On the problem of stochastic integral representations of functions of the Brownian motion II

Graversen, S. and Shiryaev, A. N. and Yor, M. 2007

MIMS EPrint: 2007.173

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

```
Reports available from: http://eprints.maths.manchester.ac.uk/
    And by contacting: The MIMS Secretary
    School of Mathematics
    The University of Manchester
    Manchester, M13 9PL, UK
```


ON THE PROBLEM OF STOCHASTIC INTEGRAL REPRESENTATIONS OF FUNCTIONALS OF THE BROWNIAN MOTION. II*

S. GRAVERSEN ${ }^{\dagger}$, A. N. SHIRYAEV \ddagger, AND M. YOR ${ }^{\S}$

(Translated by A. A. Sergeev)

Abstract

In the first part of this paper [A. N. Shiryaev and M. Yor, Theory Probab. Appl., 48 (2004), pp. 304-313], a method of obtaining stochastic integral representations of functionals $S(\omega)$ of Brownian motion $B=\left(B_{t}\right)_{t \geqq 0}$ was stated. Functionals $\max _{t \leqq T} B_{t}$ and $\max _{t \leqq T_{-a}} B_{t}$, where $T_{-a}=\inf \left\{t: B_{t}=-a\right\}, a>0$, were considered as an illustration. In the present paper we state another derivation of representations for these functionals and two proofs of representation for functional $\max _{t \leqq g_{T}} B_{t}$, where (non-Markov time) $g_{T}=\sup \left\{0 \leqq t \leqq T: B_{t}=0\right\}$ are given.

Key words. Brownian motion, Itô integral, max-functionals, stochastic integral representation

DOI. 10.1137/S0040585X97982190

2^{\prime}. The second derivation of the representation for $S_{T}=\max _{t \leqq T} B_{t}$.

2.1. According to relation (4) of the first part of the paper,

$$
S_{T}=\mathbf{E} S_{T}+2 \int_{0}^{T}\left[1-\Phi\left(\frac{S_{t}-B_{t}}{\sqrt{T-t}}\right)\right] d B_{t}
$$

or, equivalently,

$$
\begin{equation*}
S_{T}=\mathbf{E} S_{T}+\int_{0}^{T} \Psi\left(\frac{S_{t}-B_{t}}{\sqrt{T-t}}\right) d B_{t}, \tag{45}
\end{equation*}
$$

where $S_{t}=\max _{u \leq t} B_{u}, \mathbf{E} S_{t}=\sqrt{2 T / \pi}$, and $\Psi(x)=2[1-\Phi(x)](=2 \mathbf{P}\{\mathcal{N}(0,1)>x\}$, $\mathcal{N}(0,1)$ having the standard Gaussian distribution).
2.2. Let us demonstrate that for all $t \geqq 0$ the following relation holds:

$$
\begin{equation*}
\mathbf{E}\left(S_{T} \mid \mathcal{F}_{t}\right)=\sqrt{\frac{2}{\pi} T}+\int_{0}^{T \wedge t} \Psi\left(\frac{S_{u}-B_{u}}{\sqrt{T-u}}\right) d B_{u} \tag{46}
\end{equation*}
$$

which implies, obviously, formula (45) too. (Recall that $\mathcal{F}_{t}=\sigma\left(B_{s}, s \leqq t\right)$ is the σ algebra, generated by the Brownian motion and completed with sets of \mathbf{P}-probability zero from σ-algebra \mathcal{F} of the original complete probability space $(\Omega, \mathcal{F}, \mathbf{P})$.)

[^0]Fix $0 \leqq t<T$. Then, according to (5),

$$
\begin{align*}
\mathbf{E}\left[S_{T} \mid \mathcal{F}_{t}\right] & =\mathbf{E}\left(\int_{0}^{\infty} \mathbf{E}\left[I\left(a<S_{t}\right) \mid \mathcal{F}_{t}\right] d a\right)=\int_{0}^{\infty} \mathbf{E}\left[I\left(T_{a}<T\right) \mid \mathcal{F}_{t}\right] d a \\
& =\int_{0}^{\infty}\left(I\left(T_{a} \leqq t\right)+\mathbf{E}\left[I\left(t<T_{a}<T\right) \mid \mathcal{F}_{t}\right]\right) d a \\
& =\int_{0}^{\infty} I\left(T_{a} \leqq t\right) d a+\int_{0}^{\infty} \mathbf{P}\left(t<T_{a}<T \mid \mathcal{F}_{t}\right) d a \\
& =S_{t}+\int_{0}^{\infty} \mathbf{P}\left(t<T_{a}<T \mid \mathcal{F}_{t}\right) d a \tag{47}
\end{align*}
$$

On the set $\left\{t<T_{a}\right\}$, according to the Markov property and relations (14), (15), we have

$$
\begin{align*}
\mathbf{P}\left(t<T_{a}<T \mid \mathcal{F}_{t}\right) & =\mathbf{P}\left(\exists s \in(t, T): B_{s}>a \mid \mathcal{F}_{t}\right) \\
& =\mathbf{P}_{B_{t}}\left\{\exists s \in(0, T-t): B_{s}>a\right\}=\mathbf{P}_{B_{t}}\left\{T_{a}<T-t\right\} \\
& =\int_{0}^{T-t} \frac{a-B_{t}}{\sqrt{2 \pi s^{3}}} \exp \left\{-\frac{\left(a-B_{t}\right)^{2}}{2 s}\right\} d s \tag{48}
\end{align*}
$$

where $\mathbf{P}_{x}(\cdot)$ is the distribution of the Brownian motion starting at point x.
From (47) and (48) we find that

$$
\begin{aligned}
\mathbf{E}\left[S_{T} \mid \mathcal{F}_{t}\right] & =S_{t}+\int_{S_{t}}^{\infty} \int_{0}^{T-t} \frac{a-B_{t}}{\sqrt{2 \pi s^{3}}} \exp \left\{-\frac{\left(a-B_{t}\right)^{2}}{2 s}\right\} d s d a \\
& =S_{t}+\int_{0}^{T-t} \frac{1}{\sqrt{2 \pi s}}\left(\int_{S_{t}}^{\infty} \frac{a-B_{t}}{\sqrt{2 \pi s^{2}}} \exp \left\{-\frac{\left(a-B_{t}\right)^{2}}{2 s}\right\} d a\right) d s \\
& =S_{t}+\int_{0}^{T-t} \frac{1}{\sqrt{2 \pi s}} \exp \left\{-\frac{\left(S_{t}-B_{t}\right)^{2}}{2 s}\right\} d s=S_{t}+H\left(S_{t}-B_{t}, t\right)
\end{aligned}
$$

where

$$
H(x, t)=\int_{0}^{T-t} \frac{1}{\sqrt{2 \pi s}} e^{-x^{2} /(2 s)} d s, \quad x \in \mathbf{R}, \quad 0 \leqq t<T
$$

It is obvious that

$$
\begin{equation*}
H(0,0)=\int_{0}^{T} \frac{1}{\sqrt{2 \pi s}} d s=\sqrt{\frac{2 T}{\pi}} \tag{50}
\end{equation*}
$$

and for $x>0$ and $0<t<T$
(51) $\frac{\partial}{\partial x} H(x, t)=-\int_{0}^{T-t} \frac{x}{\sqrt{2 \pi s}} e^{-x^{2} /(2 s)} d s=-\mathbf{P}\left\{T_{x}<T-t\right\}=-\Psi\left(\frac{x}{\sqrt{T-t}}\right)$.

Denoting $X_{t}=S_{t}-B_{t}$ and applying Itô's formula to $H\left(X_{t}, t\right)$, we find that (in differential form)

$$
d H\left(X_{t}, t\right)=\frac{\partial}{\partial t} H\left(X_{t}, t\right) d t+\frac{\partial}{\partial x} H\left(X_{t}, t\right) d X_{t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} H\left(X_{t}, t\right) d[X]_{t}
$$

where $\left(\left[X_{t}\right]\right)_{t \leqq T}$ is the square variation of the process $\left(X_{t}\right)_{t \leqq T}$. It is obvious that in the case in question $[X]_{t}=[B]_{t}=t$. So (in the integral form)

$$
\begin{aligned}
H\left(S_{t}-B_{t}, t\right)=H(0,0)+ & {\left[\int_{0}^{t} \frac{\partial}{\partial u} H\left(X_{u}, u\right) d u+\int_{0}^{t} \frac{\partial}{\partial x} H\left(X_{u}, u\right) d S_{u}\right.} \\
& \left.+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2}}{\partial x^{2}} H\left(X_{u}, u\right) d u\right]-\int_{0}^{t} \frac{\partial}{\partial x} H\left(X_{u}, u\right) d B_{u} .
\end{aligned}
$$

Denoting the expression in the square brackets A_{t}, we find from (49) that

$$
\mathbf{E}\left(S_{T} \mid \mathcal{F}_{t}\right)=H(0,0)+\left(A_{t}+B_{t}\right)-\int_{0}^{t} \frac{\partial}{\partial x} H\left(X_{u}, u\right) d B_{u}
$$

Since the processes $\left(\mathbf{E}\left(S_{T} \mid \mathcal{F}_{t}\right)\right)_{t \leqq T}$ and $\left(\int_{0}^{t} \frac{\partial}{\partial x} H\left(X_{u}, u\right) d B_{u}\right)_{t \leqq T}$ are continuous martingales, the process of bounded variation $\left(A_{t}+B_{t}\right)_{t \leqq T}$ with $A_{0}+B_{0}=0$ is also a martingale. Therefore, this process is identically (to stochastic indistinguishability) equal to zero, and, hence,

$$
\mathbf{E}\left(S_{T} \mid \mathcal{F}_{t}\right)=H(0,0)-\int_{0}^{t} \frac{\partial}{\partial x} H\left(X_{u}, u\right) d B_{u}
$$

which leads, taking formulas (50) and (51) into account, to the required representation (46).
3^{\prime}. The second derivation of the representation for $S_{T_{-a}}=\max _{t \leqq T_{-a}} B_{t}$.
3.1. According to relation (44) from the first part of the paper,

$$
\begin{equation*}
S_{T_{-a}}=\int_{0}^{T_{-a}} \log \frac{a}{a+S_{u}} d B_{u} \tag{52}
\end{equation*}
$$

Let us demonstrate that for every $M>0$ and $t \geqq 0$ the following representation holds:

$$
\begin{equation*}
\mathbf{E}\left[S_{T_{-a}} \wedge M \mid \mathcal{F}_{t}\right]=a \log \frac{a+M}{a}+\int_{0}^{t \wedge T_{-a}} \log \frac{a+M}{a+M \wedge S_{u}} d B_{u} \tag{53}
\end{equation*}
$$

whence (52) is derived by transition to the limit, as shown in what follows.
For fixed $M>0$

$$
\begin{aligned}
\mathbf{E}\left[S_{T_{-a}} \wedge M \mid \mathcal{F}_{t}\right]= & \mathbf{E}\left[\int_{0}^{M} I\left(\alpha<S_{T_{-a}} \wedge M\right) d \alpha \mid \mathcal{F}_{t}\right] \\
= & \int_{0}^{M} \mathbf{E}\left[I\left(\alpha<S_{T_{-a} \wedge M}\right) \mid \mathcal{F}_{t}\right] d \alpha=\int_{0}^{M} \mathbf{E}\left[I\left(T_{\alpha}<T_{-a}\right) \mid \mathcal{F}_{t}\right] d \alpha \\
= & \int_{0}^{M} I\left(T_{\alpha}<T_{-a} \leqq t\right) d \alpha \\
& +\int_{0}^{M}\left(I\left(T_{\alpha}<T_{-a}\right)+\mathbf{E}\left[I\left(t<T_{\alpha}<T_{-a}\right) \mid \mathcal{F}_{t}\right]\right) d \alpha
\end{aligned}
$$

Due to the Markov property of the Brownian motion we find that on the set $\left\{t<T_{-a}\right\}$

$$
\begin{align*}
\mathbf{E}\left[S_{T_{-a}} \wedge M \mid \mathcal{F}_{t}\right]= & \int_{0}^{M} I\left(T_{\alpha} \leqq t\right) d \alpha+\int_{0}^{M} \mathbf{E}\left[I\left(t<T_{\alpha}<T_{-a}\right) \mid \mathcal{F}_{t}\right] d \alpha \\
= & \int_{0}^{M} I\left(\alpha<S_{t}\right) d \alpha \\
& +\int_{0}^{M} \mathbf{E}\left[I\left(t<T_{\alpha}\right) I\left(0<T_{\alpha} \circ \theta_{t}<T_{-a} \circ \theta_{t}\right) \mid \mathcal{F}_{t}\right] d \alpha \\
= & S_{t} \wedge M+\int_{0}^{M} \mathbf{P}_{B_{t}}\left\{T_{\alpha}<T_{-a}\right\} I\left(t<T_{\alpha}\right) d \alpha \tag{55}
\end{align*}
$$

where θ_{t} is the shift operator. Yet, on the set $\left\{T_{-a} \leqq t\right\}$

$$
\begin{equation*}
\mathbf{E}\left[S_{T_{-a}} \wedge M \mid \mathcal{F}_{t}\right]=\int_{0}^{M} I\left(T_{\alpha}<T_{-a}<t\right) d \alpha=S_{T_{-a}} \wedge M \tag{56}
\end{equation*}
$$

Using the well-known relation

$$
\mathbf{P}_{x}\left\{T_{\alpha}<T_{-a}\right\}=\frac{x+a}{\alpha+a}, \quad-a<x<\alpha
$$

we find from (55) that on the set $\left\{t<T_{-a}\right\}$

$$
\begin{aligned}
\begin{aligned}
\mathbf{E}\left[S_{T_{-a}} \wedge M \mid \mathcal{F}_{t}\right]= & S_{t} \wedge M+\int_{0}^{M} \frac{B_{t}+a}{\alpha+a} I\left(t<T_{\alpha}\right) d \alpha \\
= & S_{t} \wedge M+B_{t} \int_{0}^{M} \frac{1}{\alpha+a} I\left(S_{t}<\alpha\right) d \alpha+\int_{0}^{M} \frac{a}{\alpha+a} I\left(S_{t}<\alpha\right) d \alpha \\
= & S_{t} \wedge M+\left(B_{t}+a\right) \log (M+a)-B_{t} \log \left(S_{t} \wedge M+a\right) \\
& -a \log \left(S_{t} \wedge M+a\right)=A_{t}+\int_{0}^{t} \log \frac{M+a}{S_{u} \wedge M+a} d B_{u}
\end{aligned}
\end{aligned}
$$

where $\left(A_{t}\right)_{t \geqq 0}$ is the continuous process of bounded variation specified by the relation

$$
\begin{equation*}
A_{t}=a \log (M+a)+S_{t} \wedge M-a \log \left(S_{t} \wedge M+a\right)-\int_{0}^{t} \frac{B_{\alpha}}{S_{u} \wedge M+a} I\left(S_{u} \leqq M\right) d S_{u} \tag{58}
\end{equation*}
$$

(The last equality in (57) was obtained with the use of Itô's formula applied to $B_{t} \log \left(S_{t} \wedge M+a\right)$. $)$

As in the end of section 2^{\prime}, we make use of the fact that a continuous martingale, which is at the same time a process of bounded variation, is constant. Then we find from (57) that the processes

$$
\left(\mathbf{E}\left[S_{T_{-a}} \wedge M \mid \mathcal{F}_{t \wedge T_{-a}}\right]\right)_{t \geqq 0} \quad \text { and } \quad\left(A_{0}+\int_{0}^{t \wedge T_{-a}} \log \frac{M+a}{S_{u} \wedge M+a} d B_{u}\right)_{t \geqq 0}
$$

are indistinguishable.

From (58) we obtain equality $A_{0}=a \log [(M+a) / a]$, and, therefore, for every $t \geqq 0$

$$
\mathbf{E}\left(S_{T_{-a}} \wedge M \mid \mathcal{F}_{t}\right)=a \log \frac{M+a}{a}+\int_{0}^{t \wedge T_{-a}} \log \frac{M+a}{S_{u} \wedge M+a} d B_{u} \quad(\mathbf{P}-\text { a.s. })
$$

which is just the required relation (53).
Note that according to this formula

$$
\mathbf{E}\left(S_{T_{-a}} \wedge M\right)=a \log \frac{M+a}{a}
$$

This latter formula one can also find directly:

$$
\begin{aligned}
\mathbf{E}\left(S_{T_{-a}} \wedge M\right) & =\int_{0}^{M} \mathbf{P}\left\{S_{T_{-a}} \wedge M>\alpha\right\} d \alpha=\int_{0}^{M} \mathbf{P}\left\{T_{\alpha}<T_{-a}\right\} d \alpha \\
& =\int_{0}^{M} \frac{a}{\alpha+a} d \alpha=a \log \frac{M+a}{a}
\end{aligned}
$$

If one assumes $t=T_{-a}$ in (53), then one will find that for every $M>0$

$$
\begin{aligned}
S_{T_{-a}} \wedge M & =a \log \frac{M+a}{a}+\int_{0}^{T_{-a}}\left[\log (M+a)-\log \left(S_{u} \wedge M+a\right)\right] d B_{u} \\
& =a \log \frac{M+a}{a}-a \log (M+a)-\int_{0}^{T_{-a}} \log \left(S_{u} \wedge M+a\right) d B_{u} \\
& =\int_{0}^{T_{-a}}\left[\log a-\log \left(S_{u} \wedge M+a\right)\right] d B_{u}=\int_{0}^{T_{-a}} \log \frac{a}{S_{u} \wedge M+a} d B_{u}
\end{aligned}
$$

Assuming here $M \rightarrow \infty$ and using the continuity of the integral with respect to M, we get

$$
S_{T_{-a}}=\int_{0}^{T_{-a}} \log \frac{a}{a+S_{u}} d B_{u}
$$

which is just the required relation (52).
3.2. Let $T_{-a}^{b}=T_{b} \wedge T_{-a}, a, b>0$. In other words, let $T_{-a}^{b}=\inf \left\{t>0: B_{t} \notin\right.$ $(-a, b)\}$. The reasoning, similar to the adduced one, allows us to validate the following representations:

$$
\begin{equation*}
S_{T_{-a}^{b}}=a \log \frac{a+b}{a}+\int_{0}^{T_{-a}^{b}} \log \frac{b+a}{S_{u}+a} d B_{u} \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{E}\left(S_{T_{-a}^{b}} \mid \mathcal{F}_{t}\right)=a \log \frac{a+b}{a}+\int_{0}^{t \wedge T_{-a}^{b}} \log \frac{b+a}{S_{u}+a} d B_{u} \tag{60}
\end{equation*}
$$

Indeed, since $\mathbf{P}\left\{S_{T_{-a}^{b}} \leqq b\right\}=1$ and

$$
\mathbf{P}\left\{S_{T_{-a}^{b}}>u\right\}=\mathbf{P}\left\{T_{u}<T_{-a}\right\}=\frac{a}{u+a}, \quad 0<u \leqq b
$$

one can see that

$$
\mathbf{E} S_{T_{-a}^{b}}=a \log \frac{b+a}{a}
$$

Fix $t>0$. As in section 1 (see (54)), we have

$$
\begin{aligned}
\mathbf{E}\left[S_{T_{-a}^{b}} \mid \mathcal{F}_{t}\right]= & \int_{0}^{\infty} \mathbf{E}\left[I\left(u<S_{T_{-a}^{b}}\right) \mid \mathcal{F}_{t}\right] d u=\int_{0}^{\infty} \mathbf{E}\left[I\left(T_{u}<T_{-a}^{b}\right) \mid \mathcal{F}_{t}\right] d u \\
= & \int_{0}^{\infty}\left(I\left(T_{u}<T_{-a}^{b} \leqq t\right)+I\left(T_{u} \leqq t<T_{-a}^{b}\right)\right. \\
& \left.+\mathbf{E}\left[I\left(t<T_{u}<T_{-a}^{b}\right) \mid \mathcal{F}_{t}\right]\right) d u
\end{aligned}
$$

Using the Markov property of the Brownian motion, we find that

$$
\begin{aligned}
\mathbf{E}\left[I\left(t<T_{u}<T_{-a}^{b}\right) \mid \mathcal{F}_{t}\right] & =\mathbf{P}\left(\exists s \in\left(t, T_{-a}^{b}\right): B_{s}>u \mid \mathcal{F}_{t}\right) I\left(t<T_{-a}^{b}\right) \\
& =\mathbf{P}_{B_{t}}\left\{\exists s \in\left(0, T_{-a}^{b}\right): B_{s}>u\right\} I\left(t<T_{-a}^{b}\right) \\
& =\psi\left(B_{t}, u\right) I\left(t<T_{-a}^{b}\right)
\end{aligned}
$$

where

$$
\psi(x, u)= \begin{cases}1, & x \geqq u, u \in(0, b) \\ \frac{x+a}{u+a}, & -a<x<u, u \in(0, b), \\ 0, & \text { otherwise }\end{cases}
$$

Taking account of this designation, we find that on the set $\left\{t<T_{-a}^{b}\right\}$

$$
\mathbf{E}\left[S_{T_{-a}^{b}} \mid \mathcal{F}_{t}\right]=S_{t}+\int_{S_{t}}^{b} \psi\left(B_{t}, u\right) d u=S_{t}+\int_{S_{t}}^{b} \frac{B_{t}+a}{u+a} d u=S_{t}+\left(B_{t}+a\right) \log \frac{b+a}{S_{t}+a}
$$

Applying Itô's formula to the right-hand side of this relation and again, as in section 1, ignoring members with bounded variation, we arrive at the following relation:

$$
\mathbf{E}\left[S_{T_{-a}^{b}} \mid \mathcal{F}_{t}\right]=a \log \frac{a+b}{a}+\int_{0}^{t \wedge T_{-a}^{b}} \log \frac{b+a}{S_{u}+a} d B_{u}
$$

which is just the required relation (60), which obviously implies (59).
4. The case $S_{g_{T}}=\max _{t \leq g_{T}} \boldsymbol{B}_{\boldsymbol{t}}$.
4.1. Let $g_{T}=\sup \left\{0<t \leqq T: B_{t}=0\right\}$ be the time of the last reaching of zero by the Brownian motion on $(0, T]$. If $B_{t} \neq 0$ for all $0<t \leqq T$, then assume $g_{T}=0$.

Theorem 3. For $S_{g_{T}}$ the following stochastic integral representation is true:

$$
\begin{equation*}
S_{g_{T}}=\frac{1}{2} \mathbf{E} S_{T}+\int_{0}^{T}\left[1-\Psi\left(\frac{2 S_{u}-B_{u}}{\sqrt{T-u}}\right)-Z_{u}\left(B_{u}, S_{u}-S_{g_{u}}\right)\right] d B_{u} \tag{61}
\end{equation*}
$$

where $\mathbf{E} S_{t}=\sqrt{2 T / \pi}, \Psi(x)=2[1-\Phi(x)]$, and

$$
Z_{u}\left(B_{u}, S_{u}-S_{g_{u}}\right)=\left(S_{u}-S_{g_{u}}\right) \varphi_{T-u}\left(B_{u}\right) \quad \text { with } \quad g_{u}=\sup \left\{0<t \leqq u: B_{t}=0\right\}
$$

or, equivalently,

$$
\begin{equation*}
S_{g_{T}}=\frac{1}{2} \mathbf{E} S_{T}+\int_{0}^{T}\left[\frac{1}{2} \Psi\left(\frac{2 S_{u}-B_{u}}{\sqrt{T-u}}\right)-Z_{u}\left(B_{u}, S_{u}-S_{g_{u}}\right)\right] d B_{u} . \tag{62}
\end{equation*}
$$

We give two different proofs, each of them of independent interest in view of the techniques used.
4.2. First proof. We have

$$
\begin{equation*}
S_{g_{T}}=\int_{0}^{\infty} I\left(a<S_{g_{T}}\right) d a=\int_{0}^{\infty} I\left(g_{T}>T_{a}\right) d a=\int_{0}^{\infty} I\left(d_{T_{a}}<T\right) d a, \tag{63}
\end{equation*}
$$

where for $K>0$

$$
d_{K}=\inf \left\{t>K: B_{t}=0\right\} .
$$

By analogy with the scheme of the proof of Theorem 1 it is natural first to obtain a stochastic integral representation for $I\left(d_{T_{a}}<T\right)$ (cf. Lemma 1, which provides the representation for $I\left(T_{a}<T\right)$).

Lemma 4. For any $a>0$ and any $T>0$

$$
\begin{align*}
I\left(d_{T_{a}}<T\right)= & \mathbf{P}\left\{T_{2 a}<T\right\}+2 \int_{T_{a} \wedge T}^{d_{T_{a}} \wedge T} \varphi_{T-s}\left(B_{s}\right) d B_{s} \\
& -2 \int_{0}^{T_{a} \wedge T} \varphi_{T-s}\left(B_{s}-2 a\right) d B_{s} \quad(\mathbf{P}-a . s .) . \tag{64}
\end{align*}
$$

Proof. It is obvious that

$$
\begin{align*}
d_{T_{a}} & =\inf \left\{t>T_{a}: B_{t}=0\right\}=T_{a}+\inf \left\{u \geqq 0: B_{T_{a}+u}=0\right\} \\
& =T_{a}+\inf \left\{u \geqq 0: B_{T_{a}+u}-a=-a\right\}=T_{a}+\inf \left\{u \geqq 0: \widehat{B}_{u}=-a\right\}, \tag{65}
\end{align*}
$$

where $\widehat{B}=\left(\widehat{B}_{u}\right)_{u \geqq 0}$ with $\widehat{B}_{u}=B_{T_{a}+u}-a$ is the Brownian motion, independent of σ-algebra $\mathcal{F}_{T_{a}}=\sigma\left\{A \in \mathcal{F}: A \cap\left\{T_{a} \leqq t\right\} \in \mathcal{F}_{t}, t>0\right\}$ with $\mathcal{F}=\bigvee_{t>0} \mathcal{F}_{t}$.

Denote $\widehat{T}_{-a}=\inf \left\{u \geqq 0: \widehat{B}_{u}=-a\right\}$. Then from (65) we have $d_{T_{a}}=T_{a}+\widehat{T}_{-a}$, and, hence,

$$
\begin{equation*}
I\left(d_{T_{a}}<T\right)=I\left(\widehat{T}_{-a}<T-T_{a}\right) . \tag{66}
\end{equation*}
$$

Let us find a representation for $I\left(\widehat{T}_{-a}<b\right)$. If one denotes $\widehat{T}_{-a}=\widehat{T}_{-a}(\widehat{B})$, then one can see that $\widehat{T}_{-a}(\widehat{B})=\widehat{T}_{a}(-\widehat{B})$. According to Lemma 1 ,

$$
\begin{aligned}
I\left(\widehat{T}_{a}(-\widehat{B})<b\right) & =\mathbf{P}\left\{\widehat{T}_{a}(-\widehat{B})<b\right\}+2 \int_{0}^{\widehat{T}_{a}(-\widehat{B}) \wedge b} \varphi_{b-u}\left(-\widehat{B}_{u}-a\right) d\left(-\widehat{B}_{u}\right) \\
& =\mathbf{P}\left\{T_{a}<b\right\}-2 \int_{0}^{\widehat{T}_{-a} \wedge b} \varphi_{b-u}\left(\widehat{B}_{u}+a\right) d \widehat{B}_{u} .
\end{aligned}
$$

By (14) and (15)

$$
\mathbf{P}\left\{T_{a}<b\right\}=\int_{0}^{\infty} I(t<b) \gamma_{a}(t) d t \quad \text { with } \quad \gamma_{a}(t)=\frac{a}{\sqrt{2 \pi t^{3}}} e^{-a^{2} /(2 t)}
$$

Therefore,

$$
\begin{equation*}
I\left(\widehat{T}_{-a}<b\right)=\int_{0}^{\infty} I(t<b) \gamma_{a}(t) d t-2 \int_{0}^{\widehat{T}_{-a} \wedge b} \varphi_{b-u}\left(\widehat{B}_{u}+a\right) d \widehat{B}_{u} \tag{67}
\end{equation*}
$$

Using the independence of \widehat{T}_{-a} from σ-algebra $\mathcal{F}_{T_{a}}$, we find from (67) that

$$
\begin{gathered}
\int_{0}^{\widehat{T}_{-a} \wedge\left(T-T_{a}\right)} \varphi_{T-T_{a}-u}\left(\widehat{B}_{u}+a\right) d \widehat{B}_{u}=\int_{0}^{\widehat{T}_{-a} \wedge\left(T-T_{a}\right)} \varphi_{T-T_{a}-u}\left(B_{T_{a}+u}\right) d B_{T_{a}+u} \\
=\int_{T_{a}}^{\left(\widehat{T}_{-a}+T_{a}\right) \wedge T} \varphi_{T-s}\left(B_{s}\right) d B_{s}=\int_{T_{a} \wedge T}^{d_{T_{-a}} \wedge T} \varphi_{T-s}\left(B_{s}\right) d B_{s}
\end{gathered}
$$

From this, (67), (66), and (6) we obtain

$$
\begin{align*}
I\left(d_{T_{a}}<T\right)= & \int_{0}^{T} I\left(T_{a}<T-t\right) \gamma_{a}(t) d t-2 \int_{T_{a} \wedge T}^{d_{T_{a}} \wedge T} \varphi_{T-s}\left(B_{s}\right) d B_{s} \\
= & \int_{0}^{T} \mathbf{P}\left\{T_{a}<T-t\right\} \gamma_{a}(t) d t \\
& +2 \int_{0}^{T}\left[\int_{0}^{T_{a} \wedge(T-t)} \varphi_{T-t-s}\left(B_{s}-a\right) d B_{s}\right] \gamma_{a}(t) d t \\
& -2 \int_{T_{a} \wedge T}^{d_{T_{a}} \wedge T} \varphi_{T-s}\left(B_{s}\right) d B_{s} \\
= & \mathbf{P}\left\{T_{2 a}<T\right\}+2 \int_{0}^{T_{a} \wedge T}\left[\int_{0}^{T-s} \gamma_{a}(t) \varphi_{T-t-s}\left(B_{s}-a\right) d t\right] d B_{s} \\
& -2 \int_{T_{a} \wedge T}^{d_{T_{a}} \wedge T} \varphi_{T-s}\left(B_{s}\right) d B_{s} . \tag{68}
\end{align*}
$$

According to Lemma 5, mentioned below in section 3, for all $s<T_{a}$ such that $B_{s}<a$, the following equality holds:

$$
\begin{equation*}
\int_{0}^{T-s} \gamma_{a}(t) \varphi_{T-t-s}\left(B_{s}-a\right) d t=\varphi_{T-s}\left(B_{s}-2 a\right) \tag{69}
\end{equation*}
$$

Hence, it follows from (68) that

$$
\begin{aligned}
I\left(d_{T_{a}}<T\right)= & \mathbf{P}\left\{T_{2 a}<T\right\}+2 \int_{0}^{T_{a} \wedge T} \varphi_{T-s}\left(B_{s}-2 a\right) d B_{s} \\
& -2 \int_{T_{a} \wedge T}^{d_{T_{a}} \wedge T} \varphi_{T-s}\left(B_{s}\right) d B_{s},
\end{aligned}
$$

which is just the required relation (64). This proves Lemma 4.
Now we turn to proving representation (61).
By virtue of (63) and (64)

$$
\begin{align*}
S_{g_{T}}= & \int_{0}^{\infty} I\left(d_{T_{a}}<T\right) d a \\
= & \int_{0}^{\infty} \mathbf{P}\left\{T_{2 a}<T\right\} d a+2 \int_{0}^{\infty}\left[\int_{0}^{T_{a} \wedge T} \varphi_{T-s}\left(B_{s}-2 a\right) d B_{s}\right] d a \\
& -2 \int_{0}^{\infty}\left[\int_{T_{a} \wedge T}^{d_{T_{a}} \wedge T} \varphi_{T-s}\left(B_{s}\right) d B_{s}\right] d a \tag{70}
\end{align*}
$$

Here

$$
\begin{equation*}
\int_{0}^{\infty} \mathbf{P}\left\{T_{2 a}<T\right\} d a=\frac{1}{2} \int_{0}^{\infty} \mathbf{P}\left\{T_{b}<T\right\} d b=\frac{1}{2} \int_{0}^{\infty} \mathbf{P}\left\{S_{T}>b\right\} d b=\frac{1}{2} \mathbf{E} S_{T} \tag{71}
\end{equation*}
$$

and

$$
\begin{aligned}
& \quad \int_{0}^{\infty}\left[\int_{0}^{T_{a} \wedge T} \varphi_{T-s}\left(B_{s}-2 a\right) d B_{s}\right] d a \\
& \quad=\int_{0}^{T}\left[\int_{0}^{\infty} \varphi_{T-u}\left(B_{u}-2 a\right) I\left(S_{u}<a\right) d a\right] d B_{u} \\
& \quad=\int_{0}^{T}\left[\int_{S_{u}}^{\infty} \varphi_{T-u}\left(B_{u}-2 a\right) d a\right] d B_{u}=\frac{1}{2} \int_{0}^{T}\left[\int_{2 S_{u}}^{\infty} \varphi_{T-u}\left(B_{u}-b\right) d b\right] d B_{u} \\
& (72) \quad
\end{aligned}
$$

Finally, let us transform the last expression in the right-hand side of (70).
We have

$$
\begin{aligned}
\int_{0}^{\infty}\left[\int_{T_{a} \wedge T}^{d_{T_{a}} \wedge T} \varphi_{T-s}\left(B_{s}\right) d B_{s}\right] d a & =\int_{0}^{\infty} \int_{0}^{\infty} I\left(T_{a} \wedge T<s<d_{T_{a}} \wedge T\right) \varphi_{T-s}\left(B_{s}\right) d B_{s} d a \\
& =\int_{0}^{T}\left[\int_{0}^{\infty} I\left(T_{a}<s<d_{T_{a}} \wedge T\right) d a\right] \varphi_{T-s}\left(B_{s}\right) d B_{s} \\
& =\int_{0}^{T}\left[\int_{0}^{\infty} I\left(S_{g_{s}}<a<S_{s}\right) d a\right] \varphi_{T-s}\left(B_{s}\right) d B_{s} \\
& =\int_{0}^{T}\left(S_{u}-S_{g_{u}}\right) \varphi_{T-u}\left(B_{u}\right) d B_{u}
\end{aligned}
$$

Thus, it follows from (70)-(73) that

$$
S_{g_{T}}=\frac{1}{2} \mathbf{E} S_{T}+\int_{0}^{T}\left[1-\Phi\left(\frac{2 S_{u}-B_{u}}{\sqrt{T-u}}\right)\right] d B_{u}+2 \int_{0}^{T}\left(S_{u}-S_{g_{u}}\right) \varphi_{T-u}\left(B_{u}\right) d B_{u}
$$

Thereby (61) and (62) are proved.
4.3. In the above-mentioned proof, integral relation (69) linking the densities

$$
\varphi_{t}(a)=\frac{1}{\sqrt{2 \pi t}} e^{-a^{2} /(2 t)} \quad \text { and } \quad \gamma_{a}(t)=\frac{a}{\sqrt{2 \pi t^{3}}} e^{-a^{2} /(2 t)} \quad\left(=-\frac{\partial}{\partial a} \varphi_{t}(a)\right)
$$

was used. It follows from the following lemma.
Lemma 5. For all $a>0$ and $\theta>0$

$$
\int_{0}^{\theta} \gamma_{a}(t) \varphi_{\theta-t}(x-a) d t= \begin{cases}\varphi_{\theta}(x), & x>a \tag{74}\\ \varphi_{\theta}(x-2 a), & x \leqq a\end{cases}
$$

Proof. Let

$$
I(a, x)=\frac{1}{\varphi_{\theta}(x)} \int_{0}^{\theta} \gamma_{a}(t) \varphi_{\theta-t}(x-a) d t
$$

Using the above-mentioned explicit form of the functions $\varphi_{\theta}(a)$ and $\gamma_{a}(t)$ and making the change of variables $u=\sqrt{\theta / t-1}$, we find that

$$
I(a, x)=\frac{2 a}{\sqrt{2 \pi t}} e^{a(x-a) / \theta} \int_{0}^{\infty} e^{-\alpha u^{2}-\beta / u^{2}} d u
$$

with $\alpha=a^{2} /(2 \theta)$ and $\beta=(x-a)^{2} /(2 \theta)$.
By formula 3.325 of [2]

$$
\int_{0}^{\infty} e^{-\alpha u^{2}-\beta / u^{2}} d u=\frac{1}{2} \sqrt{\frac{\pi}{\alpha}} e^{-2 \sqrt{\alpha \beta}}=\frac{\sqrt{2 \pi \theta}}{2 a} e^{-a|x-a| / \theta}
$$

Therefore,

$$
I(a, x)=e^{a(x-a) / \theta} e^{-a|x-a| / \theta}= \begin{cases}1, & x>a \\ e^{-2 a(a-x) / \theta}, & x \leqq a\end{cases}
$$

which proves (74).
Along with the adduced "analytic" proof of (74) the following "probabilistic" proof of this relation is not without interest.

Let $f=f(x)$ be a measurable bounded function. Then

$$
\begin{equation*}
\mathbf{E} f\left(B_{\theta}\right)=\mathbf{E}\left[f\left(B_{\theta}\right) I\left(T_{a}<\theta\right)\right]+\mathbf{E}\left[f\left(B_{\theta}\right) I\left(T_{a} \geqq \theta\right)\right] \tag{75}
\end{equation*}
$$

Here

$$
\begin{align*}
\mathbf{E}\left[f\left(B_{\theta}\right) I\left(T_{a}<\theta\right)\right] & =\mathbf{E}\left[f\left(B_{T_{a}+\left(\theta-T_{a}\right)}\right) I\left(T_{a}<\theta\right)\right] \\
& =\int_{0}^{\theta} \gamma_{a}(t)\left[\int_{-\infty}^{\infty} f(x) \varphi_{\theta-t}(x-a) d x\right] d t \tag{76}
\end{align*}
$$

and

$$
\begin{align*}
\mathbf{E}\left[f\left(B_{\theta}\right) I\left(T_{a} \geqq \theta\right)\right] & =\int_{-\infty}^{\infty} \mathbf{E}\left[f\left(B_{\theta}\right) I\left(\theta \leqq T_{a}\right) \mid B_{\theta}=x\right] \varphi_{\theta}(x) d x \\
& =\int_{-\infty}^{\infty} f(x) \mathbf{P}\left(T_{a} \geqq \theta \mid B_{\theta}=x\right) \varphi_{\theta}(x) d x \tag{77}
\end{align*}
$$

From (75)-(77) we obtain

$$
\begin{aligned}
\mathbf{E} f\left(B_{\theta}\right) & =\int_{-\infty}^{\infty} f(x) \varphi_{\theta}(x) d x \\
& =\int_{-\infty}^{\infty} f(x)\left[\int_{0}^{\theta} \varphi_{\theta-t}(x-a) \gamma_{a}(t) d t+\mathbf{P}\left(T_{a} \geqq \theta \mid B_{\theta}=x\right) \varphi_{\theta}(x)\right] d x
\end{aligned}
$$

From this in view of the arbitrariness of the function $f(x)$ we have

$$
\begin{equation*}
\int_{0}^{\theta} \gamma_{a}(t) \varphi_{\theta-t}(x-a) d t=\varphi_{\theta}(x)\left[1-\mathbf{P}\left(T_{a} \geqq \theta \mid B_{\theta}=x\right)\right] \tag{78}
\end{equation*}
$$

If $x>a$, then $\mathbf{P}\left(T_{a} \geqq \theta \mid B_{\theta}=x\right)=0$, and (78) gives (74).
Now let $x \leqq a$; then

$$
\begin{aligned}
1-\mathbf{P}\left(T_{a} \geqq \theta \mid B_{\theta}=x\right) & =\mathbf{P}\left(T_{a}<\theta \mid B_{\theta}=x\right)=\mathbf{P}\left(\max _{u \leqq \theta} B_{u}>a \mid B_{\theta}=x\right) \\
& =\mathbf{P}\left(S_{\theta}>a \mid B_{\theta}=x\right)
\end{aligned}
$$

with $S_{\theta}=\max _{u \leqq \theta} B_{u}$.

Probability $\mathbf{P}\left(S_{\theta}>a \mid B_{\theta}=x\right)$ can be found, using, for example, the Seshadri result (see [3]) that random variables $S_{\theta}\left(S_{\theta}-B_{\theta}\right)$ and B_{θ} are independent and

$$
S_{\theta}\left(S_{\theta}-B_{\theta}\right) \stackrel{\text { law }}{=} \frac{\theta}{2} \mathcal{E}
$$

where \mathcal{E} is the standard exponentially distributed random variable $\left(\mathbf{P}\{\mathcal{E}>t\}=e^{-t}\right.$, $t>0$).

Indeed, from the stated assertions we find that for $x \leqq a, a \geqq 0$, and $b=a(a-x)$

$$
\begin{aligned}
\mathbf{P}\left(S_{\theta}>a \mid B_{\theta}=x\right) & =\mathbf{P}\left(S_{\theta}\left(S_{\theta}-B_{\theta}\right)>b \mid B_{\theta}=x\right)=\mathbf{P}\left\{\frac{\theta}{2} \mathcal{E}>b\right\} \\
& =\mathbf{P}\left\{\mathcal{E}>\frac{2 b}{\theta}\right\}=e^{-2 b / \theta}=e^{-2 a(a-x) / \theta}
\end{aligned}
$$

Thereby, expression $1-\mathbf{P}\left(T_{a} \geqq \theta \mid B_{\theta}=x\right)$, being a part of (78), equals

$$
\mathbf{P}\left(S_{\theta}>a \mid B_{\theta}=x\right)=e^{-2 a(a-x) / \theta}
$$

and, hence, for $x \leqq a$,

$$
\int_{0}^{\theta} \gamma_{a}(t) \varphi_{\theta-t}(x-a) d t=\varphi_{\theta}(x) e^{-2 a(a-x) / \theta}
$$

which is claimed in (74).
4.4. Second proof. By analogy with the distributions used in sections 2^{\prime} and 3^{\prime} let us demonstrate that for every $t>0$ the following equality is true (\mathbf{P}-a.s.):

$$
\begin{equation*}
\mathbf{E}\left[S_{g_{T}} \mid \mathcal{F}_{t}\right]=\frac{1}{2} \mathbf{E} S_{T}+\int_{0}^{t \wedge T}\left[\frac{1}{2} \Psi\left(\frac{2 S_{u}-B_{u}}{\sqrt{T-u}}\right)-Z_{u}\left(B_{u}, S_{u}-S_{g_{u}}\right)\right] d B_{u} \tag{79}
\end{equation*}
$$

(Formula (61), of course, follows from this representation.)
Fix $0 \leqq t<T$. Then

$$
\begin{align*}
\mathbf{E}\left[S_{g_{T}} \mid \mathcal{F}_{t}\right] & =\int_{0}^{\infty} \mathbf{E}\left[I\left(a<S_{g_{T}}\right) \mid \mathcal{F}_{t}\right] d a=\int_{0}^{\infty} \mathbf{E}\left[I\left(T_{a}<g_{T}\right) \mid \mathcal{F}_{t}\right] d a \\
80) & =\int_{0}^{\infty} \mathbf{E}\left[I\left(T_{a}<g_{T} \leqq t\right)+I\left(T_{a} \leqq t<g_{T}\right)+I\left(t<T_{a}<g_{T}\right) \mid \mathcal{F}_{t}\right] d a . \tag{80}
\end{align*}
$$

Using the Markov property of the Brownian motion, we obtain the following relations:
(a) $\mathbf{E}\left[I\left(T_{a}<g_{T} \leqq t\right) \mid \mathcal{F}_{t}\right]=\mathbf{E}\left[I\left(T_{a}<g_{T}<t\right) \mid \mathcal{F}_{t}\right]$

$$
=\mathbf{E}\left[I\left(T_{a}<g_{T}<t\right) \mid \mathcal{F}_{t}\right] I\left(T_{a}<t\right)
$$

$$
=\mathbf{P}\left(\exists s_{1}<s_{2}<t: B_{s_{1}}>a, B_{s_{2}}=0 ; B_{s} \neq 0 \text { for } s \in(t, T) \mid \mathcal{F}_{t}\right) I\left(T_{a}<t\right)
$$

$$
=\mathbf{P}\left(T_{a}+T_{0} \circ \theta_{T_{a}}<t \text { and } B_{s} \neq 0 \text { for } s \in(t, T) \mid \mathcal{F}_{t}\right) I\left(T_{a}<t\right)
$$

$$
=\mathbf{P}_{B_{t}}\left\{B_{s} \neq 0 \text { for } s \in(0, T-t)\right\} I\left(T_{a}+T_{0} \circ \theta_{T_{a}}<t\right)
$$

$$
=\mathbf{P}\left\{T_{\left|B_{t}\right|}>1-t\right\} I\left(T_{a}+T_{0} \circ \theta_{T_{a}}<t\right)
$$

(b) $\mathbf{E}\left[I\left(T_{a} \leqq t \leqq g_{T}\right) \mid \mathcal{F}_{t}\right]=\mathbf{E}\left[I\left(T_{a}<t<g_{T}\right) \mid \mathcal{F}_{t}\right]$
$=\mathbf{E}\left[I\left(T_{a}<t<g_{T}\right) \mid \mathcal{F}_{t}\right] I\left(t>T_{a}\right)$
$=\mathbf{P}\left(\exists s<t: B_{s}>a\right.$ and $\left.\exists s_{1} \in(t, T): B_{s_{1}}=0 \mid \mathcal{F}_{t}\right) I\left(t>T_{a}\right)$
$=\mathbf{P}_{B_{t}}\left\{\exists s_{1} \in(0, T-t): B_{s_{1}}=0\right\} I\left(t>T_{a}\right)$
$=\mathbf{P}\left\{T_{\left|B_{t}\right|}>T-t\right\} I\left(t>T_{a}\right) ;$
(c) $\mathbf{E}\left[I\left(t<T_{a}<g_{T}\right) \mid \mathcal{F}_{t}\right]$

$$
=\mathbf{P}\left(\exists s_{1}, s_{2}: t<s_{1}<s_{2}<T, B_{s_{1}}>a, B_{s_{2}}=0 \mid \mathcal{F}_{t}\right) I\left(t<T_{a}\right)
$$

$$
=\mathbf{P}_{B_{t}}\left(\exists s_{1}, s_{2}: 0<s_{1}<s_{2}<T-t, B_{s_{1}}>a, B_{s_{2}}=0\right) I\left(t<T_{a}\right)
$$

$$
=\mathbf{P}_{B_{t}}\left\{\exists s \in(0, T-t): B_{s}=2 a\right\} I\left(t<T_{a}\right)
$$

$$
=\mathbf{P}\left\{T_{2 a-B_{t}}<T-t\right\} I\left(t<T_{a}\right) .
$$

From (a), (b), and (c) we get

$$
\begin{aligned}
& \left(\mathrm{a}^{*}\right) \quad \int_{0}^{\infty} \mathbf{E}\left[I\left(T_{a}<g_{T} \leqq t\right) \mid \mathcal{F}_{t}\right] d a \\
& \quad=\mathbf{P}\left\{T_{\left|B_{t}\right|}>T-t\right\} \int_{0}^{\infty} I\left(T_{a}+T_{0} \circ \theta_{T_{a}}<t\right) d a \\
& \quad=\mathbf{P}\left\{T_{\left|B_{t}\right|}>T-t\right\} S_{g_{t}}=\left[1-\mathbf{P}\left\{T_{\left|B_{t}\right|}<T-t\right\}\right] S_{g_{t}}
\end{aligned}
$$

(b*) $\int_{0}^{\infty} \mathbf{E}\left[I\left(T_{a}<t<g_{t}\right) \mid \mathcal{F}_{t}\right] d a=\mathbf{P}\left\{T_{\left|B_{t}\right|}<T-t\right\} S_{t}$;
(c*) $\quad \int_{0}^{\infty} \mathbf{E}\left[I\left(t<T_{a}<g_{T}\right) \mid \mathcal{F}_{t}\right] d a$
$=\int_{0}^{\infty} \mathbf{P}\left\{T_{2 a-B_{t}}<T-t\right\} I\left(t<T_{a}\right) d a$
$=\int_{S_{t}}^{\infty} \int_{0}^{T-t} \frac{2 a-B_{t}}{\sqrt{2 \pi s^{3}}} \exp \left\{-\frac{\left(2 a-B_{t}\right)^{2}}{2 s}\right\} d s d a$

$$
=\int_{0}^{T-t} \int_{S_{t}}^{\infty} \frac{2 a-B_{t}}{\sqrt{2 \pi s^{3}}} \exp \left\{-\frac{\left(2 a-B_{t}\right)^{2}}{2 s}\right\} d a d s
$$

$$
=\frac{1}{2} \int_{0}^{T-t} \frac{1}{\sqrt{2 \pi s}} \exp \left\{-\frac{\left(2 S_{t}-B_{t}\right)^{2}}{2 s}\right\} d s
$$

$$
=\frac{1}{2} \int_{0}^{T-t} \varphi_{s}\left(2 S_{t}-B_{t}\right) d s=\frac{1}{2} H\left(2 S_{t}-B_{t}, t\right)
$$

where $H(x, t)=\int_{0}^{T-t} \varphi_{s}(x) d s$ and $0 \leqq t<T$.
Gathering relations $\left(\mathrm{a}^{*}\right),\left(\mathrm{b}^{*}\right)$, and $\left(\mathrm{c}^{*}\right)$, we obtain
$\mathbf{E}\left(S_{g_{T}} \mid \mathcal{F}_{t}\right)=\frac{1}{2} H\left(2 S_{t}-B_{t}, t\right)+\mathbf{P}\left\{T_{\left|B_{t}\right|}<T-t\right\}\left(S_{t}-S_{g_{t}}\right)+S_{g_{t}}$

$$
\begin{equation*}
=\frac{1}{2} H\left(2 S_{t}-B_{t}, t\right)+\int_{0}^{T-t} \frac{\left|B_{t}\right|}{\sqrt{2 \pi s^{3}}} \exp \left\{-\frac{\left|B_{t}\right|^{2}}{2 s}\right\} d s \cdot\left(S_{t}-S_{g_{t}}\right)+S_{g_{t}} \tag{81}
\end{equation*}
$$

Applying the Itô formula to $H\left(X_{t}, t\right)$ with $X_{t}=2 S_{t}-B_{t}$ (Bessel process of order 3),
we find that for $t<T$

$$
\begin{equation*}
H\left(2 S_{t}-B_{t}, t\right)=H(0,0)-\int_{0}^{t} \frac{\partial}{\partial x} H\left(X_{u}, u\right) d B_{u}+A_{t} \tag{82}
\end{equation*}
$$

where $\left(A_{t}\right)_{t<T}$ is a process of bounded variation. From this by virtue of (50) and (51) we have

$$
\begin{equation*}
H\left(2 S_{t}-B_{t}, t\right)=\sqrt{\frac{2 T}{\pi}}+\int_{0}^{t} \Psi\left(\frac{2 S_{u}-B_{u}}{\sqrt{T-u}}\right) d B_{u}+A_{t} \tag{83}
\end{equation*}
$$

where $\left(A_{t}\right)_{t<T}$ is a continuous process of bounded variation.
Let

$$
\begin{equation*}
\tilde{H}(x, t)=\int_{0}^{T-t} \frac{x}{\sqrt{2 \pi s^{3}}} e^{-x^{2} /(2 s)} d s \quad\left(=\Psi\left(\frac{x}{\sqrt{T-t}}\right)\right) . \tag{84}
\end{equation*}
$$

Applying the Itô-Tanaka formula to $\widetilde{H}\left(\left|B_{t}\right|, t\right)$, we find that

$$
\begin{align*}
d \widetilde{H}\left(\left|B_{t}\right|, t\right) & =\Psi\left(\frac{\left|B_{t}\right|}{\sqrt{T-t}}\right)=-2 \varphi\left(\frac{\left|B_{t}\right|}{\sqrt{T-t}}\right) \frac{1}{\sqrt{T-t}} \operatorname{sign} B_{t} d B_{t}+d \widetilde{A}_{t} \\
& =-2 \varphi_{T-t}\left(B_{t}\right) \operatorname{sign} B_{t} d B_{t}+d \widetilde{A}_{t} \tag{85}
\end{align*}
$$

where $\left(\widetilde{A}_{t}\right)_{t<T}$ is a process of bounded variation.
Thus, from (81), (83)-(85) we find, neglecting members with bounded variation (cf. the reasoning in the end of section 2^{\prime}), that for $t<T$,

$$
\begin{align*}
\mathbf{E}\left[S_{g_{T}} \mid \mathcal{F}_{t}\right]= & \sqrt{\frac{T}{2 \pi}}+\frac{1}{2} \int_{0}^{t \wedge T} \Psi\left(\frac{2 S_{u}-B_{u}}{\sqrt{T-t}}\right) d B_{u} \\
& -2 \int_{0}^{t \wedge T} \varphi_{T-u}\left(B_{u}\right) \operatorname{sign} B_{u} \cdot\left(S_{u}-S_{g_{u}}\right) d B_{u} \tag{86}
\end{align*}
$$

Note that one can omit $\operatorname{sign} B_{u}$ here, since if $\operatorname{sign} B_{u}=-1$, then $S_{u}-S_{g_{u}}=0$. Hence,

$$
\begin{equation*}
\int_{0}^{t \wedge T} \varphi_{T-u}\left(B_{u}\right) \operatorname{sign} B_{u} \cdot\left(S_{u}-S_{g_{u}}\right) d B_{u}=\int_{0}^{t \wedge T} \varphi_{T-u}\left(B_{u}\right)\left(S_{u}-S_{g_{u}}\right) d B_{u} \tag{87}
\end{equation*}
$$

The required relation (79) follows for $t<T$ from (86) and (87). In the general case (when $t \geqq 0$) it is sufficient to note that $\lim _{t \uparrow T} \mathbf{E}\left[S_{g_{T}} \mid \mathcal{F}_{t}\right]=S_{g_{T}}$ and the limits $\lim _{t \uparrow T}$ of the integrals $\int_{0}^{t \wedge T}(\cdot) d B_{u}$ in (86) are equal to the integrals $\int_{0}^{T}(\cdot) d B_{u}$.

REFERENCES

[1] A. N. Shiryaev and M. Yor, On the problem of stochastic integral representations of functionals of the Brownian motion. I, Theory Probab. Appl., 48 (2004), pp. 304-313.
[2] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1980.
[3] V. Seshadri, Exponential models, Brownian motion, and independence, Canad. J. Statist., 16 (1988), pp. 209-221.

[^0]: *Received by the editors December 5, 2005. This work was supported by RFBR grant 05-01-00944 and by grant for scientific schools 1758.2003.1.
 http://www.siam.org/journals/tvp/51-1/98219.html
 ${ }^{\dagger}$ Institute for Mathematical Sciences, Ny Munkegade, 8000 Aarhus C, Denmark (matseg@ imf.au.dk).
 \ddagger Steklov Mathematical Institute, Gubkin St. 8, 119991 Moscow, Russia (albertsh@mi.ras.ru).
 ${ }^{\S}$ Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, Boîte courrier 188, 4 Place Jussieu, 75252 Paris Cedex 05, France (deaproba@proba.jussieu.fr).

