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Abstract

Generalized linear mixed models (GLMMs) are useful for modelling longitudinal and clustered data, but parameter estimation
is very challenging because the likelihood may involve high-dimensional integrals that are analytically intractable. Gauss–Hermite
quadrature (GHQ) approximation can be applied but is only suitable for low-dimensional random effects. Based on the Quasi-Monte
Carlo (QMC) approximation, a heuristic approach is proposed to calculate the maximum likelihood estimates of parameters in
the GLMM. The QMC points scattered uniformly on the high-dimensional integration domain are generated to replace the GHQ
nodes. Compared to the GHQ approximation, the proposed method has many advantages such as its affordable computation, good
approximation and fast convergence. Comparisons to the penalized quasi-likelihood estimation and Gibbs sampling are made using
a real dataset and a simulation study. The real dataset is the salamander mating dataset whose modelling involves six 20-dimensional
intractable integrals in the likelihood.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Generalized linear mixed models; High-dimensional integrals; Maximum likelihood estimates; Quasi-Monte Carlo approximation;
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1. Introduction

Generalized linear mixed models (GLMMs) have been widely used in the modelling of longitudinal and spatial data.
The GLMM extends the generalized linear model (GLM) by incorporating random effects into the linear predictor to
accommodate random variations and correlations from different sources. Nowadays it is well known that the GLMM
is very useful in many statistical fields, for example, for clustered data and nonparametric penalized-spline smoothing.

Statistical inference of the GLMM, however, is highly hampered due to the incorporation of random effects. The
likelihood function of the GLMM involves integrating out random effects from the joint density of the responses and
random effects, which, except for a few cases such as a Gaussian density for the responses given random effects, is
analytically intractable. In some circumstances the integration may be of very high dimension, making the analysis more
considerably difficult. Existing estimation methods for the GLMM include: (a) analytically simplifying the problem,
for example, by the use of Laplace approximation to the integrated likelihood, including the penalized quasi-likelihood
(PQL) estimation (Breslow and Clayton, 1993) and the hierarchical generalized linear models (HGLM) procedure (Lee
and Nelder, 2001); (b) using computation-intensive techniques such as the MCEM algorithm (Booth and Hobert, 1999),
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Markov Chain Monte Carlo (MCMC) (Zeger and Karim, 1991) and Gauss–Hermite quadrature (GHQ) approaches
(Pan and Thompson, 2003).

However, the analytical simplification may not be always satisfactory. For example, when correlated data are binary
and/or the designs are crossed, the use of PQL estimation may severely bias the estimates of the fixed effects and
variance components of random effects. The GHQ approximation for the GLMM, on the other hand, is only useful for
low-dimensional random effects since its computational loads increase exponentially with the dimension of random
effects. The use of MCMC may also be very computationally intensive for the GLMM with multivariate random effects.

In computational mathematics, various heuristic optimization/approximation algorithms were developed in the past
decade, such as SimulatedAnnealing, ThresholdAccepting and the Quasi-Monte Carlo (QMC) approximation (Winker,
2000). Compared to the traditional Monte Carlo (MC) approach, heuristic algorithms have many advantages. For
example, when applied to high-dimensional integral problems the QMC approach is superior to the traditional MC in
terms of convergence rate and approximation accuracy. Application of heuristic algorithms to statistics, however, has
lagged far behind, perhaps because not many statisticians are familiar with these algorithms.

In this paper, we propose to use the QMC approximation to solve the integration problem in the GLMM. In principle,
the QMC approach generates integration nodes that are scattered uniformly on the integration domain. These nodes,
called quasi-random numbers, tend to fill the space as fully as possible. The approach is also related to the computer
space-filling technique (Bates et al., 1996). This paper is structured as follows. In Section 2, we briefly review the
definition of the GLMM and highlight the problem of deriving the likelihood. In Section 3, we introduce the principle
of the QMC approximation and discuss the generation of quasi-random numbers. In Section 4, the QMC approach is
used to approximate the integrated likelihood and then calculate the maximum likelihood estimates (MLE) of fixed
effects and variance components in the GLMM. In Section 5, the proposed approach is used to analyze the infamous
salamander mating data, which involves six 20-dimensional integrals in the likelihood. In Section 6, simulation studies
that have the same design protocol as the salamander data are conducted. Numerical comparisons are made to Gibbs
sampling (Karim and Zeger, 1992) and the PQL estimation (Breslow and Clayton, 1993). In Section 7, discussions on
some related issues are given. Technical details on the second-order derivatives of the log-likelihood are deferred to
the Appendix.

2. Generalized linear mixed models

Suppose yi (i = 1, 2, . . . , n) are the responses. Let xi and zi be (p × 1) and (q × 1) covariate vectors associated
with fixed effects � (p × 1) and random effects b (q × 1), respectively. Given the random effects b, the responses yi

are assumed to be independent with expectation and variance:

E(yi |b) = �i and var(yi |b) = �a−1
i �(�i ), (1)

where � is scalar, ai is the prior weight and �(·) is the variance function. The conditional expectation and variance have
the form in (1) when the distribution of yi given b comes from the quasi-likelihood family, in which a special case is
the exponential family of distributions (McCullagh and Nelder, 1989). The definition of the GLMM is completed by
introducing a monotone and differentiable function g(·) that links the conditional expectation �i to the linear predictor
�i through

g(�i ) = �i ≡ x′
i� + z′

ib. (2)

In the GLMM the random effects b are usually assumed to follow some distribution F(·) (e.g., Gaussian) with zero
mean and variance–covariance matrix �, in other words, b ∼ F(0, �). The variance–covariance matrix � may depend
on some unknown parameter vector � (m × 1), i.e., � ≡ �(�), known as variance components. In this paper we will
focus on calculating the maximum likelihood estimates (MLE) of the fixed effects � and the variance components �.
Further statistical inferences including hypothesis test and model diagnostics can be made based on the estimates.

The integrated quasi-likelihood of (�, �) must take the form

L(�, �) = exp{�(�, �)} =
∫

exp

{
n∑

i=1

�i(�; b)

}
dF(b; �), (3)
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where

�i(�; b) ∝
∫ �i

yi

ai(yi − u)

��(u)
du (4)

defines the conditional log quasi-likelihood of the fixed effects � given the random effects b (Breslow and Clayton,
1993). The likelihood (3) is then maximized with respect to � and � in order to obtain the MLE �̂ and �̂.

However, the likelihood L(�, �) in (3) in general involves analytically intractable integrals. When the dimension
q of the random effects b is low (e.g., q < 5), the GHQ approach is useful for approximating the likelihood (Pan
and Thompson, 2003). As mentioned in Section 1, this technique is, however, no longer helpful for high-dimensional
random effects. The Laplace approximation (Breslow and Clayton, 1993) and EM algorithm (Booth and Hobert, 1999)
were proposed to calculate the MLEs of the parameters � and � in the GLMM. MCMC was also used (Karim and
Zeger, 1992).

3. Quasi-Monte Carlo integration

We propose to use the QMC approach to approximate the integrated quasi-likelihood L(�, �) in (3). To gain an
insight into the QMC approach, we first briefly review the traditional Monte Carlo (MC) approximation. Suppose f (·)
is an integrable function on the q-dimensional unit cube Cq = [0, 1)q . Consider the integral

I (f ) =
∫

Cq

f (x) dx. (5)

The MC integration draws a random sample PK = {xk : 1�k�K} from the uniform distribution on Cq and then
approximates the integral in (5) through

ÎK(f, PK) = 1

K

K∑
k=1

f (xk). (6)

By the strong law of large numbers the estimate ÎK(f, PK) converges to I (f ) with probability one as K → ∞.
Moreover, the central limit theorem guarantees that ÎK(f, PK) is asymptotically normally distributed when the sample
size K is large enough. The convergence rate for the MC integration is of the order O(K−1/2), regardless of the integral
dimensionality q. On the other hand, the previous statement regarding the convergence of the MC approximation is a
probabilistic one, implying that the MC approximation in general may behave well but for a particular random sample
may lead to a very poor approximation. Hence, it is necessary to make multiple draws of random samples and take the
average of all the approximations, which may be computationally expensive.

The QMC approach aims to improve the MC approximation in terms of faster convergence rate and less computational
load. The key idea is to use integration nodes that are scattered uniformly on Cq to replace the MC random samples.
The reason behind this is due to the famous Koksma–Hlawka inequality:

|I (f ) − ÎK(f, PK)|�V (f )D(PK), (7)

where V (f ) is the bounded total variation of f (·) over Cq in the sense of Hardy and Krause (Fang and Wang, 1994,
p. 64). The quantity D(PK) measures the evenness of spread of the point set PK , defined by

D(PK) = sup
x∈Cq

|UK(x) − U(x)|, (8)

where U(x) is the uniform distribution on Cq and UK(x) is the empirical distribution of PK . D(PK) in (8) is actually
the Kolmogorov–Smirnov statistic but known as the discrepancy of PK in analytical number theory. The inequality
(7) implies that the absolute error of the integration approximation is bounded and dominated by D(PK) since V (f )

is a constant as far as f (·) is given. Therefore, the points PK with the smallest discrepancy are the best integration
nodes in this sense. It can be shown that the smallest discrepancy is of the order O((log K)q−1/K) (Fang and Wang,
1994). Accordingly, the QMC integration has a faster convergence rate than the MC approximation. Unlike the MC
approximation, the QMC integration nodes are deterministic so that multiple draws are not necessary.
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(d)

GHQ: K = 100

(e)

MC: K = 100

(f)

QMC: K = 55

D(P100) = 0.1900 D(P100) = 0.1254 D(P55) = 0.0416

Fig. 1. Scatter plots of point sets. (a) and (d): confined GHQ points with K = 25 and K = 100, (b) and (e): MC points with K = 25 and K = 100,
and (c) and (f): QMC points with generating vectors (K; h1, h2) = (25;1,7) and (K; h1, h2) = (55;1,34).

When q = 1, it is easy to generate the point set PK that has the smallest discrepancy. In fact, it must be of the form
PK = {(2i − 1)/2K : i = 1, 2, . . . , K} and the smallest discrepancy is given by D(PK) = 1/2K (Fang and Wang,
1994). When q �2, no analytical generating formula for PK becomes available but there are a variety of methods
available for generating the quasi-random numbers PK with discrepancy close to the optimal order O((log K)q−1/K).
For example, the so-called good lattice points (GLP) are one of those. The GLP quasi-random numbers can be generated
as follows. Let (K; h1, h2, . . . , hq) be a vector with integer components satisfying: 1�hj < K and hj 
= hl (j 
= l)

where q < K . Suppose the greatest common divisor (K, hj ) = 1 (j = 1, 2, . . . , q). Denote qkj ≡ khj (modulo K)

and xkj = (2qkj − 1)/2K (k = 1, 2, . . . , K and j = 1, 2, . . . , q), where the operation modulo confines qkj to the
range between 1 and K. The point set {PK = xk = (xk1, . . . , xkq) : k = 1, 2, . . . , K} is known as lattice points with
the generating vector (K; h1, h2, . . . , hq). If (h1, h2, . . . , hq) is chosen such that the discrepancy of PK reaches the
minimum, then PK is the GLP set. Fang and Wang (1994) gave some methods for finding the best generating vectors
and tabulated their results for different numbers q and K.

For illustration, Fig. 1 gives two-dimensional scatter plots for the GHQ, MC, and GLP points with different K’s. For
comparison, their associated discrepancy values are also given underneath of the plots. Note the GHQ points have been
scaled down here to the unit square C2 = [0, 1)2 in order to compare with the MC and QMC points on C2. The QMC
points in (c) and (f) are the GLP sets with generating vectors (K; h1, h2) = (25; 1, 7) and (K; h1, h2) = (55; 1, 34),
respectively. Fig. 1 shows that the QMC points have the smallest discrepancy values, whereas the discrepancy of the
GHQ points is the largest. At the first glance, however, it seems that the GHQ points in the Figs. 1(a) and (d) are as
evenly spread as the QMC points in the Figs. 1(c) and (f) and so their discrepancy values should be quite close. This
actually is not true because theoretical studies show that the discrepancy of the GHQ points is of the order O(K−1/q)

(Fang and Wang, 1994, pp. 18–19). This is also the reason why the GHQ points are not recommended for the use in
high-dimensional integration problems, in addition to having a computational intensive problem.
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Table 1
Errors in p − p̂ using the GHQ, MC and QMC approximations

K GHQ K MC K QMC

64 −2.215e − 04 35 −2.121e−03 35 −1.162e −04
125 −1.415e − 04 101 1.937e −03 101 5.380e−05
729 −4.358e − 05 597 6.349e−05 597 −3.979e−06

1728 −2.451e − 05 1626 −6.560e −05 1626 6.688e−06
5832 −1.090e − 05 5037 −3.248e −05 5037 2.632e−07

39304 −3.072e − 06 39029 1.342e−05 39029 2.438e−09

To see how the QMC approximation improves the MC and GHQ approaches, we consider a simple example below.
Let X ∼ N3(0, I3) and we want to calculate the three-dimensional integral

p =
∫ 1

0

∫ 1

0

∫ 1

0
(2	)−3/2 exp

{
−1

2
(x2

1 + x2
2 + x2

3 )

}
dx1 dx2 dx3.

Obviously, the integral is the probability p=[
(1)−
(0)]3 =0.039772181953 . . ., where 
(·) is the CDF of N(0, 1).
We generate the GHQ, MC and QMC/GLP points with different numbers of K and use (6) to approximate the integral.
The resulting errors in p − p̂ are listed in Table 1. Obviously, the QMC approximation outperforms the GHQ and MC
approaches. This example was studied by Fang and Wang (1994, pp. 65–66).

4. Quasi-Monte Carlo estimation

Suppose PK = {ck : k = 1, . . . , K} is a QMC point set over the unit cube Cq . When PK is used to approximate the
integrated likelihood (3), the QMC approximated log-likelihood is of the form

�(�, �) = log

[
1

K

K∑
k=1

exp

{
n∑

i=1

�i(�, �1/2F−1(ck))

}]
, (9)

where F−1(·) is the inverse of the CDF F(·) and �1/2 is the square root of �, for example, it can be taken as the
Cholesky factor of �.

Let bk = F−1(ck), �ik = x′
i� + z′

i�
1/2bk and �ik = h(�ik) where h(·) is the inverse of g(·), i.e., h(·) = g−1(·). Then

the MLE �̂ of � must be the solution of the score equations:

�̇� ≡ �

��
{�(�, �)} =

K∑
k=1

wk

{
n∑

i=1

ai(yi − h(�ik))

��(�ik)ġ(�ik)
xi

}
= 0, (10)

where ġ(·) is the derivative of g(·) and wk is the weight given by

wk = exp{∑n
i=1�i(�, �1/2ck)}∑K

k=1 exp{∑n
i=1�i(�, �1/2ck)}

. (11)

Note that the weight wk above also depends on the unknown parameters � and �, i.e., wk ≡ wk(�, �). This has to be
taken into account when calculating the second-order derivatives.

Similarly, the score equation for the jth variance component of � must have the form

�̇�j
≡ �

��j

{�(�, �)} =
K∑

k=1

wk

{
n∑

i=1

ai(yi − h(�ik))

��(�ik)ġ(�ik)
z′
i�̇

1/2
j bk

}
= 0, (12)
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where �̇
1/2
j =��1/2/��j (j=1, 2, . . . , m).When the design of the GLMM is crossed, in other words,�=diag(�1Iq1 , . . . ,

�mIqm) or equivalently �1/2 = diag(�1/2
1 Iq1 , . . . , �

1/2
m Iqm) we then have

�̇
1/2
j = ��1/2

��j

= diag

(
0, . . . , 0,

1

2
�−1/2
j Iqj

, 0, . . . , 0

)
, (13)

where q = ∑m
j=1qj .

The score equations (10) and (12) in general have no analytical solution. We then use the Newton–Raphson algorithm
to solve these equations. The second-order derivatives of the QMC approximated log-likelihood (9) with respect to �
and � need to be calculated, which, though complicated, have analytically explicit forms. For ease of presentation, the
technical expressions of these derivatives �̈��, �̈�� and �̈�� are deferred to the Appendix. Once an initial value of (�, �)

is given, the solution to the score equations (10) and (12) can be updated using(
�
�

)
new

=
(

�
�

)
old

+
(−�̈�� −�̈��

−�̈′
�� −�̈��

)−1

old

(
�̇�

�̇�

)
old

, (14)

where �̇� = (�̇�1 , . . . , �̇�m
)′. The above process is iterated until convergence of � and �. At convergence, the MLEs �̂

and �̂ of the fixed effects and variance components are obtained. The asymptotic variance–covariance matrix of the
MLEs can be approximated by calculating the inverse of the observed information matrix, evaluated at the MLEs �̂
and �̂.

It is noted that in some circumstances the prediction of the random effects b may be of interest. Once the MLEs �̂
and �̂ are obtained, the prediction of random effects can be updated using

b̂ = �̂Z′V̂ −1(Ỹ − X�̂), (15)

where Ỹ = (ỹ1, . . . , ỹn)
′ with ỹi = �̂i + (yi − �̂i )ġ(�̂i ) where �̂i =x′

i �̂+z′
i b̂i and �̂i =g−1(�̂i ). The matrices Z, X and V̂

are given by Z = (z′
1, . . . , z

′
n)

′, X = (x′
1, . . . , x

′
n)

′and V̂ = Ŵ−1 + Z�̂Z′ where Ŵ is the (n × n) diagonal matrix with
the entries �̂i =[�ai�(�̂i ){ġ(�̂i )}2]−1. It is noted that the RHS of (15) also depends on b̂, implying that an initial value
of b substituted into the RHS of (15) yields a new prediction of b. This process is then iterated until the convergence of
b̂. It can be shown that the solution b̂ actually provides the mode of the conditional distribution of the posterior density
of the random effects, see Breslow and Clayton (1993) for more details.

5. Salamander mating data analysis

The salamander mating experiment (McCullagh and Nelder, 1989) involves two populations of salamanders: Rough
Butt (RB) and Whiteside (WS). Ten males and 10 females from each population were mated in a crossed design,
see Shun (1997) for the detailed design table. In a fixed period each animal had six matings with her/his opposite
genders, three from her/his own population and three from the other. The experiment resulted in 120 correlated binary
observations, depending on whether or not the mating was success. During the summer and autumn of 1986, the
experiment was repeated three times. The primary objective of the experiment was to study whether or not the mating
of salamanders between populations is as successful as within population. The secondary objective was to study if
heterogeneity between individuals in the mating probability exists.

A GLMM is used to model the correlated binary responses resulting from each of the three experiments:

logit{E(yij |bf
i , bm

j )} = x′
ij� + b

f
i + bm

j , (16)

where b
f
i and bm

j are random effects from the female and male individuals in the pair and are assumed indepen-

dent with b
f
i ∼ N(0, �2

f ) and bm
j ∼ N(0, �2

m) (i, j = 1, . . . , 20). The covariate vector xij is defined by xij =
(1,WSf

i ,WSm
j ,WSf m

ij )′ where WSf
i is the indicator variable for the WS female (0 for RB and 1 for WS), WSm

i is the

variable for WS male (0 for RB and 1 for WS), and WSf m
ij represents their interaction.

For each experiment the log-likelihood of the model (16) involves a 40-dimensional integral that can be further
reduced to the sum of two 20-dimensional integrals because of the design. For example, the first five females of the
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first population were only mated with the first five males of each population (McCullagh and Nelder, 1989). In other
words, � = �1 + �2 with �1 being equal to

∫ 5∏
i=1

⎛
⎝∫ 5∏

j=1

[yij |bf
i , bm

j ][bm
j ]

15∏
j=11

[yij |bf
i , bm

j ][bm
j ] dbm

1 . . . dbm
5 dbm

11 . . . dbm
15

⎞
⎠ [bf

i ] db
f
1 . . . db

f

5

20∏
i=16

⎛
⎝∫ 5∏

j=1

[yij |bf
i , bm

j ][bm
j ]

15∏
j=11

[yij |bf
i , bm

j ][bm
j ] dbm

1 . . . dbm
5 dbm

11 . . . dbm
15

⎞
⎠ [bf

i ] db
f
16 . . . db

f
20, (17)

and �2 to

∫ 15∏
j=6

⎛
⎝∫ ⎧⎨

⎩
10∏

j=6

[yij |bf
i , bm

j ][bm
j ]

⎫⎬
⎭

⎧⎨
⎩

20∏
j=16

[yij |bf
i , bm

j ][bm
j ]

⎫⎬
⎭ dbm

6 . . . dbm
10 dbm

16 . . . dbm
20

⎞
⎠ [bf

i ] db
f
6 . . . db

f

15,

(18)

where [yij |bf
i , bm

j ] is the conditional probability mass function of yij given b
f
i and bm

j , and [bf
i ] and [bm

j ] are the

densities of b
f
i and bm

j , respectively. That is,

[yij |bf
i , bm

j ] = exp{yij�ij }
1 + exp{yij�ij }

,

where �ij = x′
ij� + b

f
i + bm

j , and

[bf
i ] = (2	�2

f )−1/2 exp{−b
f 2
i /2�2

f } and [bm
j ] = (2	�2

m)−1/2 exp{−bm2
j /2�2

m}.
Obviously, the integrals (17) and (18) are analytically intractable.When pooling the three experiment responses together,
the log-likelihood becomes the sum of six 20-dimensional integrals and then the MLEs of the fixed effects � and the
variance components �2

f and �2
m are extremely difficult to obtain. In the literature, the PQL and MCMC approaches

were used to analyze the salamander data by Breslow and Clayton (1993) and Karim and Zeger (1992), respectively,
but suffer from either being very biased or computationally intensive.

We now use the QMC approximation to calculate the MLEs of the fixed effects and variance components for
modelling of the pooled data. We note that each of the six integrals is 20-dimensional but currently existing GLP sets
are available only up to 18 dimensions (Fang and Wang, 1994). We then propose to generate quasi-random numbers
on the unit cube C20 = [0, 1)20 by replacing the generating vector (h1, . . . , h20)

′ of the GLP method with the square
roots of the first 20 prime numbers. The resulting quasi-random numbers have the discrepancy close to the optimal
rate (Fang and Wang, 1994). Table 2 summarizes our numerical results for various sizes of the QMC quasi-random
numbers. For comparison, in Table 2 we also reproduce Karim and Zeger’s (1992) Gibbs sampling and Breslow and
Clayton’s (1993) PQL results.

From Table 2 we see that when increasing the number of the QMC integration nodes from 10,000 to 100,000 the
maximized log-likelihood �̂max changes very little and the parameter estimates becomes stable quickly. It implies that
any number of QMC points between 10,000 and 100,000 could produce reasonable estimates of the parameters. Note
the integration approximation takes place on the 20-dimensional unit cube. The selected numbers of the QMC points,
even up to K = 100, 000, are still small in the 20-dimensional space but the approximation performs very well in terms
of accuracy and stabilization. When using 100,000 QMC points and working on a Pentium(R) 4 PC (CPU 3.20 GHz)
our Fortran code takes about 5 min to converge. In contrast, the use of the GLMMGibbs package in R for modelling of
the pooling salamander data takes a few hours to obtain the similar results, where 1000 iterations of burn-in followed
by 20,000 saved iterations are made.

Compared to the literature work, the proposed QMC approach produces numerical results close to those by Gibbs
sampling. The latter involves conditional distribution specification and multiple draw of random samples, however. In
contrast, the QMC method is easy to use for practitioners and is fast for obtaining the parameter estimates. The PQL
approach, as criticized by many authors, results in very biased estimates for both fixed effects and variance components.
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Table 2
MLEs of the parameters for modelling the pooling salamander data when varying K, the number of the QMC points (standard errors in parentheses)

K �0 �1 �2 �3 �f �m �̂max

10,000 0.92(.38) −2.83(.51) −0.58(.41) 3.57(.63) 1.11(.28) 0.98(.20) −207.21
20,000 0.83(.37) −2.80(.52) −0.53(.44) 3.51(.61) 1.06(.23) 1.02(.23) −207.70
30,000 1.28(.41) −2.88(.54) −0.99(.50) 3.64(.63) 1.25(.27) 1.16(.24) −205.67
40,000 1.22(.41) −2.83(.53) −0.99(.49) 3.66(.63) 1.28(.28) 1.21(.26) −206.19
50,000 1.21(.40) −2.81(.53) −1.03(.49) 3.70(.62) 1.25(.24) 1.24(.26) −206.07
60,000 1.17(.39) −2.80(.53) −0.99(.49) 3.67(.63) 1.23(.24) 1.20(.26) −206.41
70,000 1.21(.37) −2.81(.53) −0.96(.47) 3.68(.63) 1.30(.29) 1.22(.26) −206.31
80,000 1.22(.38) −2.86(.54) −1.01(.49) 3.71(.64) 1.30(.29) 1.24(.26) −206.35
90,000 1.21(.38) −2.87(.54) −0.99(.49) 3.69(.64) 1.28(.29) 1.22(.26) −206.66
100,000 1.22(.39) −2.91(.56) −0.98(.49) 3.67(.64) 1.26(.29) 1.23(.27) −206.83

Gibbsa 1.03(.43) 3.01(.60) −0.69(.50) 3.74(.68) 1.22 1.17 —
PQLb 0.79(.32) −2.29(.43) −0.54(.39) 2.82(.50) 0.85 0.79 —

aby Karim and Zeger (1992).
bby Breslow and Clayton (1993).

Table 3
Parameter estimates in the simulation study, where the QMC approximation uses K = 50, 000 integration nodes (simulated standard errors are given
in parentheses)

�0 �1 �2 �3 �f �m

True 1.21 −2.81 −1.03 3.70 1.25 1.24
QMC 1.19(.39) −2.92(.55) −0.98(.44) 3.61(.63) 1.29(.27) 1.26(.26)
PQL 0.84(.35) −2.40(.46) −0.56(.38) 3.07(.45) 0.86(.25) 0.81(.23)

6. Simulation study

Based on the logistic model in (16), we simulate the salamander polling data that comprise 360 correlated binary
observations. In the simulation study we run 1000 simulations. Similar to the real salamander data, the log-likelihood
function for each simulated dataset involves six 20-dimensional integrals that are analytically intractable. We generate
K = 50, 000 QMC integration nodes on the cube C20 using the square roots of the first 20 prime numbers and then use
(6) to approximate the integrated log-likelihood. The Newton–Raphson algorithm (14) is used to maximize the QMC
approximated log-likelihood function.

The true values of the fixed effects � = (�1, . . . , �4)
′ and the variance components �2 = (�2

f , �2
m) are chosen to be

the MLEs obtained in the real data analysis using K = 50, 000. For comparison, we also use the PQL approach to
analyze the simulated binary data. Table 3 gives the average of the 1000 estimates for each parameter.

From Table 3 it is clear that the QMC approach produces satisfactory results. In contrast, the PQL procedure results in
considerably biased estimates. In particular, it underestimates considerably the variance components of random effects.
This phenomenon was noticed by other authors as well (e.g., Lin and Breslow, 1996).

We point out that, the proposed QMC-based Newton–Raphson algorithm may happen to converge to the boundary
of variance components, that is, �2

f = 0 or �2
m = 0. In our 1000 simulations, we experienced 7 such cases, see

Fig. 2. With those cases removed, the average of the remaining estimates of variance components may increase slightly,
leading to slightly biased estimates of the variance components.

7. Discussion

In this paper we propose a heuristic approach, the QMC approximation to calculate the MLEs of the fixed effects
and variance components in the GLMM. The salamander mating data analysis and the associated simulation study,
involving six 20-dimensional analytically intractable integrals in the likelihood, show that the proposed QMC approach
works reasonably well.
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Fig. 2. Scatter plot of the estimates of variance components �m against �f in the 1000 simulation studies.

The key idea of the QMC approximation is to choose integration nodes that are scattered uniformly on the high-
dimensional unit cube. In the literature, there were various methods proposed for generating the QMC points, including
points generated by square roots of primes, good lattice points, Halton sequences, Faure sequences, and Sobol sequences
among others. In this paper, we use the simplest one, square roots of primes, to generate 20-dimensional QMC points
on the cube C20 and then approximate the log-likelihood for modelling of the salamander mating data. The numerical
analysis shows that this simplest method works well. Recently, Al-Eid and Pan (2006) implemented more uniform
QMC points including the Faure sequences and Sobol sequences into the QMC-based Newton–Raphson algorithm.
They show that good QMC nodes do further improve the approximation.

Whatever the QMC points are chosen, a practical issue is on the selection of the number of the points. As a general
rule, we would suggest to increase the number of the QMC points gradually until the resulting MLEs become stable,
see Table 2 for example. A concern is that, the need to run the QMC algorithm repeatedly like this obviously increases
the computational demands of the QMC approximation. Given that the QMC algorithm converges very rapidly, for
example, it only takes about 5 min for the modelling of the salamander mating data when using K = 100, 000 QMC
points in 20-dimensional space, this issue is not problematic.

Another concern of the use of heuristic approach is that, no automatic random variation appears in the quasi-
random numbers. As a result, there is no practical way of assessing the accuracy of parameter estimates in some
circumstances. Owen (1998) proposed to randomize the QMC points and the resulting randomized points still keep
the same discrepancy order in terms of uniformity. Randomized QMC (RQMC) approach, also called scrambled QMC
approximation, combines the strength of the QMC and traditional MC methods. In such ways the variances of the
parameter estimates can be estimated by taking a small number of independent replications in the RQMC approach. On
the other hand, the RQMC method can also be useful for enhancing the performance of ordinary QMC applications.
Typical RQMC points include the scrambled digital points and scrambled lattice points. One can refer to Owen (1998)
for more details.

We also compare the QMC approximation with Gibbs sampling through modelling of the salamander mating data.
We find that these two approaches yield very similar results but the QMC method is much faster than Gibbs sam-
pling computationally. Also, the QMC approach is easy to use for practitioners, provided that the previous advice
regarding the implementation of QMC points is acknowledged. In contrast, Gibbs sampling requires more experience
such as in specifying conditional distributions and setting priors. Also, the speed of Gibbs sampling for models with
high-dimensional random effects may be problematic. The PQL estimation approach, on the other hand, produces
very biased estimates of the fixed effects and variance components when applied to modelling of correlated binary
data.
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It is noted that the HGLM approach proposed by Lee and Nelder (2001, 2006) also modeled the salamander
mating data well, where the conjugate hierarchical generalized linear model, beta-binomial HGLM, was applied so that
numerical integration is avoided. In contrast, the QMC approach proposed in this paper does not request a conjugate
distribution assumption for responses and random effects, though the normality of random effects is assumed here. The
issue of non-Normally distributed random effects will be addressed in our follow-up work.
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Appendix. The second-order derivatives of the log-likelihood

First, the second-order derivative of �(�, �) with respect to � can be obtained, by taking derivative of �̇� in (10) with
respect to �, as follows:
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where g̈(·) is the second derivative of the link function g(·). When calculating the derivative of �̇�, the dependence of
the weight wk on � and � needs to be taken into account. This is why the above expression becomes complicated.

Similarly, the (j, j ′)th element of the second-order derivative �̈�� can be obtained as
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where j, j ′ = 1, 2, . . . , m. Finally, the jth column of the (p × m) second-order derivative matrix �̈�� must be of the
form
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where j = 1, 2, . . . , m.
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