® —h(x)|F;(dz) < oo and likewise ford, we
have thatup ., 3 [ |(e” — 1)e¥® — h(x)|Fy(dr) < oo. Definev : [0,1] — R by

v(A) = by + Sep + (9 + A —9)) + [((e® — 1)eFTAI=IMz _ h(z))Fy(dx).
Note thatv is a well-defined, continuous, increasing mapping. Similarly as in Step
2 of the proof of Theorem 4.5 below one concludes tiat 9)c; = 0, (¥ —9)b; —
(9 —9)h(z)Fy(dz) = 0, and(J — ¥)z = 0 for Fy-almost allz € R.

Secondly, assume thabA,(w) # 0. Since [e@TD7y({t} x dz) < oo
and [ e?*v({t} x dz) < oo and likewise forJ, the same integrability condi-
tions hold uniformly on[9,d]. This time, definev : [0,1] — R by v()\) =

14 [ (W PAT=D4D7 1y, ({1} xdx) P ; .
Tt [T —Dy((t] xda) Observe that is differentiable on(0, 1) with

derivative

(0 — ) [ 2e@XOT=Mwery,([1) % dr)

1+ f(e(ﬂ+k(5—19))ref” — Dr({t} x dx)
(0 — ) [ wePTAO=Mey, (11} x dr)

1+ [(e@ AT — 1y ({t} x dx)’

v'(\) =

Fix A € (0, 1) for the moment. Define a famil(?, ) ,c(0,1) Of probability measures
onR by QQ(M) — (f egx6(19+)\(5719))zPAX1,|.7:t_ (dx))fl fM 6916(19%»)\(5719))97
PAXel T (dx) for M € B. With this notion, we have’(\) = (9 — 9)(Eq, (I) —
Eq,(I)), wherel : R — R, z — z denotes the identity mapping (cf., JS,
11.1.26). Since(Q,)qec0,1] IS @ class with increasing likelihood ratio, it follows
thatv’(\) > 0 (cf., Witting 1985, Satz 2.28). Therefords an increasing mapping
on [0,1]. Similarly as in Step 2 of the proof of Theorem 4.5 below we conclude
thatv(\) = 0 andv’(A) = 0 for any A € (0,1). This implies0 = v'(\) =
(0 — ) [ we@+H =Mz — 1) ({t} x dx) for any X € (0,1), which in turn
means thaty — ¥)z = 0 for v({t} x -)-almost allx € R.

Step 3:As in the proof of Theorem 4.5 below it follows thét X = ¢ - X,
which proves the claim. a

Unigueness may cease to hold in markets with more than one underlying:

Example 4.3We consider a simple one-period model with:= 1 and 7, =
{@, 2} for t € [0,1). The sigma-fieldF = F; is supposed to be generated by
some random variabl& with P(U = —1) = P(U = 0) = P(U = 1) = =
Define securities price processgs S2 by S} = 1fort € [0,1), S1 = ¢Y, and
S2 := 1+ S'. Moreover, define probability measuréé P" ~ P via ‘fl—]; =
Lexp(—3U) for ¢ := E(exp(—1U)) and 2 = L -2 for ¢ := E(1-2r).
A straightforward calculation yields that', S? are martlngales relative to bofff
andP”. If we setX! := log(Sl) andX? := log(S5?), thenﬁ = exp(—3(X{ —

X4 — KX (1)) and &) = exp(—(X2 — X2) — K{" (—1)). Therefore both
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measures are Esscher martingale transforms for exponential processes, namely
corresponding td = (—1,0) andy = (0, —1), respectively.

The following theorems correspond to the securities price process
St = SiE(XNfori=1,...,d, (4.3)
where we assuma X ¢ # —1 outside some evanescent set &fjcc R\ {0}. Note

that S’ is a local martingale if and only iX? is a local martingale becau%é is
locally bounded. Therefore one can apply the following result also to the model

St=Xifori=1,...,d.

Theorem 4.4 Lety € L(X) be suchthat " - X is exponentially special and such
thatZ? is a uniformly integrable martingale. Defitig) ~ P by its Radon-Nikogim
density22 := ZJ. Then the processe® = Si€(X*) are Py-local martingales

if and only if|zie” = — hi(z)|*v €V fori=1,...,dand
DKX () =0. (4.4)
In this case we calPy an Esscher martingale transform for linear processes

Proof “=": Suppose thatS?, or equivalently, X’ is a Py-local martingale for
1 =1,...,d. By Corollary 2.21, the%-characteristic:ﬁB, C,7) of X are of the

19Tz _ —_—
forn: (2 1) but withb = b + ¢ + [ h(z) HT(M —1)F(dz),¢ = ¢, F(dx) =
1f;V(ﬂ)F(dx) instead of(b, ¢, F). Since X" is aPﬁ—IocaI martingale, we have

0=B'+(z'—hi(z))xv = B'+07. Cri (2

Te

—hi(z))svfori=1,...,d

1+W(0)
(cf., Lemma 2.11). In particular, we haye’ — T hi(z)| xv €V . Asin the
- . W () _ W@ | pi
proof of Proposition 2.25, it follows tha(t1 ) hi(z)) * v = W) B’ €

V. Together, we have thatl + W (0))(z%e” © — hi(z))| * v € V. Since
1+ W(19) is locally bounded (cf., e.g., Statement 4 in Theorem 2.18), it follows
that|mieﬁTI hi(z)| «v €V as well (cf., JS, 1.3.5). Proposition 2.25 yields that
DZ-KX(ﬁ) =0fori=1,...,d.

" Conversely, assume th& K~ (9) = 0. From Proposition 2.25, we con-

i TL - —i . . =t
clude thad) = b'+ "9+ [ (H;/ @ hi(z))F(dz) =b + [(z' — hi(z))F(d)
fori =1,...,d, whereb, ¢, F are defined as in Step 1. In view of Lemma 2.11, we
are done. 0

Theorem 4.5 The Esscher martingale transform for linear processes is unique
(provided that it exists).

Proof Step 1letd,d € L(X) be suchthat ' - X, 9. X are exponentially
special and such th&yy, P; are Esscher martingale transforms for linear processes.

Then DKX(9) = 0 = DKX(J) (cf., Theorem 4.4) and hend®; K~ (1) =
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(1+W(®)) - D;KX(¥) =0fori = 1,...,d and likeweise for. In particular,
we haveD;% () = 0 = D;r(J) (P ® A)-almost everywhere far=1,...,d.

Step 2Fix (w, t) € 2% [0,T]. Suppose that < Jin (w, t). Since[ |ze” * —
h(z)|Fy(dz) < oo and likewise for, we have thatup, (o 1 | |me@HAT=0) Tz _
h(z)|Fy(dz) < oo. Definev : [0,1] — R by v(\) := (9 — )T (by + co (9 +
AT = 9)) + [(ze@HAT=)"e _ p(2))F,(dx)). Moreover, set: : [0,1] — R,
A= fOA v(z)dz. Sincew is increasing, we have thatis a closed proper convex
mapping (Rockafellar 1970, Theorem 24.2). Let us identifyith a convex function
R — R U {oo} by settingu(\) := oo for A ¢ [0, 1]. Sinceu/(\) = v()) for
A € (0,1), Rockafellar (1970), Theorem 25.6 yields thgt\) belongs to the
subdifferentialou(X) for any A € [0, 1]. Step 1 implies that(0) = 0 = v(1),
which means that achieves its infimum in O and 1. Since the minimum set of a
convex function is convex, we have thgt\) = 0 for any A € [0, 1]. This implies
that(J — 9) Te (9 — 9) = 0 and (¥ — 9) Tz = 0 for Fy-almost allz € R?. This
in turn yields(d — 9) "¢, = 0 and hencéd — 9) "b, — [(0 — ) T h(z)Fy(dx) =
v(0) = 0. From Kallsen and Shiryaev (2000), Lemma 2.5 we conclude that the
characteristics ofd — ) T - X vanish, which in turn means théf - X = X
up to indistinguishability. This proves the assertion. a

Remarks

1. Note thatthe conditions in both Theorems 4.1 and 4.4 corresparebjoations
in d unknownsdt (w, t), ..., 9%(w, t) for fixed (w, t).

2. If one is interested in th&y-local martingale property ok rather thans?,
then of course the restrictiod X # —1 is not necessary for Theorem 4.4 to
hold.

3. Suppose thaX is a Levy process. For real-valuedizy processes it is well-
known thate” is a martingale if and only if it is a local martingale (cf., e.g.,
Kallsen (2000), Lemma 4.4). Consequentf/ in Theorems 4.1 and 4.4 is
automatically a martingale (and hence a uniformly integrable martingale if we
restrict the time to some intervf), T'] with T € R, ). Note thatX is still a
Lévy process under the new measifeas can be seen from the change of
its characteristics (cf., Corollary 2.21 and JS, 11.4.19). Therefore, the processes
S’ in Theorems 4.1 and 4.4 af&-martingales if they are positivE,-local
martingales (cf., e.g., Kallsen 2000, Lemmas 4.4 and 4.2).

4. Buhlmann et al. (1996) considered Esscher transforms in the sense of Equation
(4.1) and Theorem 4.1 for general discrete-time processes. Their Equation (76)
corresponds to Equation (4.2) above. Delbaen and Haezendonck (1989) char-
acterize measure changes such that a compound Poisson pibeceswrins
a compound Poisson process under the new probability measure. If the func-
tion g3 in that paper is chosen as— Jz for somed € R, one obtains the
measure chang&? = exp(¥X7 — KX (9)r) in our notation. Note, however,
that the Esscher principle in Delbaen and Haezendonck (1989), Example 3.3
corresponds to a different class of measures.
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Finally, we want to consider the meaning of the two measiei® Theorems
4.1 and 4.4 in finance on an informal level. Recall that arbitrage arguments do not
suffice to determine unique derivative prices in incomplete markets. By contrast,
even in popular stock price models the whole trivial arbitrage interval for European
call option values can be obtained via expectation relative to some equivalent mar-
tingale measure (EMM) (cf., Eberlein and Jacod 1997; Frey and Sin 1999; Gvitani
et al. 1999). Additional criteria based on equilibrium-type arguments (e.g., Davis
1997; Karatzas and Kou 1996; Kallsen 2001, 2002), distance minimization (e.g.,
Keller 1997; Miyahara 1996, 1999; Chan 1999; Grandits 1999a,b; Fritelli 2000),
and hedging arguments (e.g., 8th994; Schweizer 1996) have been proposed to
justify the choice of a particular EMM. Piecing together results from He and Pear-
son (1991a,b), Karatzas etal. (1991), Karamkov and Schachermayer (1999), Bellini
and Frittelli (2000), Kallsen (1998), Schachermayer (2001), Goll distRendorf
(2001), Xiaand Yan (2000), Delbaen et al. (2000) one can observe that these criteria
are closely linked with each other as well as with portfolio optimization problems
(cf., Kallsen 2001 for an overview). Fix a utility functiana securities price process
S, and a terminal tim&". Very roughly speaking, an EMM with Radon-Nikgm
density of the formll = cu/(z+ ¢ " - Sr) (for somec € Ry, z € R, ¢ € L(S))
plays a threefold role in finance. Firstly, it leadsieutralcontingent claim prices
in the sense of Davis (1997), Kallsen (2001), i.e. utility maximizers do not trade
options at these prices. Put differently, it corresponds ttetheat favourable market
completionin the eyes of a utility maximizer. Secondly, it minimizes a certain dis-
tance functional among all EMM (e.qg., the relative entropy in case of exponential
utility). Thirdly, ¢ is the expected utility maximizing portfolio relative toand
initial capitalz. Let us stress, however, that the extent to which these relationships
hold in general settings depends sensitively on the chosen sets of trading strategies
and probability measures, cf., Schachermayer (2000) for a thorough discussion and
illuminating counterexamples.

How do Esscher transforms fit into this picture? As noted before, the EMM
Py in a one-dimensional&vy process setting of type (4.3) minimizes the relative
entropy and it is related to exponential utility. On the above intuitive level, this
is due to the fact thaild% equaISexp(Si - St) up to a multiplicative constant

exp(—Tk(9)). If we leave the framework of &vy processes, this is no longer
true since the corresponding facterp(— K~ (9)r) is generally not a constant.
However, Py can still be interpreted economically. It leadsrteutral derivative
prices for local utilityin the sense of Kallsen (2001, 2002):ifx) = 1 — exp(—x)

is chosen as utility function.

The Esscher transforifiy referring to real-valued &vy processes of type (4.1)
has a density proportionate &.. Therefore, it corresponds to the utility function
u(z) = zY+1 inthe sense of the above overview (cf., also Naik and Lee 1990). Note,
however, that this utility function depends on the solution paramketstoreover,
the correspondence ceases to hold even for multidimensi@val firocesses.

An entirely mathematical property of Esscher transforms is that they can be
computed relatively easily for general semimartingales because the whole den-
sity process is known in a form that is suitable to apply Girsanov’s theorem (cf.,
Corollary 2.21). The unknown parameters ensuring the martingale property of the
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securities price process can be obtained by solving equations seperately for any
(w,t) (cf., Equations (4.2) and (4.4)). There exist further instances of kich

cal measure changes which all share the property that they can be determined by
pointwise solution of equations R’ that depend only on the local characteristics

(b, ¢, F)(w,t). Ignoring the fact that it is generally a signed measure,ntiira-

mal martingale measuri@ the sense of llmer and Schweizer (1991), Schweizer
(1995) constitutes a first example. Theutral pricing measurén Kallsen (2002)

is of this type as well. Thirdly, the EMM leading to log-optimal portfolios shares
this simple structure, which explains the often statgapiaof logarithmic utility

(cf., Goll and Kallsen 2000). For continuous processes, there is in some sense only
one “natural” local measure change, which is why tHesal approaches lead to

the same equivalent martingale measure in this case.
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