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Abstract
We discuss the algebraic and analytic structure of rational Lax operators. With
algebraic reductions of Lax equations we associate a reduction group—a group
of automorphisms of the corresponding infinite-dimensional Lie algebra. We
present a complete study of dihedral reductions for sl(2, C) Lax operators with
simple poles and corresponding integrable equations. In the last section we
give three examples of dihedral reductions for sl(N, C) Lax operators.

PACS numbers: 02.30.Ik, 02.30.Jr, 02.30.Zz

1. Introduction

The inverse spectral transform method (IST) for integrating nonlinear partial differential
equations (PDEs) is based on the Lax representation (see for example [1–3]). In this setting,
the nonlinear equation is equivalent to the compatibility condition of a pair of linear equations,
called a Lax pair. In general, given an integrable nonlinear equation, there is no algorithmic
way to find its Lax representation. Some progress in the problem of finding a Lax representation
for a given nonlinear equation has been made by the Wahlquist and Estabrook method of
pseudo-potentials and prolongation structures [4–6]. In some cases the Painlevé approach
provides both integrability conditions and Lax representation (see for example [7]).

A different approach to this problem consists in starting from a quite general Lax
representation which yields to a rather big (but integrable) system of equations. In general,
such a system has too many degrees of freedom and is very complicated. However, it can
contain smaller subsystems, relevant for applications: many famous integrable equations (such
as the sine-Gordon equation and the Tzetseica equation) are indeed the result of reductions
of more general integrable systems. This observation suggests the study and classification of
possible Lax representations and their reductions.

The first attempt to study algebraic reductions of Lax representations has been made in
[8–10] and later in [11]. The principal observation in the papers [8, 9] was that reductions
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of integrable equations can be associated with a discrete symmetry group (called a reduction
group) of the corresponding linear problems. The simplest example of such a symmetry is the
conjugation for self-adjoint operators.

In this paper, which is meant to be the first of a series, we report new developments of
this approach. The paper is organized as follows. In section 2 we revisit the concept of Lax
representation and its reductions. We define a quite general family of Lax operators with
rational dependence on the spectral parameter λ, on a simple Lie algebra g. In section 3 we
study reductions of integrable equations corresponding to rational Lax pairs, with simple poles
in λ and g = sl(2, C). Section 4 concentrates on the study of possible reductions of a fairly
general Lax pair whose underlying algebra is g = sl(N, C). In both sections, reductions are
obtained using realizations of the reduction group isomorphic to the dihedral group DN . Some
of the systems of equations obtained in these sections are new, to the best of our knowledge.
Section 5 is devoted to conclusions and remarks.

2. Lax representation of integrable systems

Let us start this preliminary section reviewing the concept of Lax representation of an integrable
system. Here and afterwards subscripts mean partial differentiation.

2.1. Example of a rational matrix Lax pair and gauge transformations

Let us consider two linear equations

Lψ = ψx − Q(x, t)ψ = 0, Mψ = ψt − P(x, t)ψ = 0, (1)

where ψ,Q and P are N × N matrix functions of x and t. This is an over-determined system
of equations and its compatibility condition

Qt − Px + [Q,P ] = 0 (2)

is equivalent to a system of nonlinear partial differential equations (PDEs). Its general solution
is given by

Q = gxg
−1, P = gtg

−1,

where g = g(x, t) is any nonsingular matrix function of x and t. The same problem becomes
nontrivial if one assumes that the matrices Q and P depend also on an auxiliary parameter λ,
called spectral parameter, and are polynomial or rational functions of this parameter. As a
consequence, equation (2) has to be satisfied for all values of λ and this requirement leads to a
nontrivial system of integrable, partial differential equations. In the latter case, one has to solve
a certain matrix Riemann–Hilbert problem to find a suitable matrix function g(x, t, λ), which
would provide the solution of the system (see for example [1, 12, 13]). In order to receive a
nontrivial set of nonlinear equations integrable by the IST method an essential dependence of
Q and P in (2) on the spectral parameter λ is required, where essential dependence on λ means
that it cannot be eliminated by a λ dependent gauge transformation (see below).

As an example, let us consider the case of Q and P given by

Q = Q0 +
N1∑
n=1

Qn

λ − an

, P = P0 +
N2∑
n=1

Pn

λ − bn

, (3)

where it is assumed that the sets of complex constants {a1, . . . , aN1 | an ∈ C} and
{b1, . . . , bN2 | bn ∈ C} have empty intersection and the matrix-coefficients Qn, Pn may
depend on x and t only. Here and hereafter λ ∈ C. Under these assumptions the compatibility
condition (2) leads, for any λ, to a system of N1 + N2 + 1 equations
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Q0t − P0x + [Q0, P0] = 0 (4)

Qnt +

[
Qn, P0 +

N2∑
m=1

Pm

an − bm

]
= 0 (5)

Pnx +

[
Pn,Q0 −

N1∑
m=1

Qm

an − bm

]
= 0 (6)

for N1 + N2 + 2 functions, i.e. the system obtained is under-determined. Lax representations
of this type and their reductions will be studied in section 3.

The system of equations (4)–(6) is invariant with respect to the transformations

Q → g−1Qg − g−1gx, P → g−1Pg − g−1gt , (7)

where g is any nonsingular matrix function of x and t (in principle it may depend on the spectral
parameter λ, but in this section we shall assume g = g(x, t)). These transformations are called
gauge transformations [12, 14]. In terms of matrices Qn and Pn the gauge transformation (7)
takes the form

Q0 → g−1Q0g − g−1gx, P0 → g−1P0g − g−1gt ,
(8)

Qn → g−1Qng, Pn → g−1Png,

where n � 1. There are several ways to fix the gauge. The natural or canonical choice [12] is
to set Q0 = P0 = 0. This is possible because the equations

Q0g − gx = 0, P0g − gt = 0

are compatible and their compatibility condition coincides with (4). In this gauge, the system
becomes a well determined system of N1 + N2 matrix equations (5), (6) for N1 + N2 matrix
functions Qn, Pn, n � 1. Another useful way to fix the gauge is to assume that the matrix
Q1 is in a canonical (for instance diagonal) form. If the eigenvalues of Q1 are distinct, then
the remaining gauge freedom, i.e. transformations (8) which do not change Q1, consists of
nonsingular diagonal matrices g. This remaining freedom can be used to make the matrix Q0

off-diagonal. Such choice of the gauge is called the pole gauge [12] and it also provides a
well determined system of equations.

The nature of the gauge transformations is obvious: the compatibility condition (2) is the
commutativity condition of two linear differential operators

L = ∂x − Q, M = ∂t − P.

If the operators L and M commute ([L,M] = 0), then the transformed operators

L̂ = g−1Lg, M̂ = g−1Mg (9)

also commute. Transformations of the form

L̂ = −h−1LAh, M̂ = −h−1MAh, (10)

where LA = −∂x + Qtr,MA = −∂x + P tr stand for formally adjoint operators and ‘tr’ stands
for matrix transposition, are also gauge transformations. Gauge transformations form a group,
the gauge group.

In the gauge transformations (9), (10) the invertible matrices g, h may depend on x, t, λ

or even be differential or pseudo-differential matrix operators. The Miura and Bäcklund
transformations can be viewed as special kind of gauge transformations.



7730 S Lombardo and A V Mikhailov

2.2. Lax representations and Lie algebras

Equations (4)–(6) are naturally defined on any Lie algebra g. Indeed, if Qn, Pn ∈ g, then
all commutators and derivatives also belong to g. Let g be a finite-dimensional Lie algebra
over C. It is easy to see that only simple algebras are related to coupled nonlinear equations.
Indeed, according to the Levi–Maltsev theorem [15], any finite dimensional Lie algebra g over
C can be decomposed as a direct sum

g = R ⊕ S
where R is a solvable radical of g and S is a semi-simple subalgebra. The semi-simple
subalgebra S, if nontrivial, is a sum of simple subalgebras

S = ⊕Sk

and the following commutation relations hold:

[R,R] ⊂ R, [Sk,R] ⊂ R, [SkSn] = δk,nSk.

If we decompose Q and P in (2) according to the Levi–Maltsev decomposition theorem

Q = QR +
∑

QSk
, P = PR +

∑
PSk

,

we obviously receive

∂tQSk
− ∂xPSk

+ [QSk
, PSk

] = 0 (11)

∂tQR − ∂xPR + [QR, PR] +
[
QR,

∑
PSk

]
+

[∑
QSk

, PR

]
= 0. (12)

We see that equations (11), corresponding to the semi-simple part, can be treated separately
from the rest of the system and there is no coupling between equations corresponding to
different simple subalgebras. It is easy to show that, in the radical R, one can choose a
basis in which the system of equations (12) becomes ‘triangular’, i.e. it is an ordered chain
of equations such that each equation in this chain is a linear equation with respect to its own
dependent variable and with coefficients and an inhomogeneous part depending on variables
of the preceding equations and variables corresponding to the semi-simple part. Therefore,
the problem of integration of the whole system is reduced to the integration of a closed system
of the nonlinear equations (11) and then to the integration of a chain of linear equations (12)
with variable coefficients.

In this paper we focus our attention on the study of nonlinear equations and therefore we
shall always assume that the underlying algebra g is simple (or semi-simple).

2.3. General rational Lax operators

In this section we define a quite general family of Lax operators with rational dependence
on the spectral parameter λ. Let g be a finite-dimensional simple Lie algebra over C and let
{g1, . . . , gN } be a basis of g

[gi , gj ] =
N∑

r=1

Cr
ijgr , Cr

ij ∈ C. (13)

Let X = {x1, x2, . . .} be a set of independent variables (in the previous example (1)
we used x and t variables). With every variable xk we associate a divisor of poles
�k = m1 · γ1 + · · · + mn · γn, i.e. a finite set of points �̂k = {γ1, . . . , γn} on the Riemann
sphere together with their multiplicities m1, . . . , mn ∈ N. Let L(�k) denote a linear space of
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rational functions of the spectral parameter λ such that the only singularities of these functions
are poles at the points of the divisor with multiplicity equal or less than the multiplicity of
the point. The dimension of this linear space dimL(�k) is Mk = m1 + · · · + mn + 1. Let
ek

1(λ), . . . , ek
Mk

(λ) be a basis in L(�k).
With xk, �k and g we associate the general Lax operator

Lk = d

dxk

−
N∑

r=1

Mk∑
β=1

gre
k
β(λ)uk

rβ, (14)

where uk
rβ are smooth functions of variables X in a certain open domain, and if the set X is

infinite, we assume that every function depends on a finite number of variables only. A set of
such functions is denoted by F .

The Lax operator Lk is parametrized by N × Mk functions uk
rβ . Any two Lax operators

Lk,Ls form a Lax pair. The commutativity condition [Lk,Ls] = 0 is equivalent to an
integrable (by the spectral transform method) system of partial differential equations for the
functions uk

rβ, us
r ′β ′ ∈ F .

In order to write this system of PDEs in explicit form we introduce a basis hks
α (λ), α =

1, . . . ,Mk + Ms − 1 in L(�k + �s) and expand elements ek
β(λ), es

β ′(λ) ∈ L(�k + �s) and the
products ek

β(λ)es
β ′(λ) ∈ L(�k + �s) in this new basis

ek
β(λ) =

Mk+Ms−1∑
α=1

Fkα
β hks

α (λ), es
β(λ) =

Mk+Ms−1∑
α=1

F sα
β hks

α (λ)

(15)

ek
β(λ)es

β ′(λ) =
Mk+Ms−1∑

α=1

Hksα
ββ ′ h

ks
α (λ), F kα

β , F sα
β ′ ,Hksα

ββ ′ ∈ C.

Thus we have
Mk∑
β=1

Fkα
β

∂uk
rβ

∂xs

−
Ms∑

β ′=1

F sα
β ′

∂us
rβ ′

∂xk

+
N∑

i,j=1

Mk,Ms∑
β=1,β ′=1

Cr
ijH

ksα
ββ ′ u

k
iβus

iβ ′ = 0, (16)

where r = 1, . . . , N and α = 1, . . . , Mk + Ms − 1.
Equation (16) is a system of nonlinear PDEs with constant coefficients. The system

contains partial derivatives in variables xk and xs only, and if we assume that functions uk
rβ, us

r ′β ′

depend on other variables from the set X we can treat these variables as parameters. The system
obtained is canonical, it is uniquely defined by the choice of a simple Lie algebra g and two
divisors �k and �s (in some cases the divisors may coincide, cf the Lax pair for the N-wave
equation [1]). Systems corresponding to a different choice of the basis of g,L(�k),L(�s)

and L(�k + �s) can be obtained from (16) by a linear invertible transformations of dependent
variables.

The system of equations (16) is under-determined, it contains N × (Mk + Ms − 1)

equations on N × (Mk + Ms) dependent variables. Indeed, on the Riemann sphere, we
have dimL(�k + �s) = dimL(�k) + dimL(�s) − 1 (if we consider a similar setup on an
algebraic curve with nonzero genus, then the genus would contribute in the accounting for the
dimensions of the corresponding linear spaces of rational functions on the curve [16]). The
difference between the number of dependent variables and the number of equations is equal to
the dimension of the Lie algebra g. Fixing the gauge we finally obtain a well posed problem.

If we have a family of Lax operators L1, . . . , Lk corresponding to divisors �1, . . . , �k ,
then the conditions [Li, Lj ] = 0, 1 � i < j � k yield an over-determined system of nonlinear
partial differential equations. A general solution and explicit exact partial solutions of this
system can be constructed by the spectral transform method.
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2.4. The problem of reduction and the reduction group

The integrable system (16) obtained in the previous section is very general. It looks too big
and may not resemble useful equations but, up to the best of our knowledge, all known (1 + 1)

dimensional systems of integrable partial differential equations are subsystems (reductions)
of (16). The problem to find and classify all subsystems of a general system is known as the
reduction problem.

Restrictions to subalgebras ĝ ⊂ g are obvious reductions of (16). For instance, in
the system of equations (4)–(6) one can consider all matrices to be skew-symmetric and
this is compatible with the dynamics since the commutator of skew-symmetric matrices is
skew-symmetric. With this reduction we associate the automorphism φ : a → −atr of
the Lie algebra sl(N, C). The set of all elements of sl(N, C) which are invariant with
respect to the automorphisms φ is obviously a subalgebra of skew-symmetric matrices
so(N) = {a ∈ sl(N, C) | a = φ(a)}. A complete description of automorphisms of finite-
dimensional semi-simple Lie algebras is well known (see for example [15]). In the case of
sl(N, C) automorphisms can be described as follows: for sl(2, C) all automorphisms are inner,
i.e. they can be represented as φ : a → G−1aG, where G ∈ SL(2, C). For sl(N, C), N > 2
the group of all automorphisms consists of inner φ : a → G−1aG and outer automorphisms
ψ : a → −H−1atrH,G,H ∈ SL(N, C).

Let R(�) be a ring of rational functions of variable λ with poles at points of � and
regular elsewhere. Fractional-linear transformations of the complex plane λ, which map
the divisor � into itself, induce automorphisms of the ring R(�). We denote by AutR(�)

the group of automorphisms of R(�). Any subgroup of GR ⊂ Aut g × AutR(�) is a
group of automorphisms of g(�) = g

⊗
C
R(�). The group GR is called reduction group.

Elements of the reduction group can be viewed as simultaneous automorphisms, i.e. Lie algebra
automorphisms and fractional-linear transformations of the spectral parameter λ. For example,
in the case sl(N, C), the action of elements of the reduction group GR can be represented either
as a(λ) → G−1a(σG(λ))G or as a(λ) → −H−1atr(σH (λ))H , where G,H ∈ SL(N, C) and
σG(λ), σH (λ) are the corresponding fractional-linear transformations of the λ plane.

The set gGR
(�) = {a ∈ g(�) | a = φ(a),∀φ ∈ GR} is a subalgebra of g(�), which

we shall call GR-automorphic subalgebra. The restriction of the general Lax operator to
the subalgebra gGR

(�) is a reduction, with reduction group GR . Restrictions to invariant
subalgebras are equivalent to require some symmetry conditions for the Lax operators. For
example, in the case sl(N, C) they lead to symmetry conditions of the form

Lk(λ) = G−1Lk(σG(λ))G, Lk(λ) = −H−1LA
k (σH (λ))H. (17)

Comparing with (9) and (10), we see that the operators are invariant with respect to
simultaneous gauge transformations3 and fractional-linear transformations of the spectral
parameter λ. The reduction group was originally introduced in [8, 9], our recent study of
its algebraic structure and the corresponding automorphic Lie algebras will be published
soon [17].

3. DN -reductions of Lax operators with simple poles, g = sl(2, C)

In this section we study dihedral reductions of integrable equations corresponding to rational
Lax pairs with simple poles in the spectral parameter λ and g = sl(2, C).

3 As we have already mentioned at the end of section 2.1 there are further generalizations when G and H are
coordinates and λ dependent or even (pseudo) differential operators. We do not consider such generalized reductions
in this paper.
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The dihedral group DN is the group of rotations and reflections of the plane which preserve
a regular polygon with N vertices. It contains N rotations, which form a normal subgroup
isomorphic to ZN and N reflections; its order is 2N . If we denote by s the rotation through an
angle 2π/N and if r is any of the reflections, then each element of the group can be written
uniquely either in the form sk or rsk, 0 � k � N − 1. In a more abstract way, the group DN

can be defined as the group generated by two elements, s and r, satisfying the identities

sN = r2 = id, rsr = s−1. (18)

In the case N = 2 the group D2 is Abelian and isomorphic to Z2 × Z2.
On the complex plane of spectral parameter λ the group DN can be generated by two

fractional-linear transformations

σs : λ → ωλ, σr : λ → λ−1, ω = exp(2iπ/N). (19)

If a divisor � is invariant with respect to transformations (19), it is a union of a finite
number of orbits of the group DN . The orbit of the group DN of a point γ is defined as the set
of points

DN(γ ) = {
σn

s (γ ), σrσ
n
s (γ )

∣∣ n = 1, 2, . . . N
}
.

When the point γ is generic, i.e. γ is not a fixed point of any (nontrivial) subgroup, the
corresponding generic orbit has 2N points

DN(γ ) = {γ, ωγ, ω2γ, . . . , ωN−1γ, γ −1, ωγ −1, ω2γ −1, . . . , ωN−1γ −1}. (20)

Fixed points of the group transformations (19) belong to degenerated orbits. There exists a
degenerated orbit with two elements

DN(0) = {0,∞} (21)

and two degenerated orbits with N elements. For odd N they are

DN(1) = {ωn | n = 1, 2, . . . , N}, DN(−1) = {−ωn | n = 1, 2, . . . , N}. (22)

For even N DN(1) = DN(−1) and the second orbit with N points is

DN(ω1/2) = {ωn+1/2 | n = 1, 2, . . . , N}. (23)

In the rest of this section we assume that N is odd.
With every orbit we associate a linear space of rational functions with simple poles

at the points of the orbit. Let γ be a generic point and DN(γ ) the corresponding generic
orbit. A natural way to construct a basis of rational functions in L(DN(γ )) is to start with
e0 = 1, e1 = 1/(λ − γ ) and apply all fractional-linear transformations of the group. As a
result we receive a basis of L(DN(γ ))

e0(λ) = 1, ek(λ) = 1

ωk−1λ − γ
, eN+k(λ) = 1

λ − ωk−1γ
, k = 1, 2, . . . , N.

This basis corresponds to the regular representation of the group DN . A regular representation
can be decomposed into a direct sum of irreducible representations. Such a decomposition
suggests another natural and useful basis of L(DN(γ ))

E
γ

0 = 1, E
γ

1 = λN + γ N

λN − γ N
+

1 + γ NλN

1 − γ NλN
, E

γ

2 = λN + γ N

λN − γ N
− 1 + γ NλN

1 − γ NλN
,

E
γ

4k−1 = λk

λN − γ N
, E

γ

4k = λN−k

1 − γ NλN
, E

γ

4k+1 = λk

1 − γ NλN
, E

γ

4k+2 = λN−k

λN − γ N
,

k = 1, . . . , N−1
2 .
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The general Lax operator corresponding to a generic orbit DN(γ ) is

Lγ (λ) = d

dxγ

−
2N+1∑
j=0

E
γ

j (λ)U
γ

j , (24)

where U
γ

j are 2×2 traceless matrix functions of independent variables (such as xγ ). Let Lµ(λ)

be another Lax operator, corresponding to another generic orbit DN(µ) and parametrized by
matrix functions U

µ

j . The condition [Lγ (λ), Lµ(λ)] = 0 leads to a nonlinear system of
4N + 1 matrix partial differential equations. We will reduce this huge system to a simple, well
determined system of six scalar partial differential equations.

Let a(λ) ∈ sl(2, C)
⊗

C
L(DN(γ )), i.e.

a(λ) =
2N+1∑
j=0

E
γ

j (λ)aj , aj ∈ sl(2, C),

and consider the following linear transformations

gs : a(λ) → S(h)−1a(σs(λ))S(h), gr : a(λ) → R−1a(σr(λ))R, (25)

where h is a fixed integer 1 � h � N−1
2 that enumerates all different irreducible representations

and

S = S(h) =
(

ω−h 0
0 ω+h

)
, R =

(
0 1
1 0

)
. (26)

The transformations gs and gr generate a linear representation of DN in the linear space
sl(2, C)

⊗
C
L(DN(γ )). It is easy to check that (25) generate a subgroup of the group of

automorphisms of Lie algebra sl(2, C)
⊗

C
R(DN(γ )). Let us consider invariant elements

of sl(2, C)
⊗

C
L(DN(γ )), i.e. elements a(λ) such that

S(h)−1a(σs(λ))S(h) = a(λ), R−1a(σr(λ))R = a(λ).

For every given h the subspace of invariant elements is three dimensional; a basis of this space
can be written as

Eγ

1 = E
γ

2

(
1 0
0 −1

)
, Eγ

2 =
(

0 E
γ

3

E
γ

4 0

)
, Eγ

3 =
(

0 E
γ

5

E
γ

6 0

)
,

where we fix h = (N − 1)/2 since the final result does not depend on the choice of the
representation. Thus the reduced (invariant with respect to DN reduction group (25)) Lax
operator can be written as

Lγ (λ) = d

dxγ

− q1Eγ

1 − q2Eγ

2 − q3Eγ

3 , (27)

where q1, q2, q3 are scalar functions of independent variables. If

Lµ(λ) = d

dxµ

− p1Eµ

1 − p2Eµ

2 − p3Eµ

3 (28)

is the second operator in the Lax pair, corresponding to another generic orbit DN(µ), then the
condition [Lγ ,Lµ] = 0 leads to a system of integrable equations

q1t + a(q2p3 − p2q3)/2 + b(q2p2 − q3p3)/2 = 0
q2t − 2βp1q2 + 4γ N(ap2 + bp3)q1 = 0
q3t + 2βp1q3 − 4γ N(ap3 + bp2)q1 = 0

p1x + a(q2p3 − p2q3)/2 + b(q2p2 − q3p3)/2 = 0
p2x + 2αq1p2 − 4µN(aq2 − bq3)p1 = 0
p3x − 2αq1p3 + 4µN(aq3 − bq2)p1 = 0

(29)
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where x = xγ , t = xµ and a, b, α, β are complex constants

a = (γ N − µN)−1, b = (1 − γ NµN)−1,

α = γ N + µN

γ N − µN
+

1 + γ NµN

1 − γ NµN
, β = γ N + µN

γ N − µN
− 1 + γ NµN

1 − γ NµN
.

Clearly equations (29) can be rescaled and written in a different form, however they depend on
parameters γ N and µN , that cannot be removed by simple rescaling. What is surprising is that
the resulting system does not depend on the choice of the representation. It does not depend on
N either! Indeed, equations corresponding to N, γ,µ coincide with equations corresponding
to N1, γ1, µ1, provided the conditions γ N = γ

N1
1 and µN = µ

N1
1 are satisfied. For the case

of even N we would receive equivalent equations, reflecting the fact that the corresponding
automorphic Lie algebras are isomorphic [17].

For the orbits DN(±1) the bases of L(DN(±1)) in which the representation are
decomposed in a direct sum of irreducible ones can be written as

F±
0 (λ) = 1, F±

1 (λ) = λN ± 1

λN ∓ 1
, F±

2k(λ) = λk

λN ∓ 1
,

F±
2k+1(λ) = λN−k

1 ∓ λN
, k = 1, . . . ,

N − 1

2
.

The corresponding DN invariant Lax operators are of the form

L±(λ) = d

dx±
− 1

2
u±

1 F±
1 (λ)

(
1 0
0 −1

)
− u±

2

(
0 F±

2 (λ)

F±
3 (λ) 0

)
,

where again we assume h = (N − 1)/2. The condition [L+, L−] = 0 leads in this case to a
rather simple system of equations

u+
2x− = u+

1u
−
2 , u−

2x+
= u−

1 u+
2, u+

1x− = u+
2u

−
2 , u−

1x+
= u+

2u
−
2 . (30)

It follows from (30) that

u+
2u

+
2x− = u+

1u
+
1x− , u−

2 u−
2x+

= u−
1 u−

1x+
,

therefore we can partially integrate the equations and introduce the variables φ and θ

u+
1 = f (x+) cosh φ, u+

2 = f (x+) sinh φ, u−
1 = g(x−) cosh θ, u−

2 = g(x−) sinh θ,

where f (x+) and g(x−) are two arbitrary functions (which can be set to be equal to 1 by a
conformal transformation of the independent variables). In terms of φ and θ equations (30)
are

φx− = g(x−) sinh θ, θx+ = f (x+) sinh φ. (31)

They are nothing but a well known form of Bäcklund transformation for the sinh-Gordon
equation. Indeed, equations (31) imply that

(θ + φ)x+x− = g(x−)f (x+) sinh(θ + φ)

(θ − φ)x+x− = g(x−)f (x+) sinh(θ − φ).
(32)

Let us take Lγ and L+ as a Lax pair. The condition [Lγ ,L+] = 0 is equivalent to the
following system of equations

u+
1xγ

= 1

γ N − 1
(q2 + q3)u

+
2 (33)

u+
2xγ

= − 2

γ N − 1
(q2 + q3)u

+
1 (34)
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q1x+ = 1

2(γ N − 1)
(q2 + q3)u

+
2 (35)

q2x+ = − 4γ N

γ N − 1
q1u

+
2 +

2(γ N + 1)

γ N − 1
q2u

+
1 (36)

q3x+ = − 4γ N

γ N − 1
q1u

+
2 − 2(γ N + 1)

γ N − 1
q3u

+
1 . (37)

It follows from (33), (34) that 2
(
u+

1

)2
+

(
u+

2

)2 = (f (x+))
2, where f (x+) is an arbitrary function

and therefore

u+
1 = f (x+) cos θ, u+

2 =
√

2f (x+) sin θ.

Now equations (33), (34) yield to

q2 + q3 = 1 − γ N

√
2

θxγ
.

In variables

θ, u = 2q1, v = − q2 − q3√
2(γ N + 1)

equations (33)–(37) take the form

ux+ = f (x+)(cos θ)xγ
, vx+ = f (x+)(sin θ)xγ

,

θx+xγ
= αf (x+)u sin θ + βf (x+)v cos θ, (38)

where

α = 8γ N

(γ N − 1)2
, β = 4

(
γ N + 1

γ N − 1

)2

.

Changing the variable x+ and rescaling xγ we can set f (x+) → 1, α → α̂ = α/β and β → 1.
The case of the orbit DN(0) = {0,∞} yields a reducible L0 operator

L0 = d

dx0
− p

(
0 λ

λ−1 0

)
, h = N − 1

2
.

For other values of h the operator is trivial. It is not surprising, since we have imposed the
condition that the poles are simple. The result becomes less trivial if we lift this condition
(see [17]).

If we take Lγ and L0 as Lax pair, the condition [Lγ ,L0] = 0 leads to

pxγ
= 4q1p, q1x0 = γ N

2
(q3 − q2), q2x0 = −4γ Nq1p, q3x0 = −4q1p. (39)

In the new variable u = log p, after simple rescaling and a proper coordinates change, the
system of equation (39) can be written as

uxγ x0 = eu

√
1 − (

uxγ

)2
.

The equation obtained is a well known example of the Liouville type equation [18].
Considering L± and L0 as Lax pair immediately leads to simple C-integrable system of
equations.

For all Lax operators considered in this section the gauge freedom is completely fixed
by the reduction group. Only scalar λ independent gauge transformations commute with all
elements of the reduction group.
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Equations (29) can be transformed into the Sokolov–Golubchik system [19, 20]


nt = 
n × A 
m, 
mx = 
m × B
n, (40)

where A and B are diagonal matrices, such that AB = Id, while equations (38) are a
new integrable system of equations, to the best of our knowledge, and may have interesting
geometrical applications.

4. Three examples of DN reductions, g = sl(N , C)

Let us consider a fairly general Lax pair

L(x, t; λ) = ∂x − X(x, t; λ), X = Q0 + Qλ + Q̄λ−1, (41)

M(x, t; λ) = ∂t − T (x, t; λ), T = P0 + Pλ + P̄ λ−1 + Q2λ2 + Q̄2λ−2, (42)

with Q0,Q, Q̄, P0, P , P̄ ∈ sl(N, C). Note that Q0 can always be set to zero by a gauge
transformation. In this setting, the compatibility condition (2) yields to the following set of
equations:

λ2: Q2
x = [Q,P ]

λ1: Qt − Px + [Q,P0] + [Q̄,Q2] = 0
λ0: P0,x = [Q, P̄ ] + [Q̄, P ]
λ−1: Q̄t − P̄ x + [Q̄, P0] + [Q, Q̄2] = 0
λ−2: Q̄2

x = [Q̄, P̄ ].

(43)

The system (43) is a system of (5(N2 − 1)) nonlinear coupled equations for the matrix
entries. The group of automorphisms of Lie algebra sl(N, C), N � 3 has both inner and outer
automorphisms, allowing more possibilities for the realization of the reduction group. Here
we consider three different reductions of this system with reduction group isomorphic to DN .

4.1. Case 1: inner and outer automorphisms

Let us consider two transformations

s: L(λ) �→ S−1L(ωλ)S, r: L(λ) �→ −LA(1/λ), (44)

where S is an N ×N matrix given by Sij = δi,jω
N−i , with ω = e2iπ/N , and where ‘LA’ stands

for formally adjoint operator LA = −∂x +Xtr. Observe that, neglecting the spectral parameter
λ, (44) are nothing but two automorphisms of the algebras sl(N, C); in particular, the first
one is an inner automorphism, while the second is outer [15]. They satisfy (18) and therefore
generate the dihedral group DN .

Let us now require that both operators L and M are invariant under (44). This leads to
algebraic constraints on the matrices X and T

X(λ) = S−1X(ωλ)S, X(λ) = −Xtr(1/λ),

T (λ) = S−1T (ωλ)S, T (λ) = −T tr(1/λ),
(45)

where ‘tr’ stands for matrix transposition, which imply

P0 = 0,

Q̄ = −Qtr, P̄ = −P tr,

Q = q(x, t)�, P = p(x, t)�,
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where qij = qi(x, t)δi,j and pij = pi(x, t)δi,j are diagonal matrices and where � is the shift
operator �ij = δi,j−1. Here and hereafter all indexes are counted modulo N. As a consequence,
(43) reduces to the following system of 2(N − 1) nonlinear coupled equations

Qt − Px + [Q̄,Q2] = 0 Q2
x = [Q,P ] (46)

or, in components,

qit − pix + qiq
2
i+1 − q2

i−1qi = 0 (47)

qipi+1 − piqi+1 − (qiqi+1)x = 0. (48)

Solutions of (48) can be parametrized by new variables ui and vi (similarly to [8]); indeed, let

qi = exp(ui), pi = vi exp(ui), (49)

then

vi = −
N∑

r=1

(
2 mod(i − r − 1, N) + 1 − N

2N

)
(ur + ur+1)x . (50)

In the new variables (47) reads

uit − vix − uixvi + exp(2ui+1) − exp(2ui−1) = 0, i = 1, . . . , N. (51)

In the case N = 3 and Q3 = I (or
∏

qi = 1), equation (46) can be solved explicitly

P = 1
3 [Q,QQxQ]. (52)

In components

p1 = 1
3q2

1 (q2q3x − q2xq3) p2 = 1
3q2

2 (q3q1x − q3xq1) p3 = 1
3q2

3 (q1q2x − q1xq2).

Hence, substituting pi into (47) and rewriting the equations in terms of ui variables we obtain

u1t = 1
3 (u3xx − u2xx) + 1

3u1x(u3x − u2x) − exp(2u2) + exp(2u3) (53)

and cyclic permutations of the indexes 1, 2, 3.

4.2. Case 2: inner automorphisms

Let us now turn our attention to a different symmetry conditions

L(λ) = S−1L(ωλ)S, L(λ) = R−1L(1/λ)R, (54)

where Rij = δi,N−j (all indexes are counted modulo N). Conditions (54) are simultaneous
inner automorphisms. In this case

(P0)ij = p0iδi,j ,

Q̄ = RQR, P̄ = RPR,

Q = q(x, t)�, P = p(x, t)�.

Hence (43) reduces to

Qt − Px + [Q,P0] + [Q̄,Q2] = 0 (55)

P0x = [Q, P̄ ] + [Q̄, P ] (56)

Q2
x = [Q,P ] (57)
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or, in components

qit = pix + p0iqi − qip0i+1 + qiqi+1qN−i−2 − qN−iqi−1qi (58)

p0ix = qipN−i−1 − piqN−i−1 + qN−ipi−1 − pN−iqi−1 (59)

qipi+1 − piqi+1 − (qiqi+1)x = 0 i = 1, . . . , N. (60)

For N = 3 we can use the result (52) for P to solve (56) and find

P0(x, t) = q2(x, t)q3(x, t) diag{1, 1,−2}. (61)

In ui variables (49), we obtain

u1t = 1
3 (u3xx − u2xx) + 1

3u1x(u3x − u2x)

u2t = 1
3 (u1xx − u3xx) + 1

3u2x(u1x − u3x) − exp(2u1) + 4 exp(u3 + u2)

u3t = 1
3 (u2xx − u1xx) + 1

3u3x(u2x − u1x) − 4 exp(u3 + u2) + exp(2u1).

(62)

4.3. Case 3: symplectic automorphisms

In even dimensions N = 2n we can consider a third case given by

L(λ) = S−1L(ωλ)S L(λ) = −J−1LA(1/λ)J (63)

where J is the symplectic matrix J = ( 0 I

−I 0

)
. From (63) it follows that P0 is a diagonal

matrix

P0 = diag{p01(x, t), . . . , p0n(x, t),−p01(x, t), . . . ,−p0n(x, t)}
while

Q =




0 q1 0 . . . 0
0 0 q2 . . . 0

0 0 0
. . . 0

0 0 0
. . . q2n−1

−q2n 0 . . . 0 0




P =




0 p1 0 . . . 0
0 0 p2 . . . 0

0 0 0
. . . 0

0 0 0
. . . p2n−1

−p2n 0 . . . 0 0




(64)

and

Q̄ = −J−1QtrJ P̄ = −J−1P trJ.

The equations for this case read

qit = pix + qip0i − p0i+1qi + qn+i−1qi−1qi − qiqi+1qn+i+1 (65)

p0ix = −qipn+i + qn+ipi + qi−1pn+i−1 − qn+i−1pi−1 (66)

qipi+1 − piqi+1 − (qiqi+1)x = 0, i = 1, . . . , 2n. (67)

For n = 2 we have [Q̄,Q2] = 0 and equation (65) simplifies. In terms of ui variables
(49) and (50) the system becomes

w1t + 1
2 (w2xw3x) = 0

w2t + w3xx + 1
2 (w3xw1x) − 2l2 = 0

w3t − w2xx + 1
2 (w2xw1x) − 2l1 = 0

(68)

l1x = 2w2x exp(−w1), l2x = −2w3x exp(w1), (69)

where w1 = u1 +u3, w2 = u1 −u3, w3 = u2 −u4 and where l1 = (p01 +p02), l2 = (p01 −p02).
System (68) is new, to the best of our knowledge. Moreover, for N general all systems of

equations obtained in this sections can be regarded as new examples of lattice equations.
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5. Conclusions and remarks

All properties of integrable equations are encoded in their Lax representations. Therefore,
the description of the variety of integrable equations and their reductions can be pursued
starting from the theory of Lax operators. In particular, the problem of reductions can be
studied imposing symmetry conditions on the Lax operators, reducing the corresponding
nonlinear systems of equations to smaller subsystems. Symmetries of Lax representations
form a group—the reduction group [8–10, 17]. The reduction group approach has been used
to describe Lie-algebraic reductions of the N-waves equation [11], to find Lax representation
for a number of new nonlinear Schrödinger type equations [21] and to build explicit solutions
for the Landau–Lifschits equation [22]. In this paper we have revisited the reduction group
approach, illustrated it by a number of examples and motivated our further study. There are
several natural directions for development.

The equations obtained in the previous section are integrable for any N. Assuming N → ∞
and taking continuous limits one can find (2 + 1) dimensional integrable equations (and
corresponding Lax representations—all structures, such as symmetries, conservation laws, etc
can be recomputed in these limits). There are several ways to take a continuous limit, the
result depends on the balance of nonlinearity and dispersion. For example, the Kadomtsev–
Petviashvili equation

uT = 1
3uyyy − D−1

y (uXX) + 6uuy (70)

can be recovered from (47), (48) as a continuous limit if we assume q = exp(h2u), where h is
the lattice step, and perform a Galilean transformation. On the other side, performing rather
naive expansions qi±1 = q ± hqy + O(h2) and pi±1 = p ± hpy + O(h2), we would receive,
after proper rescaling, the hydrodynamic type equation

ut = Dy

{(
D−1

y Dx

)2
u + 1

2

(
D−1

y Dxu
)2

+ e(2u)
}
. (71)

Similarly, equations (58)–(60) yield to the following systems of equations in (2 + 1)

dimensions:

ut = Dy

{(
D−1

y Dx

)2
u + 1

2

(
D−1

y Dxu
)2

+ D−1
x Dy

[
e(u+v)D−1

y Dx(u + v)
]

+ e(u+v)
}

vt = −Dy

{(
D−1

y Dx

)2
v + 1

2

(
D−1

y Dxv
)2

+ D−1
x Dy

[
e(u+v)D−1

y Dx(u + v)
]

+ e(u+v)
} (72)

and (65)–(67) yield to

ut = Dy

{(
D−1

y Dx

)2
u + 1

2

(
D−1

y Dxu
)2

+ D−1
x Dy

[
e(u+v)D−1

y Dx(u − v)
]

+ e(u+v)
}

vt = Dy

{(
D−1

y Dx

)2
v + 1

2

(
D−1

y Dxv
)2

+ D−1
x Dy

[
e(u+v)D−1

y Dx(u − v)
]

+ e(u+v)
}
.

(73)

Note that (71) can be obtained from (73) by setting v = u.
A simple modification of the procedure enables us to study Lax operators with non-

commutative (matrix) entries. For example, we can treat elements of sl(2M, C), as 2 × 2
matrices with M × M matrix entries. The corresponding reduced systems can be viewed as a
system of equations for non-Abelian variables. The following system of equations

q0t − p0x + [q0, p0] + [q1, p1] = 0

q1t + [q1, p0] + {q2, p2}/4 = 0

q2t + [q2, p0] + {q1, p2} = 0

p1x + [p1, q0] + {q2, p2}/4 = 0

p2x + [p2, q0] + {q2, p1} = 0,

(74)
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where the variables qi , pi are elements of a non-commutative free algebra (or matrices of
any size) and {qi , pj } = qipj + pj qi is a non-Abelian generalization of (31) (the Bäcklund
transformations for the sinh-Gordon equation). In the non-Abelian case we have to fix the
gauge freedom further in order to make equations (74) well determined.

A very important issue is the solution of nonlinear integrable models. The reduction
group proves to be not only a very useful tool to find new integrable equations and classify Lax
pairs but also a necessary instrument in this context. Indeed, without the constraints imposed
by the reduction group on the spectral data it is not even possible to formulate the inverse
problem, which would lead to explicit solutions of the integrable equation. The general setup
of the correspondence between reduction groups and analyticity properties of the spectral data
is one of the next issues on our research agenda.

Another challenging problem is the study of automorphic Lie algebras in a pure algebraic
way. They can be always linked back to Lax operators, Baxter’s R-matrix equations, etc.
Moreover, the problem of a complete description of rational automorphic Lie algebras seems
to be feasible. Our optimizm is based upon a simple group-theoretical observation [17] and a
remarkable theorem of Felix Klein [23]: the complete list of finite groups of fractional-linear
transformations is given by the cyclic group ZN , the dihedral group DN and the groups of
symmetry of Plato solids, i.e. the tetrahedral group, the octahedral group and the icosahedral
group. It would be interesting to generalize the theory of automorphic Lie algebras to the
cases of elliptic and higher genus algebraic curves. We believe that automorphic Lie algebras
will find applications far beyond the theory of Lax operators.
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