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THE RELATION BETWEEN LOCAL AND GLOBAL DUAL
PAIRS

James Montaldi, Juan-Pablo Ortega, and Tudor S. Ratiu

Abstract. In this note we clarify the relationship between the local and global
definitions of dual pairs in Poisson geometry. It turns out that these are not
equivalent. For the passage from local to global one needs a connected fiber
hypothesis (this is well known), while the converse requires a dimension condition
(which appears not to be known). We also provide examples illustrating the
necessity of the extra conditions.

1. Regular dual pairs

The set-up we consider is the following. Let (M, ω) be a symplectic manifold
(we assume our manifolds to be paracompact), (P1, {·, ·}1) and (P2, {·, ·}2) two
Poisson manifolds, and π1 : M → P1 and π2 : M → P2 two surjective submersive
Poisson maps. In Remark 7 we describe the effect of weakening the condition
“submersion” to “open”.

Let Fj denote the algebra of the pull-backs of smooth functions on Pj , that
is,

Fj = π∗j (C∞(Pj)).

Since π1 and π2 are Poisson it follows that F1 and F2 are Poisson subalgebras
of C∞(M). If U ⊂M is open, we write Fj(U) for the algebra

Fj(U) = π∗j (C∞(πj(U))).

This is a Poisson subalgebra of C∞(U).
For a subset A ⊂ C∞(U) we write Ac for the centralizer of A with respect to

the Poisson structure on (U, ω|U ), that is,

Ac := {f ∈ C∞(U) | {f, g}U = 0 for all g ∈ A},
where {·, ·}U is the restriction of the Poisson bracket to U .

Note that in the following two definitions π1 and π2 are assumed to be Poisson
maps but not necessarily submersions.
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Definition 1. Consider the diagram

(M, ω)

(P1, {·, ·}1) (P2, {·, ·}2)

❅
❅
❅
❅❅❘

�
�
�
��✠

π1 π2

• The diagram forms a Howe (H) dual pair if the Poisson subalgebras F1

and F2 centralize each other:

Fc
1 = F2 and Fc

2 = F1.(1)

• The diagram forms a Lie-Weinstein (LW) dual pair when ker Tπ1

and ker Tπ2 are symplectically orthogonal distributions. That is, for each
m ∈M ,

(kerTmπ1)
ω = kerTmπ2.(2)

In each case, the dual pair is regular when the maps πj are assumed to be
surjective submersions; otherwise it is singular.

This notion of singular dual pair is less general than that in [11]. Notice
that for a regular Lie-Weinstein dual pair, the dimensions of P1 and P2 sum to
the dimension of M . Actually, we note that if the manifold M is Lindelöf or
paracompact as a topological space then the Lie-Weinstein condition cannot hold
unless the dual pair is regular. This is because the LW condition implies that
the two maps π1 and π2 are of complementary rank (the ranks sum to dim(M))
and, by the lower semicontinuity of the rank of a smooth map, the maps must
both be of constant rank. Since they are surjective they must be submersions
(by Sard’s theorem).

We emphasize that the definition of a Lie-Weinstein dual pair is local, while
that of a Howe dual pair is global. However, the latter definition can be localized
as follows.

Definition 2. The diagram above forms a local Howe (LH) dual pair if for
each m ∈ M and each neighbourhood V of m there is a neighbourhood U of
m with U ⊂ V such that the algebras F1(U) and F2(U) centralize each other
in C∞(U). If in addition, π1 and π2 are surjective submersions, then the local
Howe dual pair is said to be regular ; otherwise it is singular .

The notion of Howe dual pair has its origins in the study of group representa-
tions arising in quantum mechanics (see for instance [3, 5, 13, 4], and references
therein) and it appears for the first time in the context of Poisson geometry
in [14]. The definition of Lie-Weinstein dual pair can be traced back to [7] and,
in its modern formulation, is due to [14]. Examples of dual pairs arising in clas-
sical mechanics can be found in [8, 9], and references therein. Further details on
dual pairs can also be found in [12].
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The relationships between the three notions of regular dual pair can be
summed up in the following two results.

Proposition 3. The two local notions of regular dual pair, that is, Lie-Weinstein
and local Howe, are equivalent.

In Remark 7 we provide an example showing that this result no longer holds
if the regularity is dropped.

Theorem 4.

1. If a regular Howe dual pair is such that the Poisson manifolds P1 and P2

are of complementary dimension, that is, dimP1 + dimP2 = dimM , then
it forms a regular local Howe dual pair.

2. If a regular local Howe dual pair is such that the fibers of π1 and π2 are
connected then it is a regular Howe dual pair.

Before giving the proofs (in Section 2), we give two examples showing the
necessity of the hypotheses.

Example 5. This example (suggested to us by Andrea Giacobbe) shows that
the hypothesis of connected fibers in the passage from local to global in the
theorem above is necessary. Let

T2 = {(θ1, θ2) | θj ∈ R/2πZ}
be the 2-torus considered as a symplectic manifold with the area form ω :=
dθ1 ∧ dθ2. Consider the diagram S1 π1← T2 π2→ S1 with πj(θ1, θ2) := jθ1. The
fibers of π2 have two connected components. It is easy to see that this forms a
Lie-Weinstein dual pair (and hence a local Howe dual pair) but not a Howe dual
pair. Indeed, the function cos(θ1) belongs to Fc

1 but not to F2.

In the example below and in subsequent proofs, we use the following notation.
On the symplectic manifold (M, ω), we write the Poisson tensor as B ∈ Λ2(M).
If h ∈ C∞(M) then the Hamiltonian vector field Xh is defined by dh = iXh

ω :=
ω(Xh, ·). The Poisson tensor, defined by B(dg,dh) := Xh[g] = 〈dg, Xh〉 =
ω(Xg, Xh), induces the vector bundle morphism over the identity B� : T ∗M →
TM given by B�(dh) = Xh.

Example 6. This example shows that without the dimension hypothesis, a
regular Howe dual pair need not be locally Howe (nor Lie-Weinstein). Let
M := T3 × R and λ1, λ2, λ3 ∈ R be linearly independent over Q. Define on
M the symplectic structure ω whose Poisson tensor B ∈ Λ2(M) is given by

B� =




0 1 0 λ1

−1 0 0 λ2

0 0 0 λ3

−λ1 −λ2 −λ3 0


 .
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Let π : T3×R→ R be the projection onto the R factor. The Hamiltonian vector
field associated to the function π is

Xπ = λ1
∂

∂θ1
+ λ2

∂

∂θ2
+ λ3

∂

∂θ3
.

Then the diagram R
π← M

π→ R is a regular Howe pair but clearly not a Lie-
Weinstein dual pair and hence not a regular local Howe dual pair. In order to
see that it is a regular Howe dual pair let g ∈ (π∗C∞(R))c. The trajectories of
the vector field Xπ on M are irrational windings which are dense in the fibers of
π. Since g is invariant under this Hamiltonian flow it must be constant on the
fibers of π and hence g ∈ π∗C∞(R), as required.

Remarks 7.
1. If one merely assumes the maps πj to be open rather than submersions,

then one can still pass from local Howe to global, provided of course the fibers
are connected (see the proof in Section 2).

2. As was already observed, if the Lie-Weinstein condition is satisfied then the
two Poisson maps πj are of constant rank. Any example of a local Howe dual
pair which is not Lie-Weinstein must of course be singular (the maps cannot
be submersions) and not of constant rank. A simple example is obtained by
putting M = R4 with coordinates (x1, x2, y1, y2) and its usual symplectic form
ω =

∑
j dxj ∧dyj . Let π1 : M → R be given by π1(x,y) = x ·y (inner product)

and π2 : M → R4 be given by π2(x,y) = x⊗y (outer product!). In coordinates,

π2(x1, x2, y1, y2) = (x1y1, x1y2, x2y1, x2y2).

The fibers of both π1 and π2 are connected and the image π2(M) is a cone in
R4.

We claim that R π1← M
π2→ R4 forms a singular Howe dual pair. It is clearly

not Lie-Weinstein at the origin, as Tπ1 and Tπ2 both vanish at that point. That
it is a Howe pair follows from the paper of Karshon and Lerman [6], since π1 is
the orbit map for the U(2) action on C2 and π2 its momentum map. Note that
in [10] it is shown that momentum maps of representations are G-open, although
we do not know whether G-openness is sufficient to be able to pass from local
to global in the singular case.

2. Proofs

Define Kj := kerTπj (for j = 1, 2), which are two subbundles of TM . Since
the maps πj are submersions, we have for each m ∈M

Kj(m)◦ = {df(m) | f ∈ Fj}.(3)

Furthermore, since Kj(m)ω = B�(Kj(m)◦) it follows that

Kj(m)ω = {Xf (m) | f ∈ Fj}.(4)
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Proof of Proposition 3. We establish the equivalence of the two local no-
tions of regular dual pair. Recall that π1 and π2 are assumed to be surjective
submersions.
LH⇒ LW: We wish to show that (K1)ω = K2, which we do by double inclusion.

First we show (K1)ω ⊂ K2. Let zj be coordinates on P2. Then by the local
Howe condition, f ∈ F1 implies

0 = {f, zj ◦ π2} = ω(Xf , Xzj◦π2) for all j

so that Xf ∈ {Xg | g ∈ F2}ω = K2, by (4).
For the converse inclusion, K2 ⊂ (K1)ω, let m ∈ M and v ∈ K2(m).

Then there is a function f such that v = Xf (m). Then for g ∈ F2 we have
〈df(m), Xg(m)〉 = −dg(m)(v) = 0, so that df(m) ∈ (K2(m)ω)◦. Since (K2

ω)◦

is a subbundle of T ∗M and hence locally trivial, we can choose f on a neigh-
bourhood V of m so that at each x ∈ V , df(x) ∈ (K2(x)ω)◦. Thus

0 = 〈d(zj ◦ π2)(x), Xf (x)〉 = {zj ◦ π2, f}(x).

By the local Howe condition, this implies there is a sub-neighbourhood U ⊂ V
of m such that f ∈ F1(U). Consequently, Xf is a section of (K1)ω over U and,
since v = Xf (m), it follows that K2 ⊂ (K1)ω.
LW⇒ LH: We choose U such that both submersions πj |U have connected fibers
(this can be done using Lemma 8, by choosing any function h on M with a
non-degenerate local minimum at m). We prove the equality F2(U) = F1(U)c,
again by double inclusion.

Let f ∈ F2(U). Since df(m) ∈ K2(m)◦, for any m ∈ U and, by hypothesis,
(K1)ω = K2, we have

Xf (m) ∈ B�(m)(K2(m)◦) = K2(m)ω = K1(m) = ({dg(m) | g ∈ F1(U)})◦ ,
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where the last equality follows from (3). Consequently, for an arbitrary g ∈
F1(U), we conclude

{g, f} = dg (Xf ) = 0,

which implies that f ∈ F1(U)c.
Conversely, let f ∈ F1(U)c for some U . In order to prove that f ∈ F2(U) we

start by showing that it is locally constant on the fibers of π2. Indeed, since π2

is a surjective submersion and the diagram (P1, {·, ·}1) π1← (M, ω) π2→ (P2, {·, ·}2)
forms a Lie-Weinstein dual pair, for any m ∈M we have

Tm

(
π−1

2 (π2(m))
)

= K2(m) = (K1(m))ω = B�(m) ((K1(m))◦) .

This equality, together with (3), guarantees that any vector v tangent at m to
the fiber π−1

2 (π2(m)) can be written as v = Xg(m), for some g ∈ F1(U). Hence,

df(m)(v) = df(m) (Xg(m)) = {f, g}(m) = 0.

Since both m ∈M and v ∈ Tm

(
π−1

2 (π2(m))
)

are arbitrary and, by the choice of
U , the fibers of π2|U are connected, this equality guarantees that the function
f ∈ F1(U)c is constant on the fibers of π2. This implies that there exists a unique
function f : π2(U)→ R that satisfies the equality f = f ◦π2|U . Since f is smooth
and π2|U a submersion it follows that f is smooth and hence f ∈ F2(U).

The equality F1(U) = F2(U)c is proved analogously.

Proof of Theorem 4.
Global ⇒ Local: Let m ∈ M be an arbitrary point. We will now show that
the hypotheses in the statement imply that (K1(m))ω = K2(m). The inclusion
(K2(m))ω ⊂ K1(m) follows from the global Howe hypothesis and the equali-
ties (4) and (3). Indeed,

(K2(m))ω = {Xf (m) | f ∈ F2} = {Xg(m) | g ∈ Fc
1} ⊂ ({df(m) | f ∈ F1})◦

= K1(m).

The converse inclusion follows immediately from the hypothesis on the dimen-
sions and the submersiveness of π1 and π2. Indeed,

dim(K2(m))ω = dimP2 = dimM − dimP1 = dimK1(m),

and hence (K2(m))ω = K1(m), as required.
Local ⇒ Global: Using the symmetry of the statement with respect to the ex-
change of π1 with π2 it suffices to show that, for instance, Fc

1 = F2. Notice
that the proof below only requires the Poisson maps πj to be open onto Pj ,
rather than submersions, and that the Pj are not even required to be manifolds
(in which case the proof would hold with an appropriate algebraic definition of
smooth function on Pj).

First, it is easy to show that given f ∈ F1 and g ∈ F2 then {f, g} = 0.
Indeed, let m ∈M and let U be a neighbourhood of m on which the local Howe
condition holds. Then, f |U ∈ F1(U) and similarly g|U ∈ F2(U) and hence,

{f, g}(m) = {f |U , g|U}U (m) = 0,(5)
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where {·, ·}U is the restriction of the Poisson bracket to U . Since m ∈M , f ∈ F1,
and g ∈ F2 are arbitrary, it follows that F2 ⊂ Fc

1 .

Second, let g ∈ Fc
1 ; one needs to show that g ∈ F2. For each m ∈M there is

a neighbourhood Um on which the local Howe hypothesis is valid. This provides
a cover of M , from which we can extract a locally finite subcover {Ua}a∈A.

For each Ua, we claim that g|Ua
∈ F1(Ua)c. It then follows by hypothesis

that g|Ua ∈ F2(Ua), which allows us to write

g|Ua = ga ◦ π2|Ua(6)

for some ga ∈ C∞(π2(Ua)). Our second claim is that there is a function g ∈
C∞(P2) such that ga = g|π2(Ua). The result then follows as g = g ◦ π2. We now
establish the two claims.

The first claim is proved by contradiction. Suppose that there exists a function
f ∈ C∞(π1(Ua)) and x ∈ Ua such that {g|Ua , f ◦ π1|Ua}Ua(x) �= 0. Let Vx be
an open neighbourhood of x such that Vx ⊂ π1(Ua). Then there is an extension
F ∈ C∞(P1) of f |Vx . Since g ∈ Fc

1 it follows that

0 = {g, F ◦ π1}(x) = {g|Ua , f ◦ π1|Ua}Ua(x) �= 0,

contradicting (5).
As to the second claim, notice first that (6) implies that g is locally constant

along the fibers of π2. Since by hypothesis these fibers are connected, g is
constant on the fibers of π2 and g is therefore well defined. Moreover, g coincides
with ga on the open sets of the form π2(Ua) and so is smooth.

Lemma 8. Let U be a manifold and h be a smooth real-valued function with a
non-degenerate local minimum at u0 ∈ U , and suppose h(u0) = 0. Let π : U → P
be a submersion in a neighbourhood of u0. Then for ε sufficiently small the level
sets of π restricted to Bε are diffeomorphic to an open ball, where Bε is the
connected component of {u ∈ U | h(u) < ε} containing u0.

Proof. Write Fy,ε = Bε ∩ π−1(y). We wish to show that when it is nonempty,
Fy,ε is diffeomorphic to an open ball. First, choose coordinates near u0 and
π(u0) such that π(x, y) = y. Since the restriction of h to {y = 0} has a non-
degenerate minimum at x = 0, by the splitting lemma (or Morse lemma with
parameters, see e.g. [2, p. 97]) there is a neighbourhood U1 of u0 on which one
can change coordinates by (x, y) �→ (X, y) = (X(x, y), y) in such a way that
h(X, y) = Q(X) + g(y), where Q is a positive definite quadratic form and g is
a smooth function. Choose ε1 sufficiently small so that Bε1 is contained in this
neighbourhood. In these coordinates, for ε ≤ ε1 and for each y ∈ π(U1),

Fy,ε = {(X, y) ∈ Bε | Q(X) < ε− g(y)}.
It is clear that for each y, ε this set is either empty or diffeomorphic to an open
ball.
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3. Final remarks

There are a number of theorems in the literature which are stated with the
hypothesis that a given set-up is a Howe dual pair, while the proof uses the
Lie-Weinstein property. The most famous of these are probably the Symplectic
Leaves Correspondence Theorem [14, 1] and Weinstein’s theorem on transverse
Poisson structures [14, Theorem 8.1]. Here we give an example showing that
these theorems fail if one does not assume a local (Lie-Weinstein) hypothesis.
Of course, by the theorem above the hypothesis that P1 and P2 are of comple-
mentary dimension is also sufficient.

Example 9. Let

M = T2 × T3 × R(7)

with coordinates (θ, φ, x), where θ = (θ1, θ2) ∈ T2, φ = (φ1, φ2, φ3) ∈ T3, and
θj , φj ∈ R/2πZ. Let π1 : M → T3 × R and π2 : M → R be given by

π1(θ, φ, x) = (φ, x), and π2(θ, φ, x) = x.

We endow M with a Poisson structure whose Poisson tensor can be written in
block form as

B� =




0 A B
−AT C 0
−BT 0 0


 .

We assume that the entries of A, B, C are independent over Q, excluding those
forced to vanish. An argument along similar lines to that for Example 6 shows
that P1

π1←M
π2→ P2 forms a regular Howe dual pair. However, since the dimen-

sions of P1 = T3 × R and P2 = R differ by an odd number, it is clear that they
cannot have the property of having anti-isomorphic transverse Poisson struc-
tures, up to a product with a symplectic factor. Indeed, the Poisson structure
on P2 is of course trivial, while that on P1 is of rank 2.

This example also shows that in the absence of the local Lie-Weinstein hypoth-
esis, the correspondence between the symplectic leaves of two Poisson manifolds
in duality may fail. In order to see this take x ∈ R. This is a symplectic leaf
in R, and if the Symplectic Leaves Correspondence theorem were valid then
π1(π−1

2 (x)) � T3 would be a symplectic leaf in T2 × T3 × R. This is obviously
impossible as T3 is of odd dimension.
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