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Abstract: We study a new class of infinite dimensional Lie algebras, which has impor-
tant applications to the theory of integrable equations. The construction of these algebras
is very similar to the one for automorphic functions and this motivates the name auto-
morphic Lie algebras. For automorphic Lie algebras we present bases in which they
are quasigraded and all structure constants can be written out explicitly. These algebras
have useful factorisations on two subalgebras similar to the factorisation of the current
algebra on the positive and negative parts.

1. Introduction

In this paper we introduce and study automorphic Lie algebras. This subclass of infinite
dimensional Lie algebras is very useful for applications and actually has been moti-
vated by applications to the theory of integrable equations. Automorphic Lie algebras
are quasigraded and all their structure constants can be found explicitly. They form a
more general class than graded infinite dimensional Lie algebras [1], they also have rich
internal structure and can be studied in depth.

The basic construction is very similar to the theory of automorphic functions [2, 3].
In a sense, it is a generalisation of this theory to the case of semi–simple Lie algebras
over a ring of meromorphic functions R(�) of a complex parameter λwith poles in a set
of points �. Suppose G is a discontinuous group of fractional-linear transformations of
the complex variable λ and the set � is an orbit of this group or a finite union of orbits,
then transformations from G induce automorphisms of the ring R(�). A set of elements
of R(�) which are invariant with respect to G form a subring of automorphic functions.
Automorphic algebras are defined in a very similar way. Let us consider a finite dimen-
sional semi-simple Lie algebra A over the ring R(�). This algebra can be viewed as
an infinite dimensional Lie algebra over C and will be denoted A(�). Suppose G is
a subgroup of the group of automorphisms of A(�). Elements of G are simultaneous
� On leave from, L.D. Landau Institute for Theoretical Physics Chernogolovka, Russia
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transformations (automorphisms) of the semi-simple Lie algebra A and the ring R(�).
Then the automorphic Lie algebra AG(�) is defined as the set of all elements of A(�)
which are G invariant.

In this paper we restrict ourselves to finite groups of fractional-linear transforma-
tions of the Riemann sphere and therefore the set � is finite and all elements of R(�)
are rational functions. The theory of automorphic functions for finite groups has been
developed by Felix Klein [2, 4]; automorphic functions corresponding to finite groups
can be easily obtained using the group average. The paper is organised as follows: in the
second section we introduce notations and recall some useful results from the theory of
elementary automorphic functions. We give a brief account of automorphisms of semi-
simple Lie algebras, discuss the structure of automorphisms groups of algebras over a
ring of rational functions and define automorphic Lie algebras. In the third section we
construct explicitly automorphic Lie algebras corresponding to the dihedral group DN

and study some of their properties. In particular we build explicitly bases in which these
algebras are quasigraded and find all structure constants. The group of automorphisms
of a semi-simple Lie algebra is a continuous Lie group and therefore its elements may
depend on the complex parameter λ. In this case the reduction group G is a subgroup
of a semi-direct product of G and Aut A. A nontrivial example of the corresponding
automorphic Lie algebra is given in Sect. 3.3. For completeness, in the Appendix we
give an account of all finite groups of fractional linear transformations, their orbits and
primitive automorphic functions.

Originally our study has been motivated by the problem of reduction of Lax pairs.
Most of integrable equations interesting for applications are results of reductions of
bigger systems. The problem of reductions is one of the central problems in the theory
of integrable equations. A wide class of algebraic reductions can be studied in terms
of reduction groups. The concept of reduction group has been formulated in [5–7] and
developed in [8–11]. It has been successfully applied and proved to be very useful for
a classification of solutions of the classical Yang-Baxter equation [12, 13]. The most
recent publications related to the reduction group are [14, 15].

A reduction group G is a discrete group of automorphisms of a Lax pair. Its ele-
ments are simultaneous gauge transformations and fractional-linear transformations of
the spectral parameter. The requirement that a Lax pair is invariant with respect to a
reduction group imposes certain constraints on the entries of the Lax pair and yields
a reduction. Simultaneous gauge transformations and fractional-linear transformations
of the spectral parameter are automorphisms of the underlying infinite dimensional Lie
algebra A(�). The reduction corresponding to G is nothing but a restriction of the Lax
pair to the automorphic subalgebra AG(�) ⊂ A(�).

About a year ago we discussed our new developments in the theory of reductions and
reduction groups [14] with V.V. Sokolov, who suggested to us to reformulate our results
in algebraic terms in order to make them accessible to a wider mathematical community.
We are grateful to him for this advice. Indeed, Lie algebras have applications far beyond
the theory of integrable equations. We believe automorphic Lie algebras are a new and
important class of infinite dimensional Lie algebras which deserves further study and
development.

2. Automorphisms

2.1. Finite groups of automorphisms of the complex plane and rational automorphic
functions. Let Ĝ be a group of fractional-linear transformations σr ,
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λr = σr(λ) = arλ+ br

crλ+ dr
, ardr − brcr = 1 , (1)

where σ0 is the identity transformation (id) of the group

σ0(λ) = λ , a0 = d0 = ±1 , b0 = c0 = 0 .

The composition σr ′(σr(λ)) defines the group product σr ′ ·σr . We will denote σ−1
r (λ) the

transformation inverse to σr(λ). One can associate 2 × 2 matrices with fractional-linear
transformations (1), (

ar br
cr dr

)
→ σr .

The product of such matrices corresponds to the composition of fractional-linear trans-
formations. It defines a homomorphism of the group SL(2,C) onto the group Ĝ. The
kernel of the homomorphism consists of two elements I2 and −I2, where I2 is the unit
2×2 matrix. In other words, the group Ĝ is isomorphic toPSL(2,C) = SL(2,C)/{±I2}.

Two groups G and G′ of fractional-linear transformations are equivalent if there is a
fractional-linear transformation τ such that for any σ ∈ G,

σ ′ = τ−1στ ∈ G′,

and any element of G′ can be obtained in this way.
Finite subgroups of Ĝ have been completely classified by Felix Klein [4]. The com-

plete list of finite groups of fractional-linear transformations consists of five elements:

ZN, DN, T, O, I, (2)

i.e. the additive group of integers moduloN , the group of a dihedron withN corners, the
tetrahedral, octahedral and icosahedral groups, respectively. In this paper we consider
only finite groups of fractional-linear transformations.

Let γ0 be a complex number (a point on the Riemann sphere CP
1), and let G be a

finite group of fractional-linear transformations. The orbit G(γ0) is defined as the set of
all images G(γ0) = {σr(γ0) | σr ∈ G}. If two orbits G(γ1) and G(γ2) have non-empty
intersection, they coincide. The point γ0 is called a fixed point of a transformation σr if
σr(γ0) = γ0. Transformations for which the point γ0 is fixed form a subgroup Gγ0 ⊂ G,
called the isotropy subgroup of γ0. The order of the fixed point is defined as the order of
its isotropy subgroup ord (γ0) = |Gγ0 |. The point γ0 and the corresponding orbit G(γ0)

are called generic, if the isotropy subgroup Gγ0 is trivial, i.e. it consists of the identity
transformation only. The orbit G(γ0), and so γ0, is called degenerated, if |Gγ0 | > 1. It
follows from the Lagrange Theorem that the number of points in the orbit G(γ0) is equal
to |G|/|Gγ0 |.

Given a rational function f (λ) of the complex variable λ, the action of the group G
is defined as

σr : f (λ) → f (σ−1
r (λ)) , (3)

or simply σr(f (λ)) = f (σ−1
r (λ)). A non-constant function f (λ) is called an automor-

phic function of the group G if σr(f (λ)) = f (λ) for all σr ∈ G. Automorphic functions
take the same value at all points of an orbit G(γ0).

The following important fact holds; it has been perfectly known to Felix Klein, but
it was not formulated as a separate statement in his book [2].
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Theorem 2.1. Let G be a finite group of fractional-linear transformations, and let G(γ1),

G(γ2) be any two different orbits, then:

1. There exists a primitive automorphic function f (λ, γ1, γ2) with poles of multiplic-
ity |Gγ1 | at points G(γ1) and zeros of multiplicity |Gγ2 | at points G(γ2) and with no
other poles or zeros. The function f (λ, γ1, γ2) is defined uniquely, up to a constant
multiplier.

2. Any rational automorphic function of the group G is a rational function of the prim-
itive f (λ, γ1, γ2).

If f (λ, γ1, γ2) is a primitive automorphic function, then

f (λ, γ2, γ1) = c1

f (λ, γ1, γ2)
, (4)

f (λ, γ1, γ3) = c2(f (λ, γ1, γ2)− f (γ3, γ1, γ2)) , γ3 �∈ G(γ1) , (5)

f (λ, γ3, γ4) = c3
f (λ, γ1, γ2)− f (γ4, γ1, γ2)

f (λ, γ1, γ2)− f (γ3, γ1, γ2)
, γ3, γ4 �∈ G(γ1) , (6)

where c1, c2, c3 are nonzero complex constants. Thus, it is sufficient to find one primi-
tive automorphic function f = f (λ, γ1, γ2) and all other rational automorphic functions
will be rational functions of f .

For finite groups, automorphic functions can be obtained using the group average

〈f (λ)〉 = 1

|G|
∑
σ∈G

σ(f (λ)) . (7)

In order to obtain a primitive function f (λ, γ1, γ2) we define the automorphic function

f̂ (λ, γ1) = 〈 1

(λ− γ1)
|Gγ1 | 〉 = 1

|G|
∑
σ∈G

1

(σ−1(λ)− γ1)
|Gγ1 | (8)

with poles of multiplicity |Gγ1 | at points of the orbit G(γ1) and then f (λ, γ1, γ2) =
f̂ (λ, γ1) − f̂ (γ2, γ1). It is essential that the order of the pole in (8) has been chosen
equal to the order of the fixed point γ1. If the order is less than |Gγ1 |, then the group
average is a constant function, i.e. it does not depend on λ.

For completeness, in the Appendix we give an account of all finite groups (2) of
fractional-linear transformations, their orbits and corresponding primitive automorphic
functions.

2.2. Automorphisms of semi-simple Lie algebras. The structure of the automorphisms
groups of semi-simple Lie algebras over C is comprehensively studied (see for example
the book of Jacobson [16]). In this section we list some results which will be used in the
rest of the text.

Let A be a finite or infinite dimensional Lie algebra over any field (or ring). We denote
by Aut A the group of all automorphisms of A. Let G ⊂ Aut A be a subgroup and AG

be a subset of all elements of A which are invariant with respect to all transformations
of G, i.e.

AG = {a ∈ A |φ(a) = a , ∀φ ∈ G} .
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Lemma 2.2. AG is a subalgebra of A.

This lemma is obvious (it follows immediately from the automorphism definition),
but important for our further applications. All classical semi-simple Lie algebras can be
extracted in such a way from the algebra of matrices with zero trace. For example, the
map φt (a) = −atr , where atr stands for the transpose matrix, is an automorphism of the
Lie algebra sl(N,C) of square N ×N matrices. The invariant subalgebra in this case is
so(N,C), i.e. the algebra of skew-symmetric matrices.

From now on we assume that A is a finite dimensional semi-simple Lie algebra over
C. The group Aut A is a Lie group. It is generated by inner automorphisms of the form
φin = eada , a ∈ A and outer automorphisms φout , induced by automorphisms (sym-
metries) of the Dynkin diagram of A. Any automorphism φ ∈ Aut A can be uniquely
represented as a compositionφin ·φout . Inner automorphisms form a Lie subgroupAut0A
of the group Aut A. The subgroup Aut0A is normal and a connected component of the
identity of the group of all automorphisms. The algebrasAn , (n > 1) , Dn , (n > 4) and
E6 have subgroups of outer automorphisms of order two, the algebra D4 has the group
Aut A/Aut0A ∼= S3, i.e. the group of permutations of three elements, of order six and
isomorphic to D3. Other semi-simple Lie algebras do not admit outer automorphisms.

The description of the group of automorphisms can be given in explicit form. For
example in the case of the algebra sl(N,C) we have [16]:

Theorem 2.3. The group of automorphisms of the Lie algebra of 2 × 2 matrices of zero
trace is a set of mappings a → QaQ−1. The group of automorphisms of the Lie alge-
bra of N × N ,N > 2, matrices of trace 0 is a set of mappings a → QaQ−1 and
a → −HatrH−1, where Q,H ∈ GL(N,C).

Explicit descriptions of the groups of automorphisms for other semi-simple algebras
can be found in [16]. In this paper we focus on the study of Lie subalgebras related to
sl(N,C).

2.3. Automorphisms of Lie algebras over rings of rational functions. Automorphic Lie
algebras. A straightforward application of Lemma 2.2 to finite dimensional semi-sim-
ple Lie algebras does not lead to interesting results. Indeed, if we wish the invariant
subalgebra AG to be semi-simple we are coming back to the famous list of the Cartan
classification and nothing new can be found on this way. An infinite dimensional Lie
algebra with elements depending on a complex parameter λ may have a richer group
of automorphisms and Lemma 2.2 provides a tool to construct subalgebras of infinite
dimensional Lie algebras in the spirit of the theory of automorphic functions [2, 3].

Let � = {γ1 , . . . , γN } be a finite set of points γk ∈ Ĉ 
 CP
1. The linear space of all

rational functions of a complex variableλ ∈ C which may have poles of any finite order at
points of� and no other singularities in Ĉ, equipped with the usual multiplication, form a
ring R(�) and C ⊂ R(�). The ring R(�), as a linear space of functions over C, is infinite
dimensional. Let A be a finite dimensional semi–simple Lie algebra over C. We define

A(�) =
{∑

k

fk(λ) ek | fk ∈ R(�) , ek ∈ A
}
, (9)

with standard commutator[∑
k

fk(λ)ek ,
∑
s

gs(λ)es

]
=
∑
k,s

fk(λ)gs(λ) [ek , es] . (10)
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The algebra A(�) is an infinite dimensional Lie algebra over C. The group of automor-
phisms of A(�), Aut A(�), may be richer than Aut A; indeed, let � be an orbit or a finite
union of orbits of a finite group G of fractional-linear transformations, then the ring
R(�) has a nontrivial group of automorphisms Aut R(�) ∼= G. The group Aut R(�) is
the group of all automorphisms of the ring which do not move the base field of constants
(i.e. C). Automorphisms of the ring induce automorphisms of the algebra A(�). The
direct product of the groups Aut R(�) × Aut A is a group of automorphisms of A(�).
It can be generalised to a semi-direct product, if there is a nontrivial homomorphism of
Aut R(�) in the group Aut (Aut A) (an example will be given in Sect. 3.3). In the rest
of the article we assume that the set � is an orbit or a union of a finite number of orbits
of a finite group G of fractional-linear transformations.

For any group H and two monomorphisms τ : H → A and ψ : H → B, the
diagonal subgroup of the direct product τ(H)× ψ(H) is defined as

diag (τ (H)× ψ(H)) = {(τ(h), ψ(h)) |h ∈ H } .
Let A and B be two groups and G be a subgroup of the direct product G ⊂ A× B.

Each element g ∈ G is a pair g = (α , β), where α ∈ A and β ∈ B. There are two
natural projections π1, π2 on the first and the second components of the pair,

π1(g) = α , π2(g) = β .

Theorem 2.4. Let G ⊂ A× B be a subgroup of the direct product of two groups A,B,
and let

U1 = G ∩ (A× id) , U2 = G ∩ (id × B) , K = U1 · U2 .

Then:

1. U1, U2 and K are normal subgroups of G.
2. πi(Ui) is a normal subgroup of πi(G), i = 1, 2.
3. There are two isomorphisms

ψ1 : G/K → π1(G)/π1(U1) , ψ2 : G/K → π2(G)/π2(U2) .

4. G/K ∼= diag (ψ1(G/K)× ψ2(G/K)) .

The proof of the theorem becomes obvious if we represent it in terms of two com-
mutative diagrams (i = 1, 2) with exact horizontal and vertical sequences of group
homomorphisms:

id

id � K � G � G/K
�

� id

id � πi(Ui)

πi
�

� πi(G)

πi
�

� πi(G)/πi(Ui)

ψi
�

� id

id
�

id
�

id
�
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Definition 2.5. Let G ⊂ Aut A(�), we call the Lie algebra AG(�) automorphic, if its
elements a ∈ AG(�) are invariant g(a) = a with respect to all automorphisms g ∈ G.
Group G is called the reduction group.

The set AG(�) = {a ∈ A(�) | g(a) = a, ∀g ∈ G} is a subalgebra of A(�) (Lemma
2.2).

Like automorphic functions, automorphic subalgebras of A(�) can be constructed
(in the case of a finite groupG) using the group average. For any element a ∈ A(�) we
define (compare with (7))

〈a〉G = 1

|G|
∑
g∈G

g(a) . (11)

The group average is a linear operator in the linear space A(�) over C, moreover, it is
a projector, since 〈〈a〉G〉G = 〈a〉G for any element a ∈ A(�).

If the group G has a normal subgroup N ⊂ G then we can perform the average in
two stages: first we take the average over the normal subgroup ā = 〈a〉N and then take
the average over the factor group 〈ā〉G/N ,

〈a〉G = 〈〈a〉N 〉G/N .
Let [g] be a co-set in G/N and ĝ ∈ [g] be one representative from the co-set; then the
average 〈ā〉G/N is defined as

〈ā〉G/N = |N |
|G|

∑
[ĝ]∈G/N

ĝ(ā) .

This definition is well posed since ĝ(ā) is constant on each co-set [g], i.e. the result does
not depend on the choice of a representative.

If G ⊂ Aut R(�) × Aut A, and it has nontrivial normal subgroups U1, U2 (in the
notation of Theorem 2.4) then

AG(�) = 〈A(�)〉G = 〈〈〈A(�)〉U1〉U2〉G/K = 〈〈〈A(�)〉U2〉U1〉G/K . (12)

The normal subgroup U1 of a reduction groupG consists of all elements of the form
(σ, id), it corresponds to fractional-linear transformations of the complex variable λ,
and identical transformation of the algebra A. The normal subgroup U2 consists of all
elements of the form (id, φ), i.e. automorphisms of A and identical transformation of
the variable λ. The factor group G/K , if it is nontrivial, corresponds to simultaneous
automorphisms of the ring R(�) and the algebra A.

Averaging A(�) over U2 is equivalent to a replacement of the algebra A by Aπ2(U2)

(Lemma 2.2). Thus, without any loss of generality, we can start from a smaller algebra
Aπ2(U2) and respectively a smaller reduction group Ĝ ∼= G/U2.

Averaging over U1 affects only the ring R(�). As the result, we receive a subring
Rπ1(U1)(�) ⊂ R(�) of π1(U1)-automorphic functions with poles at �. It follows from
Theorem 2.1 that any element of Rπ1(U1)(�) can be expressed as a rational function
of a primitive π1(U1)-automorphic function. Taking a primitive automorphic function
instead of λ, we reduce then the problem to a simpler one (with a trivial subgroup U1),
without any loss of generality.

Thus, the most interesting case corresponds to simultaneous transformations and
from the very beginning we can assume the subgroupK = U1 ·U2 to be trivial, without
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any loss of generality. IfK is trivial thenG ∼= G = π1(G) 
 π2(G) (Theorem 2.1). IfG
is finite, it should be isomorphic to one of the finite groups of fractional-linear transfor-
mations (2). Thus, the reduction group G = diag (G, ψ(G)), where ψ : G → Aut A is
a monomorphism of a finite group of fractional-linear transformations G into the group
of automorphisms of Lie algebra A.

The above construction can be generalised to the case in which the elements of Aut A
are λ dependent. In this case, the composition law for the elements of the reduction group
is similar to the one for a semi-direct product of groups.A nontrivial example of such gen-
eralisation and the corresponding automorphic Lie algebra will be discussed in Sect. 3.3.

2.4. Quasigraded structure. Following I. M. Krichever and S. P. Novikov [17] we define
a quasigraded structure for infinite dimensional Lie algebras.

Definition 2.6. An infinite dimensional Lie algebra L is called quasigraded, if it admits
a decomposition as a vector space in a direct sum of subspaces

L =
⊕
n∈Z

Ln , (13)

and there exist two non-negative integer constants p and q such that

[Ln,Lm] ⊆
⊕

−q≤k≤p
Ln+m+k ∀ n, m ∈ Z . (14)

For p = q = 0 the algebra L is graded. Elements of Ln are called homogeneous ele-
ments of degreen. The decomposition (13) with the property (14) is called a quasigraded
structure of L.

Without loss of generality we can assume q = 0. Indeed, by a simple shift in the enu-
meration we can always set q = 0. Quasigraded algebras with p = 1, q = 0 share one
important property with graded algebras (p = q = 0), namely they can be decomposed
(split) into a sum of two subalgebras

L = L+
⊕

L−,

where

L+ =
⊕
n≥0

Ln , L− =
⊕
n<0

Ln .

Indeed, it follows from (14) that commutators of elements from subspaces with negative
indexes belong to L− since n+m+1 < 0 if n < 0 andm < 0. Commutators of elements
from L+ obviously belong to L+. If q = 0 and p > 1 then L− is not necessarily a closed
subalgebra, but L+ is.

3. Explicit Construction of Automorphic Lie Algebras

To construct an automorphic Lie algebra we consider the following:

1. a finite group of fractional-linear transformations G,
2. a finite dimensional semi-simple Lie algebra A over C,
3. a monomorphism ψ : G → Aut A.
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For a given G,A and ψ , automorphic Lie algebras depend on the choice of a
G-invariant set �, which is a union of a finite number of orbits � = ∪Mk=1G(γk). Similar
to the theory of automorphic functions (Theorem 2.1), for any two orbits G(γ1),G(γ2),
there is a uniquely defined primitive automorphic Lie algebra AG(γ1, γ2), whose ele-
ments may have poles at points in G(γ1)∪G(γ2) and do not have any other singularities.
Algebra AG(γ1, γ2) is quasigraded (see Definition 2.6) and its structure constants can
be written explicitly. Structure constants of any other G-automorphic Lie algebra can be
explicitly expressed in terms of the structure constants of AG(γ1, γ2). In general, algebra
AG(γ1, γ2) can be decomposed in a direct sum of three linear spaces

AG(γ1, γ2) = AG(γ1)
⊕

A0
G
⊕

AG(γ2) , (15)

such that elements of AG(γ )may have poles at the points of the orbit G(γ ) and are reg-
ular elsewhere and elements of a finite dimensional linear space A0

G are constants, i.e.

they do not depend on λ. Often the subspace A0
G is empty, then AG(γ1) and AG(γ2) are

subalgebras. In all cases studied we have found a subalgebra ÂG(γ1, γ2) ⊆ AG(γ1, γ2)

which can be decomposed as a linear space in a direct sum

ÂG(γ1, γ2) = ÂG(γ1)
⊕

ÂG(γ2) , (16)

such that ÂG(γ1) and ÂG(γ2) are subalgebras whose elements may have poles at the
orbits G(γ1) and G(γ2) respectively and are regular elsewhere.

3.1. Simple example G = DN , A = sl(2,C).. The action of the dihedral group DN

on the complex plane can be generated by two transformations σs(λ) = �λ, with
� = exp(2iπ/N) and σt (λ) = λ−1 (see details in the Appendix). It follows from Theo-
rem 2.3 that all automorphisms Aut sl(2,C) are inner and can be represented in the form
φ(a) = QaQ−1, where Q ∈ GL(2,C). A monomorphism ψ : DN → Aut sl(2,C) is
nothing but a faithful projective representation of DN and it is sufficient to define it on the
generators of the group. Let Qs and Qt correspond to σs and σt , respectively. Two pro-
jective representations Qs,Qt and Q̂s, Q̂t are equivalent if there exist W ∈ GL(2,C)
and cs, ct ∈ C such that WQsW

−1 = csQ̂s and WQtW
−1 = ct Q̂t .

In the simplest case G = D2 ∼= Z2 × Z2 there is only one class of faithful projective
representations which is equivalent to the choice

Qs =
(

1 0
0 −1

)
, Qt =

(
0 1
1 0

)
. (17)

Thus the reduction group D2 can be generated by two transformations

gs : a(λ) → Qsa(−λ)Q−1
s , gt : a(λ) → Qta(λ

−1)Q−1
t , a(λ) ∈ A(�)

and the group average is

〈a(λ)〉D2 = 1

4
(a(λ)+Qsa(−λ)Q−1

s +Qta(λ
−1)Q−1

t +QtQsa(−λ−1)Q−1
s Q−1

t ) .

In A = sl(2,C) we take the standard basis

h =
(

1 0
0 −1

)
, x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, (18)
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with commutation relations

[x, y] = h , [h, x] = 2x , [h, y] = −2y .

Let γ ∈ Ĉ be a generic point, i.e. γ �∈ {0,∞,±1,±i} and therefore |Gγ | = 1, then

xγ (λ) = 〈 x

λ− γ
〉D2 =

(
0 λ

2(λ2−γ 2)
λ

2(1−λ2γ 2)
0

)
, (19)

yγ (λ) = 〈 y

λ− γ
〉D2 =

(
0 λ

2(1−λ2γ 2)
λ

2(λ2−γ 2)
0

)
, (20)

hγ (λ) = 〈 h

λ− γ
〉D2 = γ (1 − λ4)

2(λ2 − γ 2)(1 − λ2γ 2)

(
1 0
0 −1

)
. (21)

We shall denote slD2(2,C; γ ) the infinite dimensional Lie algebra of all D2-auto-
morphic traceless 2 × 2 matrices whose entries are rational functions in λ with poles at
D2(γ ) and with no other singularities.

Proposition 3.1. Let µ ∈ C \ {±γ,±γ−1}. The set

xnγµ = 4xγ (λ)(fD2(λ, γ, µ))
n

ynγµ = 4yγ (λ)(fD2(λ, γ, µ))
n

hnγµ = 4hγ (λ)(fD2(λ, γ, µ))
n
, n = 0, 1, 2, . . . (22)

is a basis in slD2(2,C; γ ). Here fD2(λ, γ, µ) is a primitive automorphic function defined
as

fD2(λ, γ, µ) = α
(λ2 − µ2)(1 − µ2λ2)

(λ2 − γ 2)(1 − γ 2λ2)
, α = 2γ (γ 4 − 1)

(µ2 − γ 2)(1 − µ2γ 2)
. (23)

In (23) we have chosen the constant α to make resλ=γ fD2(λ, γ, µ) = 1.

Proof. We prove the proposition by induction. Let a(λ) ∈ slD2(2,C; γ ). If a(λ) = a0
does not have a singularity at λ = γ , then a0 = 0. Indeed, in this case a0 does not have
singularities at all and therefore it is a constant matrix. It follows from gs(a0) = a0
and gt (a0) = a0 that a0 commutes with Qs and Qt ; therefore a0 has to be propor-
tional to the unit matrix. From trace(a0) = 0 follows that a0 = 0. Suppose a(λ) has
a pole of order n > 0 at λ = γ , then near the singularity it can be represented as
a(λ) = a0(λ − γ )−n + â(λ), where a0 is a constant matrix, â(λ) may have a pole at
λ = γ of order m < n. In the basis (18) a0 = c1x + c2y + c3h, ci ∈ C. If

b(λ) = a(λ)− 4(c1xγ (λ)+ c2yγ (λ)+ c3hγ (λ))f
n−1
D2

(λ, γ, µ) ∈ slD2(2,C, γ )

is singular at λ = γ then the order of its pole is less or equal to n− 1 and this completes
the induction step. ��
Proposition 3.2. Elements xγ (λ), yγ (λ), hγ (λ) generate a D2-automorphic Lie algebra
slD2(2,C; γ ). The algebra slD2(2,C; γ ) is quasigraded; its quasigraded structure

slD2(2,C; γ ) =
⊕
n∈Z

Lnγ (µ) , [Lnγ (µ),Lmγ (µ)] ⊆ Ln+m+1
γ (µ)

⊕
Ln+mγ (µ)

depends on a complex parameter µ and Lnγ (µ) = SpanC (x
n
γµ, y

n
γµ, h

n
γµ).
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Proof. Indeed, by direct calculation we find that
[
xnγµ, y

m
γµ

]
= hn+m+1

γµ + aγµh
n+m
γµ ,[

hnγµ, x
m
γµ

]
= 2xn+m+1

γµ + bγµx
n+m
γµ − cγµy

n+m
γµ , n,m = 0, 1, 2, . . . , (24)[

hnγµ, y
m
γµ

]
= −2yn+m+1

γµ − bγµy
n+m
γµ + cγµx

n+m
γµ ,

where

aγµ = 2µ2(1 − γ 4)

γ (µ2 − γ 2)(1 − µ2γ 2)
, bγµ = 4γ (1 + µ4 − 4µ2γ 2 + γ 4 + γ 4µ4)

(1 − γ 4)(µ2 − γ 2)(1 − µ2γ 2)
,

cγµ = 8γ

1 − γ 4 .

Thus, any element of the basis (22) can be generated by the set (19)–(21). It follows
from (24) that q = 0, p = 1 (see (14)). ��

The quasigraded structure of slD2(2,C; γ ), i.e its decomposition in a direct sum of
linear subspaces Lnγ (µ), depends on a complex parameter µ. This parameter determines
the zeros of the primitive automorphic function fD2(λ, γ, µ). Taking into account the
fact that fD2(λ, γ, ν) = fD2(λ, γ, µ) − fD2(ν, γ, µ), we see that the corresponding
bases {xnγµ, ynγµ, hnγµ}n∈Z+ and {xnγ ν, ynγ ν, hnγ ν}n∈Z+ are related by a simple invertible
triangular transformation

xnγ ν =
∑
k=0

(−1)k
(
n

k

)
(fD2(ν, γ, µ))

k xn−kγµ (25)

(same for ynγ ν and hnγ ν), where
(
n
k

)
are binomial coefficients. For positive n the sum (25)

is finite, since all
(
n
k

)
vanish as k > n.

The set {xnγµ, ynγµ, hnγµ} is naturally defined for negative integers n ∈ Z−.

Proposition 3.3. Elements x−1
γµ, y

−1
γµ, h

−1
γµ generate a D2-automorphic Lie algebra slD2

(2,C;µ). The set {xnγµ, ynγµ, hnγµ | n ∈ Z−} is a basis in slD2(2,C, µ).

Proof. For negative n, automorphic elements xnγµ, y
n
γµ, h

n
γµ have poles at points G(µ)

and do not have other singularities, therefore xnγµ, y
n
γµ, h

n
γµ ∈ slD2(2,C;µ). The proof

that {xnγµ, ynγµ, hnγµ | n ∈ Z−} form a basis in slD2(2,C;µ) is similar to Proposition
3.1. ��

Thus, with any two orbits D2(γ ) and D2(µ) we associate two uniquely defined sub-
algebras slD2(2,C, γ ) and slD2(2,C, µ) of the infinite dimensional Lie algebra

slD2(2,C; γ, µ) = slD2(2,C, γ )
⊕

slD2(2,C, µ) .

The set (22) with n ∈ Z is a basis in slD2(2,C; γ, µ) with commutation relations
(24). slD2(2,C; γ, µ) has a uniquely defined quasigraded structure corresponding to a
primitive automorphic function fD2(λ, γ, µ). Quasigraded automorphic algebras corre-
sponding to different orbits are not isomorphic, i.e. elements of one algebra cannot be
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represented by finite linear combination of the basis elements of the other algebra with
complex constant coefficients.

In the above construction, the pointµ could be a generic point or belong to one of the
degenerated orbits. Having generators and structure constants for algebra slD2(2,C, γ )
we can easily find generators and corresponding structure constants for slD2(2,C, µ).
Taking, for example, µ = 0 we find generators

x̂0 = 4xγ (fD2(λ, γ, 0))−1, ŷ0 = 4yγ (fD2(λ, γ, 0))−1, ĥ0 = 4hγ (fD2(λ, γ, 0))−1

(26)

for slD2(2,C, 0). The set {x̂n0 = x̂0(fD2(λ, γ, 0))−n, ŷn0 = ŷ0(fD2(λ, γ, 0))−n, ĥn0 =
ĥ0(fD2(λ, γ, 0))−n|n ∈ Z+} can be taken as a basis (compare with Proposition 3.3).
The structure constants in this basis follows immediately from (24).

The generators of slD2(2,C, 0) can also be found directly, by taking the group aver-
age

x0(λ) = 〈x
λ

〉D2 = 1

2

(
0 λ−1

λ 0

)
,

y0(λ) = 〈y
λ

〉D2 = 1

2

(
0 λ

λ−1 0

)
, (27)

h0(λ) = 〈 h
λ2 〉D2 = (1 − λ4)

2λ2

(
1 0
0 −1

)
.

Generators (26) can be expressed in terms of (27),

x̂0 = 2γ

1 − γ 4 (x0 − γ 2y0) , ŷ0 = 2γ

1 − γ 4 (y0 − γ 2x0) , ĥ0 = 8γ 2

1 − γ 4 h0 .

In the basis {xn0 = x0J
n, yn0 = y0J

n, hn0 = 1
2h0J

n}n∈Z+ , where J = fD2(λ, 0, 1) =
1
2 (λ− λ−1)2, the commutation relations of slD2(2,C, 0) take a very simple form:

[xn0 , y
m
0 ] = hn+m0 , [hn0, x

m
0 ] = xn+m+1

0 + xn+m0 − yn+m0 ,

[hn0, y
m
0 ] = −yn+m+1

0 − yn+m0 + xn+m0 .

In the case G ∼= D3 the projective representation is generated by Qt (17) and Qs =
diag (e

2πi
3 , e−

2πi
3 ). Using the group average one can find slD3(2,C, γ ) algebra gener-

ators and then the basis in which the algebra has a quasigraded structure. It turns out
that the algebra slD3(2,C, γ ) is isomorphic to slD2(2,C, µ) if γ 3 = µ2. In particu-
lar slD3(2,C, 0) ∼= slD2(2,C, 0). It is a general observation – for any N,M ≥ 2 and
γ ∈ C,

slDN (2,C, γ
M) ∼= slDM (2,C, γ

N) .

ForN > 2 there is a choice of inequivalent irreducible representations of DN . Automor-
phic Lie algebras corresponding to different representations proved to be isomorphic.
This explains why integrable equations corresponding to DN reductions with different
N or non equivalent representations coincide [14].
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3.2. Automorphic Lie algebras with G = DN , A = sl(3,C). Let the action of DN

on the complex plane λ be the same as in the previous section, i.e. generated by two
fractional-linear transformations σs(λ) = �λ and σt (λ) = λ−1 with � = exp(2iπ/N).

It follows from Theorem 2.3 that automorphisms Aut (sl(3,C)) can be represented
either in the form a → QaQ−1 or a → −HatrH−1 where Q,H ∈ GL(3,C). The
first kind of automorphisms (with Q) form a normal subgroup of inner automorphisms
Aut 0(sl(3,C)), while automorphisms with H correspond to outer automorphisms and
Aut (sl(3,C))/Aut 0(sl(3,C)) ∼= Z2. There are two distinct ways to define a monomor-
phism ψ : DN → Aut (sl(3,C)):

Case A. ψ maps DN into the subgroup of inner automorphisms (similar to the previous
section). In this case ψ is nothing but a faithful projective representation of DN .

Case B. The other option is to use a normal subgroup decomposition (id → ZN →
DN → Z2 → id). In this case ψ maps the normal subgroup ZN in Aut 0(sl(3,C)),
and its co-set into the co-set corresponding to outer automorphisms, so that the fol-
lowing commutative diagram is exact:

id id id

id � ZN

�
� DN

�
� Z2

�
� id

id � Aut 0(sl(3,C))

ψ
�

� Aut (sl(3,C))

ψ
�

� Z2

�
� id

We shall study these two cases separately.

3.2.1. Case A. Inner automorphisms representation. We shall see that in the case A =
sl(3,C) the reduction groups D

A
2 and D

A
N,N > 2 yield non-isomorphic automorphic

Lie algebras (the upper index stands for the case A). Let eij denotes a matrix with 1 at
the position (i, j) and zeros elsewhere. Matrices eij , i �= j and h1 = e11 − e22 , h2 =
e22 − e33 form a basis in sl(3,C).

Case A, G = D
A
2 : The action of the reduction group G = D

A
2 can be generated by

transformations

gs : a(λ) → Qsa(−λ)Q−1
s , gt : a(λ) → Qta(1/λ)Q

−1
t , (28)

where Qs = diag (−1, 1,−1) and Qt = diag (1,−1,−1). It is easy to check that
g2
s = g2

t = (gsgt )
2 = id . If one ignores the λ transformations, then (28) form a D2

subgroup of inner automorphisms of algebra sl(3,C).
In order to fix a primitive automorphic Lie algebra, we need to fix two orbits of the

reduction group on the complex plane λ. As in the previous section, the choice of the
orbits is not very essential, since knowing the structure constants of the algebra for one
choice of the orbits, we can easily reconstruct the structure constants for any other choice.
We shall consider the orbits {0,∞} and {1,−1} and take the corresponding primitive
automorphic function in the form

J = fD2(λ, 0, 1) = λ2 + λ−2 − 2 .
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Automorphic Lie algebra sl
D
A
2
(3,C; 0, 1) is quasigraded ([An,Am] ⊂ An+m

⊕
An+m+1

⊕An+m+2),

sl
D
A
2
(3,C; 0, 1) =

⊕
n∈Z

An ,

where An = J nA0. It is sufficient to give a description of the linear space A0 and com-
mutation relations [A0,A0]. A basis in the eight dimensional space A0 can be chosen
as:

x0
1 = 〈2e12λ

−1〉
D
A
2

= (λ−1 − λ)e12 , y0
1 = 〈2e21λ

−1〉
D
A
2

= (λ−1 − λ)e21,

x0
2 = 〈2e23λ

−1〉
D
A
2

= (λ−1 + λ)e23 , y0
2 = 〈2e32λ

−1〉
D
A
2

= (λ−1 + λ)e32,

x0
3 = [x0

1 , x
0
2 ] = (λ−2 − λ2)e13 , y0

3 = [y0
2 , y

0
1 ] = (λ−2 − λ2)e31,

(29)

h0
1 = e11 − e22 , h0

2 = e22 − e33 . (30)

Proposition 3.4. The set

xni = J nx0
i , yni = J ny0

i , hnj = J nh0
j , i ∈ {1, 2, 3}, j ∈ {1, 2}, n ∈ Z

(31)

is a basis of the algebra sl
D
A
2
(3,C; 0, 1).

The proof is similar to Propositions 3.1, 3.3. It is easy to compute all commutators
between the basis elements of sl

D
A
2
(3,C; 0, 1). For example

[hn1, x
m
1 ] = 2xn+m1 , [xn1 , y

m
1 ] = hn+m+1

1 − 2hn+m1 ,

[xn3 , y
m
3 ] = hn+m+2

1 + hn+m+2
2 − 4hn+m1 − 4hn+m2 .

Algebra sl
D
A
2
(3,C; 0, 1) has a quasigraded subalgebra ŝl

D
A
2
(3,C; 0, 1), which is a

direct sum of two infinite dimensional subalgebras

ŝl
D
A
2
(3,C; 0, 1) = ŝl

D
A
2
(3,C; 0)

⊕
ŝl

D
A
2
(3,C; 1).

As a basis in ŝl
D
A
2
(3,C; 0, 1) we can take a set xni , y

n
i defined in (29), (31) and

ĥn1 = J n[x0
1 , y

0
1 ] = (λ2 + λ−2 − 2)J n(e11 − e22) ,

ĥn2 = J n[x0
2 , y

0
2 ] = (λ2 + λ−2 + 2)J n(e22 − e33) , n ∈ Z.

In this basis the non-vanishing commutation relations are

[ĥn1, x
m
1 ] = 2xn+m+1

1 , [ĥn1, y
m
1 ] = −2yn+m+1

1 , [ĥn1, x
m
2 ] = −xn+m+1

2 ,

[ĥn1, y
m
2 ] = yn+m+1

2 , [ĥn1, x
m
3 ] = xn+m+1

3 , [ĥn1, y
m
3 ] = −yn+m+1

3 ,

[ĥn2, x
m
1 ] = −xn+m+1

1 − 4xn+m1 , [ĥn2, y
m
1 ] = yn+m+1

1 + 4yn+m1 , [ĥn2, x
m
2 ] = 2xn+m+1

2 + 8xn+m2 ,

[ĥn2, y
m
2 ] = −2yn+m+1

2 − 8yn+m2 , [ĥn2, x
m
3 ] = xn+m+1

3 + 4xn+m3 , [ĥn2, y
m
3 ] = −yn+m+1

3 − 4yn+m3 ,

[xn1 , x
m
2 ] = xn+m3 , [yn1 , y

m
2 ] = −yn+m3 , [xn1 , y

m
1 ] = ĥn+m1 ,

[xn1 , y
m
3 ] = −yn+m+1

2 , [xn2 , y
m
2 ] = ĥn+m2 , [xn2 , y

m
3 ] = yn+m+1

1 + 4yn+m1 ,

[xn3 , y
m
1 ] = −xn+m+1

2 , [xn3 , y
m
2 ] = xn+m+1

1 + 4xn+m1 , [xn3 , y
m
3 ] = ĥn+m+1

1 + ĥn+m+1
2 + 4ĥn+m1 .
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Elements xni , y
n
i , ĥ

n
j with n ≥ 0 form a basis in ŝl

D
A
2
(3,C; 0), elements with n < 0

form a basis in ŝl
D
A
2
(3,C; 1).

Case A, G = D
A
3 : The action of the reduction group G = D

A
3 can be generated by

transformations

gs : a(λ) → Qsa(ω
−1λ)Q−1

s , gt : a(λ) → Qta(1/λ)Q
−1
t , (32)

where

Qs =

ω 0 0

0 ω2 0
0 0 1


 , Qt =


 0 1 0

1 0 0
0 0 ∓1


 , ω = exp

(
2πi

3

)
.

It is easy to check that g3
s = g2

t = (gsgt )
2 = id . The signs in Qt correspond to two

inequivalent representations of D
A
3 .

Let us choose the following automorphic function:

f = λ3 + λ−3 , (33)

corresponding to the orbits D3(0) = {0,∞} and D3(�), where � = exp(πi/6). The
automorphic Lie algebra sl

D
A
3
(3,C; 0,�) = ⊕

n∈Z
An is quasigraded. A basis in the

eight dimensional space A0 can be chosen as:

x0
1 = 〈2e12λ

−1〉
D
A
3

= λ−1e12 + λe21 , y0
1 = 〈2e21λ

−2〉
D
A
3

= λ−2e21 + λ2e12,

x0
2 = 〈4e23λ

−1〉
D
A
3

= 2λ−1e23 ∓ 2λe13 , y
0
2 = 〈4e32λ

−2〉
D
A
3

= 2λ−2e32 ∓ λ2e31,

x0
3 = [x0

1 , x
0
2 ] = 2λ−2e13 ± 2λ2e23 , y0

3 = 〈4e31λ
−1〉

D
A
3

= 2λ−1e31 ∓ 2λe32,

(34)

h0
1 = 〈2(e11 − e22)λ

−3〉
D
A
3

= (λ−3 − λ3)(e11 − e22) , h0
2 = 2

3
(e11 + e22 − 2e33) .

(35)

In the basis

xni = f nx0
i , yni = f ny0

i , hnj = f nh0
j , i ∈ {1, 2, 3}, j ∈ {1, 2}, n ∈ Z

(36)

of the automorphic Lie algebra sl
D
A
3
(3,C; 0,�) the non-vanishing commutation rela-

tions are (n,m ∈ Z):
[
hn1, x

m
1

] = 2xn+m+1
1 − 4yn+m1 ,

[
hn1, y

m
1

] = −2yn+m+1
1 + 4xn+m1 ,

[
hn1, x

m
2

] = −xn+m+1
2 ∓ 2xn+m3 ,[

hn1, y
m
2

] = yn+m+1
2 ± 2yn+m3 ,

[
hn1, x

m
3

] = xn+m+1
3 ± 2xn+m2 ,

[
hn1, y

m
3

] = −yn+m+1
3 ∓ 2yn+m2 ,[

hn2, x
m
2

] = 2xn+m2 ,
[
hn2, y

m
2

] = −2yn+m2 ,
[
hn2, x

m
3

] = 2xn+m3 ,[
hn2, y

m
3

] = −2yn+m3 ,
[
xn1 , x

m
2

] = xn+m3 ,
[
xn1 , x

m
3

] = xn+m2 ,[
yn1 , y

m
2

] = −yn+m+1
3 ∓ yn+m2 ,

[
yn1 , y

m
3

] = ±yn+m3 ,
[
xn1 , y

m
1

] = hn+m1 ,[
xn1 , y

m
2

] = −yn+m3 ,
[
xn1 , y

m
3

] = −yn+m2 ,
[
xn2 , y

m
1

] = ±xn+m2 ,[
xn2 , y

m
2

] = 3hn+m+1
2 − 2hn+m1 ∓ 4xn+m1 ,

[
xn2 , y

m
3

] = ∓6hn+m2 + 4yn+m1 ,
[
xn3 , y

m
1

] = −xn+m+1
2 ∓ xn+m3 ,[

xn3 , y
m
2

] = 4xn+m+1
1 − 4yn+m1 ∓ 6hn+m2 ,

[
xn3 , y

m
3

] = 3hn+m+1
2 + 2hn+m1 ∓ 4xn+m1 .

A subset of (36) with n ≥ 0 form a basis of the subalgebra sl
D
A
3
(3,C; 0), while

elements with n < 0 are a basis of the subalgebra sl
D
A
3
(3,C;�), and it follows from

the above commutation relations that algebra sl
D
A
3
(3,C; 0,�) is a direct sum of these

subalgebras.
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3.2.2. Case B. Inner and outer automorphisms representation. Reduction groups D
B
2

and D
B
N with N > 2 yield different automorphic Lie algebras and we consider these

sub-cases separately. In both sub-cases we shall use a primitive automorphic function
f = λN + λ−N .

Case B,G = D
B
2 : The action of the reduction groupG = D

B
2 can be generate by two

transformations

gs : a(λ) → Qsa(−λ)Q−1
s , gt : a(λ) → −atr (1/λ) , (37)

where Qs = diag (−1,−1, 1). Indeed, these transformations generate the group D2,
it is easy to check that g2

s = g2
t = (gsgt )

2 = id . If one ignores the λ transforma-
tions (i.e. takes π2 natural projection), then the first transformation in (37) is an inner
automorphism of algebra sl(3,C), while the second one is an outer automorphism.

The corresponding automorphic Lie algebra sl
D
B
2
(3,C; 0, exp(iπ/4)) has a basis of

the form (36) where

x0
1 = 〈2e12〉DB2 = e12 − e21 , y0

1 = 〈2e21λ
−2〉

D
B
2

= λ−2e21 − λ2e12 ,

x0
2 = 〈2e23λ

−1〉
D
B
2

= λ−1e23 − λe32 , y
0
2 = 〈2e32λ

−1〉
D
B
2

= λ−1e32 − λe23 ,

x0
3 = 〈2e13λ

−1〉
D
B
2

= λ−1e13 − λe31 , y
0
3 = 〈2e31λ

−1〉
D
B
2

= λ−1e31 − λe13 ,

(38)

h0
1 = 〈2(e11 − e22)λ

−2〉
D
B
2

= (λ−2 − λ2)(e11 − e22) ,

h0
2 = 〈2(e22 − e33)λ

−2〉
D
B
2

= (λ−2 − λ2)(e22 − e33) .

The nonvanishing commutation relations of the automorphic Lie algebra sl
D
B
2
(3,C; 0,

expπi/4) are
[
hn1, x

m
1

] = 2xn+m+1
1 + 4yn+m1 ,

[
hn1, y

m
1

] = −2yn+m+1
1 − 4xn+m1 ,

[
hn1, x

m
2

] = −xn+m+1
2 − 2yn+m2 ,[

hn1, y
m
2

] = yn+m+1
2 + 2xn+m2 ,

[
hn1, x

m
3

] = xn+m+1
3 + 2yn+m3 ,

[
hn1, y

m
3

] = −yn+m+1
3 − 2xn+m3 ,[

hn2, x
m
1

] = −xn+m+1
1 − 2yn+m1 ,

[
hn2, y

m
1

] = yn+m+1
1 + 2xn+m1 ,

[
hn2, x

m
2

] = 2xn+m+1
2 + 4yn+m2 ,[

hn2, y
m
2

] = −2yn+m+1
2 − 4xn+m2 ,

[
hn2, x

m
3

] = xn+m+1
3 + 2yn+m3 ,

[
hn2, y

m
3

] = −yn+m+1
3 − 2xn+m3 ,[

xn1 , y
m
1

] = hn+m1 ,
[
xn1 , y

m
2

] = yn+m3 ,
[
xn1 , y

m
3

] = −yn+m2 ,[
xn1 , x

m
2

] = xn+m3 ,
[
xn1 , x

m
3

] = −xn+m2 ,
[
xn2 , y

m
1

] = −yn+m3 ,[
xn2 , y

m
2

] = hn+m2 ,
[
xn2 , y

m
3

] = yn+m1 ,
[
xn2 , x

m
3

] = xn+m1 ,[
xn3 , y

m
1

] = −xn+m+1
2 − yn+m2 ,

[
xn3 , y

m
2

] = xn+m+1
1 + yn+m1 ,

[
xn3 , y

m
3

] = hn+m2 + hn+m1 ,[
yn1 , y

m
2

] = −yn+m+1
3 − xn+m3 ,

[
yn1 , y

m
3

] = −xn+m2 ,
[
yn2 , y

m
3

] = xn+m1 .

Case B, G = D
B
3 : The action of the reduction group G = D

B
3 can be generated by

transformations

gs : a(λ) → Qsa(ω
−1λ)Q−1

s , gt : a(λ) → −atr (1/λ) , (39)

where Qs = diag (ω, ω2, 1).
A basis of the algebra sl

D
B
3
(3,C; 0, expπi/6) has the form (36) where

x0
1 = 〈2e12λ

−2〉
D
B
3

= λ−2e12 − λ2e21 , y0
1 = 〈2e21λ

−1〉
D
B
3

= λ−1e21 − λe12 ,

x0
2 = 〈2e23λ

−2〉
D
B
3

= λ−2e23 − λ2e32 , y0
2 = 〈2e32λ

−1〉
D
B
3

= λ−1e32 − λe23 ,

x0
3 = 〈2e13λ

−1〉
D
B
3

= λ−1e13 − λe31 , y0
3 = 〈2e31λ

−2〉
D
B
3

= λ−2e31 − λ2e13 ,

(40)
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h0
1 = 〈2(e11 − e22)λ

−3〉
D
B
3

= (λ−3 − λ3)(e11 − e22) ,

h0
2 = 〈2(e22 − e33)λ

−3〉
D
B
3

= (λ−3 − λ3)(e22 − e33) .

The non-vanishing commutation relations of the automorphic Lie algebra sl
D
B
3
(3,C; 0,

expπi/6) are
[
hn1, x

m
1

] = 2xn+m+1
1 + 4yn+m1 ,

[
hn1, y

m
1

] = −2yn+m+1
1 − 4xn+m1 ,

[
hn1, x

m
2

] = −xn+m+1
2 − 2yn+m2 ,[

hn1, y
m
2

] = yn+m+1
2 + 2xn+m2 ,

[
hn1, x

m
3

] = xn+m+1
3 + 2yn+m3 ,

[
hn1, y

m
3

] = −yn+m+1
3 − 2xn+m3 ,[

hn2, x
m
1

] = −xn+m+1
1 − 2yn+m1 ,

[
hn2, y

m
1

] = yn+m+1
1 + 2xn+m1 ,

[
hn2, x

m
2

] = 2xn+m+1
2 + 4yn+m2 ,[

hn2, y
m
2

] = −2yn+m+1
2 − 4xn+m2 ,

[
hn2, x

m
3

] = xn+m+1
3 + 2yn+m3 ,

[
hn2, y

m
3

] = −yn+m+1
3 − 2xn+m3 ,[

xn1 , y
m
1

] = hn+m1 ,
[
xn1 , y

m
2

] = −xn+m3 ,
[
xn1 , y

m
3

] = −yn+m+1
2 − xn+m2 ,[

xn1 , x
m
2

] = xn+m+1
3 + yn+m3 ,

[
xn1 , x

m
3

] = yn+m2 ,
[
xn2 , y

m
1

] = xn+m3 ,[
xn2 , y

m
2

] = hn+m2 ,
[
xn2 , y

m
3

] = yn+m+1
1 + xn+m1 ,

[
xn2 , x

m
3

] = −yn+m1 ,[
xn3 , y

m
1

] = −xn+m2 ,
[
xn3 , y

m
2

] = xn+m1 ,
[
xn3 , y

m
3

] = hn+m2 + hn+m1 ,[
yn1 , y

m
2

] = −yn+m3 ,
[
yn1 , y

m
3

] = +yn+m2 ,
[
yn2 , y

m
3

] = −yn+m1 .

It follows from the commutation relations that the automorphic Lie algebra sl
D
B
2
(3,C;

0, expπi/4) (similarly sl
D
B
3
(3,C; 0, expπi/6)) is a direct sum of two subalgebras

sl
D
B
2
(3,C; 0) and sl

D
B
2
(3,C; expπi/4) (correspondingly sl

D
B
3
(3,C; 0) and sl

D
B
3
(3,C;

expπi/6)). Basis elements with non-negative upper index form a basis of sl
D
B
2
(3,C; 0)

(sl
D
B
3
(3,C; 0)), while elements with negative index are a basis of sl

D
B
2
(3,C; expπi/4)

(sl
D
B
3
(3,C; expπi/6)). This algebra does not have constant (λ independent) elements.

3.3. Automorphic Lie algebras corresponding to twisted (λ-dependent) automorphisms.
In the previous sections we assumed that elements of the group Aut A do not depend
on the complex parameter λ. The group Aut A is a continuous Lie group and we can
admit that some of its elements depend on λ. In this case, the transformations of a reduc-
tion group G can be represented by pairs (σ, ψ(λ)), where the first element of the pair
is a fractional-linear transformation of the complex plane λ while the second entry is
a “λ–dependent” automorphism of the Lie algebra A. To treat this case one needs to
generalise the direct product of groups to the semi-direct product of groups [18, 19]:

Definition 3.5. Let G1 , G2 be two groups and φ be a homomorphism of G1 into the
group of automorphisms of G2, denoted by AutG2. Then G1 × G2 with the product
defined by

(x, y) · (x1, y1) = (x · x1, y · φ(x)y1)

is a group called the semi-direct product and denoted by G1 ×φ G2.

When the homomorphism φ : G1 → AutG2 is such that φ(x) is the identity (i.e.
φ(x)y = y, ∀x ∈ G1,∀y ∈ G2), then we obtain the direct product. It is easy to verify
thatH1 = {id}×φG2 = {(id, x) | x ∈ G2} is a normal subgroup ofG1 ×φG2, while the
subgroup H2 = G1 ×φ {id} = {(x, id) | x ∈ G1} is not necessarily normal. Therefore
Theorem 2.4 is not valid for the semi-direct product.

The composition rule for “λ dependent” elements of a reduction group is similar to
the rule for a semi-direct product of the groups Aut R(�) and Aut A. Indeed, it is easy
to show that

(σ2, ψ2(λ)) · (σ1, ψ1(λ)) = (σ2·σ1, ψ2(λ)·σ2(ψ1(λ))) = (σ2 · σ1, ψ2(λ)·ψ1(σ
−1
2 (λ))).
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In this case the homomorphism φ : Aut R(�) → Aut (Aut A) is the corresponding
fractional linear transformation of parameter λ.

Let us consider a nontrivial example of a reduction group D
λ
3

∼= D3 with λ dependent
automorphisms of sl(3,C) and the corresponding infinite dimensional automorphic Lie
algebra. Let D

λ
3 be a group of transformations generated by

gs : a(λ) → Qa(ω−1λ)Q−1 ,

gt : a(λ) → −T (λ)atr (λ−1)T −1(λ) , a(λ) ∈ sl(3,C),

where

Q =

ω 0 0

0 ω2 0
0 0 1


 , T (λ) = λ3

1 − λ6


 1 λ2 λ−2

λ−2 1 λ2

λ2 λ−2 1


 , T −1(λ) =


 0 λ−1 −λ

−λ 0 λ−1

λ−1 −λ 0


.

It is easy to check that g3
s = id . Also one can check that g2

t = id . Indeed, since
T (λ)(T −1(λ−1))tr = −I we have

gt · gt : a(λ) → −T (λ)
(
−T (λ−1)atr (λ)T −1(λ−1)

)tr
T −1(λ)

= T (λ)(T −1(λ−1))tr a(λ)(T (λ−1))trT −1(λ) = a(λ).

Similarly, one can check that gs · gt · gs · gt = id . Thus, the group D
λ
3

∼= D3.
Let us describe the space of D

λ
3 invariant 3×3 matrices with rational entries in λ and

with simple, double and third order poles at points {0,∞}. Matrix a(λ) is D
λ
3 invariant

if and only if

a(λ) = Qa(ω−1λ)Q−1 , a(λ) = −T (λ)atr (λ−1)T −1(λ) . (41)

Proposition 3.6. The zero matrix is the only constant and D
λ
3 invariant. If a matrix is

rational in λ with poles at {0,∞} and D
λ
3 invariant, then it can be uniquely represented

as a linear combination of:

1. in the case of simple poles

x1(λ) = e12λ
−1 − e13λ , x2(λ) = e23λ

−1 − e21λ , x3(λ) = e31λ
−1 − e32λ ;

(42)

2. in the case of double poles

y1(λ) = [x2(λ), x3(λ)] , y2(λ) = [x3(λ), x1(λ)] , y3(λ) = [x1(λ), x2(λ)] ,
(43)

and xi(λ) listed in (42);
3. in the case of third order poles

z1(λ) = [x1(λ), y1(λ)] , z2(λ) = [x2(λ), y2(λ)] , z3(λ) = (λ3 − λ−3)I , (44)

and xi(λ) , yi(λ) listed in (42), (43).
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Proof. If matrix a is constant, then it follows from the first condition (41) that a is diag-
onal. The second condition means that the constant, diagonal matrix a anti-commutes
with T (λ), which is impossible if a �= 0. If the matrix a(λ) has simple poles at {0,∞},
it can be represented as a(λ) = a0 + λa+ + λ−1a−, where a0, a± are constant complex
matrices. From the first condition (41) it follows that

a(λ) =

 a11 λ−1a12 λa13

λa21 a22 λ−1a23
λ−1a31 λa32 a33


 , aij ∈ C.

The second condition (41) can be rewritten as a(λ)T (λ) + T (λ)atr (λ−1) = 0 and it is
equivalent to a system of linear, homogeneous equations for constant entries aij . This
system has three nontrivial solutions which can be written in the form (42). In the case of
second order poles we represent a(λ) as a0 +λa++λ−1a−+λ2b++λ−2b−. Conditions
(41) yield a system of linear equations for the constant matrices a0, a±, b±, whose gen-
eral solution can be written in the form a(λ) = ∑3

i=1 αiyi(λ) + βixi(λ) , αi, βi ∈ C.
The case of third order poles can be treated similarly. ��
Proposition 3.7. 1. The set

{xni = xi(λ)f
n , yni = yi(λ)f

n , hnj

= zj (λ)f
n | i ∈ {1, 2, 3}, j ∈ {1, 2}, n ∈ Z , f = λ3 + λ−3}, (45)

is a basis of the automorphic Lie algebra sl
D
λ
3
(3,C; 0, exp(πi/6)).

2. sl
D
λ
3
(3,C; 0, exp(πi/6)) is a direct sum of two subalgebras sl

D
λ
3
(3,

C; 0) and sl
D
λ
3
(3,C; exp(πi/6)).

3. The subsets {xni , yni , znj | n ≥ 0} and {xni , yni , znj | n < 0} of the set (45) are bases of
subalgebras sl

D
λ
3
(3,C; 0) and sl

D
λ
3
(3,C; exp(πi/6)), respectively.

4. sl
D
λ
3
(3,C; 0) is generated by x1(λ), x2(λ) and x3(λ).

Proof. The proof of the first statement of the proposition is similar to the proofs of
Proposition 3.1 and Proposition 3.3. The proof of the rest follows from the commutation
relations for the basis elements of the algebra

[xni , x
m
j ] = εijky

n+m
k , [yni , y

m
j ] = −εijk(xn+m+1

k − yn+mi − yn+mj ),

[xni , y
m
j ] = −2εijkx

n+m
i , i �= j, (46)

[xn1 , y
m
1 ] = hn+m1 , [xn2 , y

m
2 ] = hn+m2 , [xn3 , y

m
3 ] = −hn+m1 − hn+m2 , (47)

[hn2, h
m
1 ] =

3∑
k=1

(xn+m+1
k − 2yn+mk ), [hni , x

m
i ] = 2xn+m+1

i , i = 1, 2 , (48)

[
hn1, y

m
1

] = −hn+m1 − 2hn+m2 + 2(xn+m2 + xn+m3 − yn+m+1
1 ) ,[

hn2, y
m
2

] = 2hn+m1 + hn+m2 + 2(xn+m1 + xn+m3 − yn+m+1
2 ) ,

(49)
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[hni , x
m
j ] = −xn+m+1

j + yn+mi − |εijk|yn+mk ,

[hni , y
m
j ] = −yn+m+1

j − 2xn+mi − εijkh
n+m
i , i �= j. (50)

Elements with non-negative upper index form a closed D
λ
3–automorphic subalge-

bra and they have poles at points {0,∞}. This subalgebra is generated by x0
i = xi(λ).

Indeed, y0
i can be found from (46), h0

i from (47), x1
i , y

1
i from (49), etc.

Elements with negative upper index also form a closed subalgebra; they have poles

at the points of the orbit {exp
(
(2n+1)πi

6

)
| n = 1, . . . , 6} and are regular elsewhere. ��

Algebra sl
D
λ
3
(3,C; 0) has been discovered in [11], but its automorphic nature and the

reduction group was not known until now. It is not difficult to show that no λ independent
reduction group exists which corresponds to sl

D
λ
3
(3,C; 0).

A. Appendix. Finite Groups of Fractional-Linear Transformations, Their Orbits
and Primitive Automorphic Functions

The group ZN . The group ZN can be represented by the following transformations:

σn(λ) = �nλ , � = exp

(
2πi

N

)
, n = 0, 1, . . . , N − 1 . (51)

It has two degenerated orbits ZN(0) = {0}, ZN(∞) = {∞} corresponding to two fixed
points of order N and a generic orbit ZN(γ ) = {γ,�γ,�2γ, . . . , �N−1γ } , γ �∈
{0,∞}. A primitive automorphic function, corresponding to the orbits ZN(0), ZN(∞)

is

fZN
(λ,∞, 0) = λN .

It follows from (4)–(6) that for γ1 �= ∞ and γ2 �∈ ZN(γ1),

fZN
(λ, γ1, γ2) = λN − γN2

λN − γN1

.

The dihedral group DN . The group DN has order 2N and can be generated by the
following transformations:

σs(λ) = �λ , σt (λ) = 1

λ
, � = exp

(
2πi

N

)
. (52)

Transformations σs, σb satisfy the relations σNs = σ 2
t = (σsσt )

2 = id and

DN = {σns , σ ns σt | n = 0, . . . , N − 1} .
For N ≥ 3 the group DN is non-commutative, the case N = 2 is special, in this case

D2 ∼= Z2 ×Z2 and it is commutative. F. Klein calls it the quadratic group (some authors
call D2 the Klein group).

The group DN has three degenerated orbits and one generic orbit. The structure of
the orbits is different for odd and even N . For odd N we have:
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DN(0) = {0,∞} , (53)

DN(1) = { 1, �, . . . , �N−1} , (54)

DN(−1) = { −1,−�, . . . ,−�N−1} , (55)

DN(γ ) = { γ ,�γ , . . . , �N−1γ , γ−1 , �γ−1 , . . . , �N−1γ−1} . (56)

For even N orbits DN(1) and DN(−1) coincide and instead of (55) we have the orbit

DN(i) = { i, i�, . . . , i�N−1} . (57)

The orbit (53) consists of fixed points of order N . Orbits (54), (55), (57) consist of
fixed points of order 2 (they correspond to the vertices of the dihedron or to the mid-
dles of the edges, i.e. vertices of the dual dihedron). A primitive automorphic function,
corresponding to the orbits DN(0), DN(1) is

fDN
(λ, 0, 1) = λN + λ−N − 2 .

The tetrahedral group T. The group of a tetrahedron T has order 12 and can be generated
by two transformations

σs(λ) = −λ , σt (λ) = λ+ i

λ− i
.

It is easy to check that σ 2
s = σ 3

t = (σsσt )
3 = id and

T = {σnt , σ nt σsσmt | n,m = 0, 1, 2} .
The group T has four distinct orbits. The orbit corresponding to a generic point γ is a
set of 12 points

T(γ ) =
{
±γ,±γ−1,±i γ + 1

γ − 1
,±i γ − 1

γ + 1
,±γ + i

γ − i
,±γ − i

γ + i

}
.

Transformation σa has two fixed points of order two, namely {0,∞}, the corresponding
orbit consists of six points, which correspond to the middle of the edges of the tetrahedron

T(0) = {0,∞,±1,±i} . (58)

There are two orbits with fixed points of order 3. They correspond to the vertices of
the tetrahedron and the dual tetrahedron. Fixed points of the transformation σt can be
used as seeds for these orbits. It follows from γ = σt (γ ) that the fixed points are
γ1 = (1 + i)/(1 + √

3) = ω + iω̄ , γ2 = (1 + i)/(1 − √
3) = iω + ω̄, where

ω = exp(2πi/3) and therefore we have two orbits:

T(γ1) = {±(ω + iω̄),±(ω − iω̄)} , T(γ2) = {±i(ω + iω̄),±i(ω − iω̄)} . (59)

Points of the orbits T(γ1) and T(γ2) are roots of the equations λ4 +2(ω+ ω̄)λ2 +1 = 0
and λ4 − 2(ω + ω̄)λ2 + 1 = 0, respectively. A primitive automorphic function, corre-
sponding to orbits T(γ1), T(γ2) is

fT(λ, γ1, γ2) =
(
λ4 + 2(ω + ω̄)λ2 + 1

λ4 − 2(ω + ω̄)λ2 + 1

)3

.

It follows from (5) that

fT(λ, γ1, 0) = fT(λ, γ1, γ2)− 1 = 12(ω + ω̄)
λ2(λ4 − 1)2

(λ4 − 2(ω + ω̄)λ2 + 1)3
.
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The octahedral group O. The group of an octahedron O has order 24 and can be gen-
erated by two transformations,

σs(λ) = iλ , σt (λ) = λ+ 1

λ− 1
. (60)

It is easy to check that σ 4
s = σ 2

t = (σsσt )
3 = id and

O = {σns , σ ns σtσms , σ ns σtσ 2
s σt | n,m = 0, 1, 2, 3} .

The group O has also four distinct orbits corresponding to

i. the vertices of the octahedron (a fixed point of order 4 of the transformation σs
belongs to this orbit), therefore

O(0) = T(0) ;
ii. the centres of the triangular faces (i.e. vertices of the cube - the dual to the octahe-

dron); the point γ1, a fixed point of σt , belongs to this orbit, therefore

O(γ1) = T(γ1)
⋃

T(γ2) ;

iii. the middles of the edges of the octahedron

O(δ) = {±δ, ±δ̄, in(1 + δ + δ̄), in(1 − δ − δ̄) | n = 0, 1, 2, 3},
where δ = exp(πi/4) is one of the points on the middle of an edge of the octahe-
dron, for example a fixed point of the transformation λ → i/λ, which belongs to
the group generated by σs, σt (60));

iv. the orbit, corresponding to a generic point γ (i.e. γ does not belong to the above
listed orbits) is a set of 24 points

O(γ ) =
{
ikγ, ikγ−1, ik

γ + 1

γ − 1
, ik

γ − 1

γ + 1
, ik

γ + i

γ − i
, ik

γ − i

γ + i

}
, k ∈ {0, 1, 2, 3}.

A primitive automorphic function, corresponding to orbits O(0),O(γ1) is

fO(λ, 0, γ1)= (λ4 − 2(ω + ω̄)λ2 + 1)3(λ4 + 2(ω + ω̄)λ2 + 1)3

λ4(λ4 − 1)4
= (λ8 + 14λ4 + 1)3

λ4(λ4 − 1)4
.

The icosahedral group I. The group of the icosahedron I has order 60 and can be gen-
erated by two transformations

σs(λ) = ελ , σt (λ) = (ε2 + ε3)λ+ 1

λ− ε2 − ε3 , ε = exp

(
2πi

5

)
. (61)

Its generators satisfy the relations σ 5
s = σ 2

t = (σsσt )
3 = id and

I = {σns , σ ns σtσms , σ ns σtσ 2
s σtσ

m
s , σ

n
s σtσ

2
s σtσ

3
s σt | n,m = 0, 1, 2, 3, 4}.
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The group I has also four distinct orbits corresponding to
i. The vertices of the icosahedron (fixed points of order 5 of the transformation σs

belong to this orbit)

I(0) = {0,∞, εk+1 + εk−1, εk+2 + εk−2 | k = 0, 1, 2, 3, 4} .
The finite points of this orbit are all solutions of the equation λ(λ10 +11λ5 −1) = 0.

ii. The centres of the triangular faces (i.e. vertices of dodecahedron - the dual to the
icosahedron). The transformation

σ 2
s σtσ

2
s (λ) = (1 + ε̄)λ+ 1

λ− 1 − ε

is of order 3 and it has fixed points

γ1 =
3 + √

5 +
√

6(5 + √
5)

4
= 1 − ωε − ω̄ε̄ ,

γ2 =
3 + √

5 −
√

6(5 + √
5)

4
= 1 − ω̄ε − ωε̄

(here ω = exp(2πi/3)). The corresponding orbit I(γ1) consists of 20 points; these
points are solutions of the equation [2]

λ20 − 228λ15 + 494λ10 + 228λ5 + 1 = 0 .

iii. The middles of the edges of the icosahedron correspond to the orbit I(i). The point
i is a fixed point of transformation σ 2

s σtσ
3
s σtσ

2
s σt (λ) = −1/λ. Points of this orbit

are solutions of the equation

λ30 + 522λ25 − 10005λ20 − 10005λ10 − 522λ5 + 1 = 0 .

iv. The orbit, corresponding to a generic point γ (i.e. γ does not belong to the above
listed orbits) is a set of 60 points

I(γ ) =
{
εnγ,

εn

γ
, εn

(ε3 + ε2)εmγ + 1

εmγ − ε3 − ε2 ,

−εn εmγ − ε3 − ε2

(ε3 + ε2)εmγ + 1
| n,m = 0, 1, 2, 3, 4

}
.

A primitive automorphic function, corresponding to orbits I(0), I(γ1) is

fI(λ, 0, γ1) = (λ20 − 228λ15 + 494λ10 + 228λ5 + 1)3

λ5(λ10 + 11λ5 − 1)5
.

It is easy to check that

fI(λ, 0, i) = fI(λ, 0, γ1)− fI(i, 0, γ1)

= (λ30 + 522λ25 − 10005λ20 − 10005λ10 − 522λ5 + 1)2

λ5(λ10 + 11λ5 − 1)5
.
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