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Abstract

Numerical solutions of the equations governing two-phase isentropic flow of a solid granular material dispersed in a gas
are investigated. Both the dispersed and continuous phases are treated as continua and an Eulerian description of the flow
is adopted. We present an inviscid model with a general pressure term from which a number of variant models can be
obtained. A high resolution scheme is presented to obtain numerical approximations of the equations in each of the mod-
els. We investigate whether the chosen numerical scheme is suitable for the equations governing the models and use the
numerical results to obtain quantitative and qualitative insight into the predictions of each of the models. Three test cases,
new to the literature, are considered, and the numerical results compared.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Many industrial and engineering processes involve the flow of several intermingled phases (solid, liquid
and gaseous) and/or chemical species. In particular, chemical engineers have been much involved with the
development of models of multi-phase flow and their application. For example, flow in hoppers and risers,
the separation and mixing of chemicals, various processes that occur in nuclear reactors and coal combus-
tion are just a few of the areas where chemical engineering research into multi-phase systems plays an
important role in industry. For many industrial applications, it is crucial to both model the process real-
istically and to obtain accurate approximations to the solutions of initial and boundary value problems
arising from the process and the model, in order that the process runs efficiently, that costs are reduced
and that plant and process are able to operate safely. The special case of two-phase flow is the most well
developed theoretically and has numerous practical applications that are crucial to industry and which
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may involve any combination such as liquid–gas, gas–gas, etc. There is extensive literature devoted to two-
phase flow in the context of problems arising in chemical engineering and Gidaspow [13] provides an
excellent introduction to the subject.

In this paper we are concerned with one particular combination, namely a gas–solid two phase system in
which the solid phase is a granular material (by which is meant that the solid phase material is finely sub-
divided into small separate grains in such a way that the volume of each grain is small in comparison to
the total volume of solid) which has been dispersed in a gaseous phase. We shall refer to the gas as the con-
tinuous phase, the solid as the dispersed phase. Once dispersed the system will only remain so, at least in a
terrestrial environment, if energy is continually input into the system to maintain the dispersion. This is effec-
tively done by ensuring that the gas always flows and then momentum is consequently transferred from the
gaseous to the solids phase by their mechanical interaction. A typical application is the pneumatic conveying
of bulk solids, see Klinzing et al. [24].

There are three different approaches that are commonly made to modelling the flow of granular mate-
rials. Discrete methods [22] (for example, using particle or rigid body dynamics), statistical mechanics [28]
(which generalises the theory of dense gases to include the inelastic collisions between grains) and contin-
uum mechanics [21] (where both solid and fluid mechanics are applicable to granular materials, depending
upon the deformation or flow regime). For the gas–solid systems of the type considered here, where the
solids phase is dispersed in a flowing gas, the methods of fluid mechanics are appropriate with the solids
phase being effectively modelled as a type of fluid. A hallmark of multi-phase flow is the use of hybrid
models that utilise two or more of the above approaches. For example, the gas phase is modelled as a
continuum, whereas the solids phase may be modelled in a discrete (Lagrangian) or continuum (Eulerian)
way. The discrete Lagrangian method (see Huber and Sommerfeld [17]) models, and keeps track of, each
particle individually, whilst the Eulerian method (see Gidaspow [13]) treats averaged bulk properties of the
solids phase in terms of an equivalent fluid flow. In either case, the system of equations are sufficiently
complicated to prevent analytical solutions being found in all but the most trivial cases and recourse must
be had to numerical methods to obtain approximations of the equations. Due to the complexity of the
models, this also is a non-trivial task and the solution of problems of relevance to industry required
the advent of adequate computing power. As computing power increases, approximations to more and
more complex problems of interest to industry will become feasible. The present paper is intended as a
contribution towards this process by analysing methods of numerical approximation in the context of
models which, on the one hand are sufficiently simple to enable progress to be made on their numerical
analysis and on the other hand form a sufficiently adequate basis for this type of two-phase flow.

We take an Eulerian formulation of two-phase gas–solid flow in which both phases are treated as a con-
tinuum. The basic balance equations governing such models, together with appropriate constitutive equations,
have been in a state of development since the 1960’s, see Jackson [19], Rudinger and Chang [34], Gidaspow
[13] and Jackson [20,21] for further information.

The range of applications of two-phase flow is extremely wide and encompasses many different physical
processes. It is not possible for a single mathematical model to apply to all the diverse variety of two phase
systems. For example the mechanics of bubbles in a liquid is very different from that of wind blown sand.
The pneumatic conveying of glass beads at room temperature is very different from problems of combustion
and detonation of reactive powders. We shall adopt a mathematical model appropriate to applications such as
the pneumatic conveying of granular material at moderate pressures and at room temperature in cases of mod-
erate gas velocity.

A careful distinction must be made between isentropic and non-isentropic flow. For applications at room
temperature, moderate pressures and in the absence of significant shear layers an isentropic model is, as
considered in this paper, applicable. Such models may be used when entropy production may be neglected
or when its effects are considered unimportant for the calculated physical quantities. However, there are
examples where isentropic models should not be used, an example here being combustion and deflagration
of reactive granular materials. There is an extensive literature on such models, for both modelling and
numerical aspects. We do not give a detailed description here, but following on from the work of Baer
and Nunziato [1] we may cite Saurel and Abgrall [35], Bdzil et al. [2], Saurel and Lemetayer [36] and Pow-
ers [31]. Such models are intended for rather different purposes than the applications considered here, but
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there is overlap in the methods used and in the modelling and numerical problems addressed. For example,
the evolution equations governing the solids volume fraction is considered rate-dependent in combustion
problems, while at room temperature and moderate pressures it may be modelled using rate-independent
plasticity models, see for example Harris and Grekova [14]. Such issues merit further investigation.

In short, the essence of good modelling is to choose a model appropriate to the problem at hand, that is to
say, as simple as possible while retaining sufficient physics and mechanics to approximate well enough the real
system. It is also important to be aware of its limitations and to use it only in situations for which it is
intended. The proper context here is the flow of granular materials in which the gas phase is the mechanism
whereby momentum is transferred to the solids phase to enable the transportation of the solids phase.
Mechanical energy is also transferred from the gas phase to the solids phase in the form of solids phase fluc-
tuation energy.

In the early 1980s, Jenkins and co-workers extended the Kinetic Theory of dense gases to include gran-
ular materials by taking into account the energy loss during collisions, see, for example, Jenkins and
Savage [23], Savage and Jeffrey [37] and Lun et al. [28]. The application of this theory in the chemical engi-
neering context has been affected by its inclusion in models of gas–solid two-phase flow. One advantage of
using the kinetic theory is that it enables certain material properties associated with the dispersed phase
which are difficult to measure experimentally, for example the solids phase viscosity, to be calculated from
the theory. Use of the kinetic theory of granular flow, however, introduces a new mechanical quantity
together with an energy equation containing it. This quantity is called either the fluctuation energy or
the granular temperature. The latter name is somewhat confusing and inappropriate and it must be under-
stood that although the name granular temperature is used in analogy with the usual word temperature, it
is a mechanical quantity and not a thermodynamic quantity and is nothing to do with heat content of the
solids phase. A major purpose of the present paper is to investigate numerically the fluctuation energy
equation.

Another major purpose is to develop a high resolution scheme [15] applicable to isentropic flows of sol-
ids/gas two phase models which contain the fluctuation energy equation, particular care being taken over
the inhomogeneous terms in the equations, as these may present difficulties in implementation with high res-
olution schemes. The model is expressed in terms of a general pressure gradient, from which a number of
different models may be obtained as special cases. Numerical solutions are obtained by implementing a high
resolution scheme.

In the following section, we present and briefly discuss the equations governing the model containing a gen-
eral pressure term used for two-phase gas–solid flow and introduce three special cases of this model. We inves-
tigate the hyperbolicity of the different models in Section 3. The model is discretised in Section 4 using a high
resolution scheme discussed by Hubbard and Garcia-Navarro [16] and Hudson [18], based on Roe’s scheme
[32]. The models are then compared in Section 5 for a variety of test cases. Our conclusions are presented in
Section 6.

2. Mathematical formulation

The numerical scheme is developed by considering a time varying flow in one space dimension of a two-
phase gas–solid mixture. The typical application is pipe flow, with lateral dimension small in comparison
to the length. The grain size is assumed to be reasonably small in comparison with the lateral dimension.
The continuous gas phase and the dispersed solids phase are represented by separate interpenetrating continua
at each point of space occupied by the mixture. In the real system each point in space is occupied solely by
either gas or solid, but in the model, each point x possesses the attributes of both solid and fluid material.
The underlying idea is that the phases are averaged over a representative volume element (RVE) large enough
to contain both gas and grains, although the continuum model is phenomenological and no attempt is made to
define or calculate the spatial averages explicitly. However, the introduction of the fluctuation energy Ts into
the model ultimately uses the ensemble average of statistical mechanics, see Lun et al. [28], and so the model
presented is a hybrid of continuum and statistical approaches.

The pipe lies along a portion OP of the real axis and a coordinate system Ox taken, with the origin O coin-
ciding with the left hand end of the pipe, and positive x-direction pointing towards P. Let ug, us denote the
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Eulerian velocity components (in the x-direction) of the gas and solid phases, respectively, qg, qs the density of
the gas and grains, defined at each point x of OP. In the real mixture, let V denote the volume of the RVE
containing a representative mixture of gas and grain, Vg and Vs denote the volumes occupied by gas and
grains, respectively. The gas and solid volume fractions �s and �g are defined by

�g ¼
V g

V
and �s ¼

V s

V
; ð1Þ

respectively, which satisfy the following properties

0 6 �g 6 1; 0 6 �s 6 1 and �g þ �s ¼ 1. ð2Þ
Finally, let Ts denote the fluctuation energy or granular temperature of the solids phase. The physical inter-
pretation of Ts is that it is the square of the deviation of the individual grain velocity from the mean grain
velocity.

2.1. The model equations

The conservation laws governing the model are presented as follows, see for example Jackson [20,21]. Con-
servation of mass for each phase gives rise to the following continuity equations:

o

ot
ð�gqgÞ þ

o

ox
ð�gqgugÞ ¼ 0; ð3aÞ

o

ot
ð�sqsÞ þ

o

ox
ð�sqsusÞ ¼ 0. ð3bÞ

The momentum equations for the gas and solid phase are:

o

ot
ð�gqgugÞ þ

o

ox
ð�gqgu2

gÞ þ x1

opg

ox
þ x2

ops

ox
¼ �bðug � usÞ; ð3cÞ

o

ot
ð�sqsusÞ þ

o

ox
ð�sqsu

2
s Þ þ x3

opg

ox
þ x4

ops

ox
¼ bðug � usÞ; ð3dÞ

respectively. Models vary in the way pg and ps are incorporated and the device of including the multipliers xk

is to enable variations of the basic model to be conveniently written as a single set of equations. Various
choices for xk are given in the following section.

We now discuss the above equations in detail. The mechanical interaction between the two phases is
through the drag force, b(ug � us), present in both momentum equations.

Two commonly used forms for the drag force are (a) Stokes’ law, for laminar flow and moderate relative
velocities and which is linear in the phase velocity difference ug � us, (b) Newton’s law, for turbulent flow and
which is quadratic in ug � us. The latter is physically more appropriate in the case here where the dispersed
phase consists of a large number of grains and in which the interaction between the phases significantly affects
the gas flow. We take the coefficient b to be

b ¼ 3CD

4ds

�g�sqgjug � usj;

where CD is a dimensionless parameter, which for the regime corresponding to Newton takes an approximate
value of CD = 0.44. For further discussion in the context of chemical engineering, see Gidaspow [11] and Klin-
zing et al. [24]. Thus, gas viscosity is taken into account via the gas on grain interaction.

For the applications we have in mind, for example, pneumatic conveying at moderate pressures and speed
at room temperature, it is appropriate to assume the gas flow to be isentropic. We note that in the test cases
described in Section 5, the numerical scheme allows for the proper evolution of the gas pressure field. In all
three cases, the gas pressure is almost constant. The absence of large pressure gradients helps to confirm
the validity of the isentropic assumption. We shall also assume that, in the gas flow (i.e., the gas on gas inter-
action), the effect of viscosity may be neglected. The gas phase is assumed to behave as an inviscid, compress-
ible fluid obeying the perfect gas law. Let p0

g and q0
g denote standard pressure and the density at standard

temperature and pressure and define
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Cp ¼
p0

g

ðq0
gÞ

cg
;

then the gas pressure pg satisfies

pgðqgÞ ¼ Cpq
cg
g ;

where Cp has dimensional properties m3cg�1=ðkgcg�1 s2Þ, i.e., viscosity is omitted from the gas constitutive equa-
tion and the stress tensor is diagonal. The solids pressure ps is assumed to satisfy the following law, analogous
to the perfect gas law for gases (and so solids phase viscosity is also omitted),

psð�s; T sÞ ¼ �sqsT sd0; where d0 ¼ 1þ 2ð1þ rsÞg0�s;

where rs is the coefficient of restitution and the radial distribution function [13] is

g0ð�sÞ ¼
3

5
1� �s

�s;max

� �1
3

" #�1

;

where �s,max denotes the maximum value of �s and reflects the fact that the most densely packed configuration
of grains is approximately equal to 0.7. In practice the model becomes physically invalid at some value of �s

less than 0.7, but the model is used for values of �s up to approximately 0.5. Finally Ts denotes the granular
temperature or fluctuation energy of the solids phase.

As stated above, the typical application for these equations is to the pneumatic conveying of solids, where
airborne solids at moderate gas velocities are transported by pipe. This regime is referred to in the literature on
granular materials as fast flow. The solids phase is in suspension and grains interact by way of instantaneous
binary collisions, caused by the fluctuation of the individual grain velocity from that of the mean grain veloc-
ity. This idea, taken from statistical mechanics, gives rise to the quantity Ts and forms the basis for the final
solids equation, the fluctuation energy equation [6,41,4],

o

ot
ð�sqsT sÞ þ

o

ox
ð�sqsusT sÞ ¼ �

2

3
ps

ous

ox
þ c�

o j oT s

ox

� �
ox

þ 3bT s

 !
. ð3eÞ

The first term on the RHS of this equation is responsible for the generation of fluctuation energy Ts, ps(us)x,
the second term causes its dissipation. The Jenkins and Savage [23] formula for dissipation of Ts is

c ¼ 3ð1� r2
s Þ�2

s qsg0T s

4

ds

ffiffiffiffiffi
T s

p

r
� ðusÞx

 !
;

which is derived for slightly inelastic particles (i.e., rs is close to 1). We follow the approach of [4,28,41] and
neglect the (us)x term. The third term governs the diffusion of Ts, where j is the diffusion coefficient and we use
the formula of Gidaspow et al. [12],

j ¼ 75

192

qsds

ffiffiffiffiffiffiffiffi
pT s

p

ð1þ rsÞg0

1þ 6

5
ð1þ rsÞg0�s

� �2

.

The final term, �3bTs, simulates the transfer of energy from the gas phase to the solids phase in the form of
fluctuation energy, Ding and Gidaspow [6]. For a more detailed discussion of these terms, see Boemer et al. [4].

An algebraic formula was derived by Syamlal et al. [41] on the assumption of a balance between generation
and dissipation of fluctuation energy, i.e.,

psðusÞx þ c ¼ 0.

However, we consider the full system including the time-dependent fluctuation energy equation.
The solids density qs is assumed constant. This is both an accurate approximation and the simplest way to

close the models. The gas density qg is not assumed to be constant. The governing equations for the model are
summarised in Table 1, where a subscript k = g (k = s) denotes the gas phase (solids phase). Also, the physical
quantities appearing in the model are summarised in Table 2.
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Table 1
Summary of equations for the model

Conservation of mass,

(�kqk)t + (�kqkuk)x = 0

Conservation of momentum (gas phase),

ð�gqgugÞt þ ð�gqgu2
gÞx þ x1ðpgÞx þ x2ðpsÞx ¼ �bðug � usÞ

Conservation of momentum (solids phase),

ð�sqsusÞt þ ð�sqsu
2
s Þx þ x3ðpgÞx þ x4ðpsÞx ¼ bðug � usÞ

Fluctuation energy equation,

ð�sqsT sÞt þ ð�sqsusT sÞx ¼ �
2

3
ðpsðusÞx þ c� ðjðT sÞxÞx þ 3bT sÞ

Gas pressure,

pgðqgÞ ¼ Cpq
cg
g

Solids pressure,

ps(�s,Ts) = �sqsTsd0 with d0 = 1 + 2(1 + rs)g0�s

Radial distribution function [13],

g0ð�sÞ ¼
3

5
1� �s

�s;max

� �1
3

" #�1

Drag force (Newton),

b ¼ 3CD

4d s

�g�sqgjug � usj where CD ¼ 0:44

Dissipation of fluctuation energy [23],

c ¼ 12

ds

ð1� r2
s Þ�2

s qsg0T s

ffiffiffiffiffi
T s

p

r

Diffusion of fluctuating energy [12],

j ¼ 75

192

qsds

ffiffiffiffiffiffiffiffi
pT s

p

ð1þ rsÞg0

ð1þ 6

5
ð1þ rsÞg0�sÞ2

Sum of volume fractions,

�g + �s = 1

Table 2
Physical quantities in the model

Name Symbol Units

Density qk(x, t) kg/m3

Velocity uk(x, t) m/s
Granular temperature Ts(x, t) m2/s2

Volume fraction �k(x, t) None
Gravity g m/s2

Gas pressure pg(qg) kg/(m s2)
Solids pressure ps(�s,Ts) kg/(m s2)
Drag force b kg/(m3 s)
Solids particle diameter ds m
Coefficient of restitution rs None
Gas viscosity lg Pa s
Maximum solids volume fraction �s,max None
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2.2. Gas and solids data

We consider the case of glass beads being transported by air and take a solids density of qs = 2660 kg/m3

and particle diameter ds = 0.005 m. For the gas phase, data corresponding to air at room temperature (20 �C)
with atmospheric pressure (100.0437 kPa), density qg = 1.2885 kg/m3 and viscosity lg = 1.58 · 10�7 Pa s are
taken. Also, cg = 1.4 and Cp = 75,916.16 m3.2/(kg0.4 s2). The coefficient of restitution (unless otherwise stated)
is rs = 0.99 (typically, the value of rs is taken to be close to 1, see Jenkins and Savage [23]). If collisions are
elastic (i.e., no loss of fluctuating energy) then rs = 1, which results in c = 0. The maximum value of the solids
volume fraction is taken as �s,max = 0.7.

Since the gas flow is at moderate velocities and room temperature it is physically appropriate to assume an
isentropic gas flow. Thus, shocks in the gas phase are not permissible. However, two-phase flows have a richer
shock structure than single-phase and there are shocks involving the solids phase which, for the gas phase only
involve discontinuities in �g and ug, while qg remains continuous. Such shocks do not violate the assumption of
constant entropy. Perturbations in the gas phase evolve on a considerably faster time scale than those of the
solids phase, since |kg|� |ks|, so shocks due to the solids phase propagate slowly in comparison with the gas
speed of sound.

2.3. Different models

A number of special cases may be obtained from the model given in the previous section by choosing appro-
priate values of the multipliers xk, thus determining which pressure terms are present. Adding the two-phase
momentum equations must give the balance of momentum for the mixture as a whole and so there are restric-
tions on the values of the xk, to ensure that the mixture equation has the correct total pressure term, in fact,
x1 + x3 and x2 + x4 must be equal to either zero or one. Two models are as follows.

2.3.1. Model A

Much fundamental work on two-phase flow has been done by Jackson, see for example, Jackson [19], one
of the first papers to derive the classic two-phase flow equations and obtained by setting

x1 ¼ �g; x2 ¼ 0; x3 ¼ �s and x4 ¼ 0.

This is often known as the equal pressure model and is the foundation for much work on two-phase flow. With
the advent of a kinetic theory of granular flow, the fluctuation energy equation and solids pressure were incor-
porated into Jackson’s model, see Ding and Gidaspow [6], Boemer et al. [4] and Bouillard et al. [5], giving the
following model, termed Model A

x1 ¼ �g; x2 ¼ 0; x3 ¼ �s and x4 ¼ 1.

2.3.2. Model B
Rudinger and Chang [34] develop an alternative model to that of Jackson [19], and which is extended by

Lyczkowski [29], by having the gas pressure present only in the gas phase, i.e.,

x1 ¼ 1; x2 ¼ 0; x3 ¼ 0 and x4 ¼ 0.

This model is an inviscid version of the ‘‘dusty gas’’ equations, see Foster et al. [9]. As with Model A, the fluc-
tuation energy equation and solids pressure have been incorporated into the model, see Bouillard et al. [5],
Boemer et al. [4] and Gidaspow [13]. Model B, is obtained by taking

x1 ¼ 1; x2 ¼ 0; x3 ¼ 0 and x4 ¼ 1.

2.3.3. Model C

A third possibility is to place the pressure terms symmetrically in the momentum equations, and we refer to
this as Model C
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x1 ¼ x2 ¼ �g and x3 ¼ x4 ¼ �s.

For this model, the gas and solids pressure appear in the momentum equations for both phases.

3. Hyperbolicity

In this section we consider whether each model is hyperbolic for the regime under investigation, both for
the suitability of the scheme and for the implementation of the initial and boundary conditions for the test
cases. We solve the equations only in regimes where the equations are hyperbolic and need to investigate when
this is the case.

In the case where the system of partial differential equations considered here possess all real wave speeds
(obtained from the canonical form) a full set of linearly independent eigenvectors exists and so the model
is hyperbolic, see LeVeque [26]. Rewriting the system of equations for the model with the general pressure
term (3) in canonical form

qg

ug

�s

us

T s

2
6666664

3
7777775

t

þ

ug qg
qg

�g
ðus � ugÞ

qg�s

�g
0

x1c2
g

�gqg
ug

x2c2
s

�gqg
0 x2�sqsd0

�gqg

0 0 us �s 0
x3c2

g

qs�s
0 x4c2

s

qs�s
us x4d0

0 0 0 2
3
T sd0 us

2
666666664

3
777777775

qg

ug

�s

us

T s

2
6666664

3
7777775

x

¼

0

� b
�gqg
ðug � usÞ
0

b
qs�s
ðug � usÞ

� 2
3qs�s
ðcþ 3bT sÞ

2
66666664

3
77777775
;

where

c2
g ¼

opg

oqg

¼ Cpcgq
cg�1
g ; c2

s ¼
ops

o�s

¼ qsT sðd0 þ �sc2
0Þ and c2

0 ¼
od0

o�s

.

The diffusion term in the fluctuation energy equation has a negligible effect on Ts, for the values of j and Ts

given by Eq. (3e). Thus, we neglect this term from the fluctuation energy equation.
For this system, the characteristic equation is

ðk� usÞQðkÞ ¼ 0;

where Q(k) is the quartic,

QðkÞ ¼ a4k
4 þ a3k

3 þ a2k
2 þ a1kþ a0;

whose components are:

a4 ¼ 3qs�g; a3 ¼ �6qs�gðug þ usÞ;
a2 ¼ �3c2

gðx1qs þ x3qgÞ � x4qs�gT sð3d0 þ 2d2
0 þ 3�sc2

0Þ þ 3qs�gðu2
s þ u2

g þ 4ugusÞ;
a1 ¼ 6c2

gðx1qsus þ x3qgugÞ þ 2x4qs�gugT sð3�sc2
0 þ 3d0 þ 2d2

0Þ � 6qs�gugusðus þ ugÞ;
a0 ¼ �3c2

gðx1qsu
2
s þ x3qgu2

gÞ þ 3qs�gu2
gu2

s þ qsT sððx1x4 � x3x2Þc2
g � x4�gu2

gÞð2d2
0 þ 3d0 þ 3�sc2

0Þ.

Thus, one root is always real and the other four are determined by solving the quartic. The roots of the
quartic for the model in general have not been found analytically. Thus, we investigate each of the three
special cases individually. If analytic expressions for the roots are not available we use Matlab to inves-
tigate the quartic numerically. We use the constant values in Section 2.2 and then solve the quartic for a
variety of values of the remaining variables appearing in the coefficients ak. The Matlab program
calculates the values of ak, calculates the roots numerically using the built in command c = roots(ak)
and determines if any root is complex by using the command image(c), with image(c) 6¼ 0 if a root is
complex.
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3.1. Model A

Analytical expressions of the wave strengths for Model A are difficult to obtain thus, we use Matlab to
determine the roots numerically. Figs. 1 and 2 illustrate various contour plots for certain fixed values of �s,
qg and Ts to show combinations of values resulting in complex roots. The coefficients of the quartic may read-
ily be rewritten in terms of ug � us and ug + us and from Fig. 1, we can see that ug � us plays an important role.
The graph shows two regions of real roots, both dependent on ug � us. The region of real roots for small rel-
ative velocities (R1) increases in width as Ts is increased whereas the real region of real roots for large relative
velocities (R2) is slightly reduced. Moreover, as �s is increased, the region R1 increases in width whereas the
region R2 is reduced in width. Changing the gas density also has an impact on the region of real roots and
reduces the width of both regions R1 and R2. This behaviour is verified by Fig. 2. Thus, Model A is hyperbolic
for a restricted set of values of the quantities appearing in the coefficients.

The results show that fixed values of ug � us = C, where C is a constant, produces identical regions of
real roots, regardless of the individual values of ug and us. Setting one velocity equal to zero simplifies the
analysis and Fig. 3 illustrates the graph of the quartic for different relative velocities with one of the veloc-
ities equal to zero. From the results, we can see that the real region R1 is created by a maximum, which
appears at k � us, and is destroyed when the value of the quartic is less than zero for the position of this
maximum, i.e., Q(us) < 0. By letting us = 0, we see the maximum remains approximately at the origin for
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small relative velocities. Thus, by assuming the position of the maximum is at k = us and by letting us = 0,
we obtain the following inequality:

�3c2
g�sqgu2

g þ qsT s�gðc2
g � u2

gÞð2d2
0 þ 3d0 þ 3�sc2

0Þ > 0;

which determines whether or not the region of real roots R1 exists. A similar inequality in terms of us can be
obtained by setting ug = 0. Thus, since the region of real roots is unaltered for the same relative velocities, we
obtain a more general inequality

ðug � usÞ2 <
qsT s�gc2

gð2d2
0 þ 3d0 þ 3�sc2

0Þ
3c2

g�sqg þ qsT s�gð2d2
0 þ 3d0 þ 3�sc2

0Þ
to determine the maximum value of relative velocities allowed for the real region R1. When compared to the
position of the maximum computed by Matlab using Q(k) = 0, in every run performed the inequality gave a
good indication of the true value, and, in every case, correctly predicted the existence of real roots.

In conclusion, for Model A there exists a small region of real roots when the relative velocity is sufficiently
small. It is known that the original model of Jackson [19] for inviscid flow, i.e., ps = 0, is not hyperbolic for
small relative velocities, see Lyczkowski et al. [30], Drew [7] and Stewart and Wendroff [38]. However, by
including the solids pressure term in the solids phase, a new region of real roots for small relative velocities
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is created. Moreover, for the model presented here, ps = 0 only if either �s = 0 or Ts = 0. If there is a region of
pure gas, i.e., �s = 0, the quartic has four real roots. When Ts = 0, two of the roots of the quartic are complex
for small relative velocities, but the model is not valid in this limit, since then there are no velocity fluctuations
and hence no collisions between grains.

3.2. Model B

For Model B, the roots of the quartic are determined analytically,

k1;2 ¼ ug � cg

ffiffiffiffiffiffiffi
��1

g

q
; k3 ¼ us and k4;5 ¼ us �

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T sð9d0 þ 9�sc2

0 þ 6d2
0Þ

q
.

Hence, Model B is hyperbolic since there are 5 real and distinct eigenvalues. Moreover, two of the roots are
associated with the gas-phase (k1,2) and three with the solids-phase (k3,4,5).

3.3. Model C

As with Model A, analytical expressions of the wave strengths for Model A are difficult to obtain thus, we
use Matlab. Figs. 4 and 5 illustrate the same numerical tests carried out with Model A. Model C has real roots
for ug = us and is hyperbolic for y large values of ug � us. However, the small interval of real roots for small
relative velocities, which is present in Model A, is no longer present.
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Thus, by including the solids pressure in both the gas and solids phase, i.e., x2 = x4 = �g, the small interval
of real roots (R1) created by the solids pressure in the solids phase is destroyed. Models A and C are both
hyperbolic for large relative velocity, but Model C is not hyperbolic (having two complex roots) for small rel-
ative velocities. Henceforth we no longer consider Model C.

4. Numerical discretisation

In this section, we discretise the model with the general pressure term and discuss a high resolution scheme
that can be used to obtain numerical approximations to the solutions of the model for regimes in which the
equations are hyperbolic.

4.1. Model formulation

The model with the general pressure terms, Section 2, may be written in the form

wt þ FðwÞx ¼ Rþ S; ð4Þ

–500 0 500
–500

0

500

ug

u s

Real

Complex

Real

εs = 0.1 and Ts  = 0.001

–500 0 500
–500

0

500

ug

u s

Real

Complex

Real

εs = 0.5 and Ts = 0.001

–500 0 500
–500

0

500

ug

u s

Real

Complex

Real

εs = 0.1 and Ts  = 0.1

–500 0 500
–500

0

500

ug

u s

Real

Complex

Real

εs = 0.5 and Ts  = 0.1

Fig. 4. Hyperbolicity of Model C for different velocities.

J. Hudson, D. Harris / Journal of Computational Physics 216 (2006) 494–525 505



where

w ¼

�gqg

�gqgug

�s

�sus

�sT s

2
666664

3
777775; R ¼

0

ð1� x1ÞðpgÞx � x2qsð�sT sd0Þx
0

� x3

qs
ðpgÞx þ ð1� x4Þð�sT sd0Þx
� 2

3
�sT sd0ðusÞx

2
666664

3
777775; FðwÞ ¼

�gqgug

�gqgu2
g þ pg

�sus

�su2
s þ �sT sd0

�susT s

2
666664

3
777775 and

S ¼

0

�bðug � usÞ
0

b
qs
ðug � usÞ

� 2
3qs
ð3bT s � ðjðT sÞxÞx þ cÞ

2
666664

3
777775.

Here, F(w) denotes the flux-function. The inhomogeneous terms are split into those containing first order
spatial derivatives of the dependent variables, R, and those that do not, S. We discretise the general model
in the form (4) in order to enable shocks to form in the solids phase, for otherwise, discretising the model
in quasi-linear form (or in a form not in terms of the original conserved variables), shocks may propagate
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at incorrect speeds or the model may converge to a weak solution inconsistent with the equations of the ori-
ginal model. Since the gas flow is assumed to be isentropic, the model must only be used in regimes where there
are no shocks involving the pressure and density in the gas phase. In two phase flow, discontinuities are al-
lowed in the gas velocity and gas volume fraction, but such discontinuities are not thermodynamic in nature
and hence do not violate the condition of constant entropy.

The equations for two phase systems differ from that of a single phase in the sense that for a single phase
system the pressure gradient term is in conservation form, whereas for a two phase system it is not. We now
extract the conserved part of the pressure gradient and include it in the homogeneous part in order for the two
phase system to correspond more closely to the two single phase systems. The effect of this transformation is to
render the physical waves speeds of the conserved two phase system analogous to those of the single phase
systems. Thus, in the above formulation, the momentum equations (3c) and (3d) include part of the pressure
gradient terms in the flux function, using

x1ðpgÞx ¼ ðpgÞx þ ðx1 � 1ÞðpgÞx and x4ðpsÞx ¼ ðpsÞx þ ðx4 � 1ÞðpsÞx.
The system obtained in this way is such that the homogeneous part has a Jacobian with distinct real eigen-
values and is hence hyperbolic. The wave speeds of this system also correspond closely to the wave speeds
of the system written in canonical form. The Jacobian matrix of the system is

J ¼

0 1 0 0 0

��1
g c2

g � u2
g 2ug qg�

�1
g c2

g 0 0

0 0 0 1 0

0 0 �sT sc2
0 � u2

s 2us d0

0 0 �usT s T s us

2
6666664

3
7777775

with eigenvalues

k1;2 ¼ ug � cg

ffiffiffiffiffiffiffi
��1

g

q
; k3 ¼ us; k4;5 ¼ us � cs;

where the speed of sound for pure gas is

cg ¼
ffiffiffiffiffiffiffi
opg

oqg

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cpcgq

cg�1
g

q

and the solids propagation velocity is

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

qs

ops

o�s

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T sðd0 þ �sc2

0Þ
q

with

c2
0 ¼

od0

o�s

¼ 2ð1þ rsÞ g0 þ �s

og0

o�s

� �

and

og0

o�s

¼ 1

5ð�2
s �s;maxÞ

1
3

1� �s

�s;max

� �1
3

 !�2

.

Having formulated the model in conservation form, we now investigate its numerical approximation.

4.2. High resolution scheme

We propose a numerical scheme to approximate the general system discussed in the previous section. The
scheme is chosen to be second order accurate away from discontinuities and minimises the dispersion present
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in second order schemes by adding dissipation in the neighbourhood of a discontinuity, i.e., we choose a high
resolution scheme [15]. Since the system under investigation is inhomogeneous, the high resolution scheme must
be capable of successfully incorporating the inhomogeneous terms. Inhomogeneous terms are renowned for
creating numerical difficulties, see for example LeVeque and Yee [27], with numerous techniques being devel-
oped to try and resolve them, see Gascon and Corberan [10], LeVeque [25] and Bermúdez and Vázquez [3].

We use a high resolution scheme discussed by Hubbard and Garcia-Navarro [16], which is based on Roe’s
scheme [32]. We consider two different methods of approximating the inhomogeneous terms: a pointwise
method and an upwind method. The upwind method applies flux-limiters, see Sweby [39], to the inhomoge-
neous terms as well as the flux-function to ensure a balance occurs between the terms for steady state problems
(known as the C-property [3], see Appendix B). Both methods have been widely used for the shallow water
equations and Euler’s equations with varying degrees of success. We adapt the scheme for the Eulerian
gas–solid two-phase flow models considered here. The scheme consists of

wnþ1
i ¼ wn

i � sðF�iþ1
2
� F�i�1

2
Þ þ sR�i þ DtSn

i ð5Þ

with numerical flux-function

F�iþ1
2
¼ 1

2
ðFn

iþ1 þ Fn
i Þ �

1

2

X5

k¼1

~akj~kkjð1� Uð~hkÞð1� j~mkjÞÞ~ek

h i
iþ1

2

.

The inhomogeneous terms not containing first order derivatives, S, are approximated using a pointwise
approach,

Sn
i ¼

0

�bðug � usÞ
0

b
qs
ðug � usÞ

� 2
3qs

c� DðjDT sÞ
2Dx2 þ 3bT s

� �

2
66666664

3
77777775

n

i

;

where

DðjDT sÞ ¼ ðjn
iþ1 þ jn

i ÞðT sÞniþ1 � ðjn
iþ1 þ 2jn

i þ jn
i�1ÞðT sÞni þ ðjn

i þ jn
i�1ÞðT sÞni�1

and the inhomogeneous terms containing first order derivatives, R, are approximated by using one of the
following.

1. A pointwise (PW) method, where the inhomogeneous terms are discretised at the mesh point and central
differences are used when required,

R�i ¼

0

ð1� x1Þni Dpg � qsðx2Þni Dð�sT sd0Þ
0

� ðx3Þni
qs

Dpg þ ð1� x4Þni Dð�sT sd0Þ
� 2

3
ð�sT sd0Þni Dus

2
6666664

3
7777775
; ð6Þ

where Dw ¼ 1
2
ðwn

iþ1 � wn
i�1Þ.

2. An upwind characteristic (CP) method,

R�i ¼ R�iþ1
2
þ Rþi�1

2
; ð7Þ

where

R�iþ1
2
¼ 1

2

X5

k¼1

~bk~ekð1� sgnð~kkÞð1� Uð~hkÞð1� j~mkjÞÞÞ
h i

iþ1
2

.
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The step sizes in space and time are Dx and Dt with i and n denoting the spatial and time grid number,
respectively. The upstream and downstream boundaries are at x0 and xI (I is the total number of spatial grid
points), tN is the final time,

s ¼ Dt
Dx
; ~mk ¼ s~kk; ~hk ¼

ð~akÞJþ1
2

ð~akÞJþ1
2

; J ¼ i� sgnð~mkÞiþ1
2
;

and either the minmod flux-limiter [39],

UðhÞ ¼ maxð0;minð1; hÞÞ; ð8Þ

or the van Leer [42] flux-limiter,

UðhÞ ¼ jhj þ h
1þ jhj ; ð9Þ

is used.To ensure the scheme remains stable, the time step is calculated using

Dt ¼ mDx
maxðjkjÞ ;

where max(|k|) is the maximum wave speed and m 6 1 is the required Courant number.
The scheme is an adapted form of Roe’s scheme [32], which uses piecewise constant data to represent the

domain and can be viewed as a family of Riemann problems due to a small discontinuity being present
between each neighbouring cell (wR,wL). This allows the system of homogeneous conservation laws,

wt þ Fx ¼ 0

to be rewritten as a linearised Riemann problem,

wt þ ~AðwR;wLÞwx ¼ 0;

where the Jacobian ~A is constant locally. The numerical solution of the resulting linear problem requires an
appropriate Roe averaged (denoted by ~) Jacobian matrix, determined by solving

DF ¼
X5

k¼1

~ak
~kk~ek ¼ ~ADw;

whilst ensuring that the u-properties of Roe are satisfied. The Roe averaged eigenvalues ð~kÞ and eigenvectors
ð~eÞ are then calculated from the Roe averaged Jacobian. The decomposition

Dw ¼
X5

k¼1

~ak~ek and
1

Dx

X5

k¼1

~bk~ek ¼ ~R;

where Dw = wR � wL, is then used to obtain the wave strengths ð~aÞ and inhomogeneous values ð~bÞ.
A full derivation of the Roe averages for the general system is presented in Appendix A and a summary is

given in Table 3, where the superscripts denote the corresponding system. The high resolution scheme can now
be used to approximate the general system of equations for various multipliers xk.

We are now in a position to obtain numerical solutions of the different models for a variety of test problems
and to compare the results.

5. Numerical results

We now investigate the behaviour of the different models and the high resolution scheme for the gas–solid
flow as discussed in Section 2.2. In order to compare the different models, we consider a variety of test cases all
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of which consist of a domain OP, 100 m long. Unless stated otherwise, the high resolution scheme is used with
Dx = 1 m (i.e., 100 grid points) and a Courant number m = 0.8.

We only solve the general system when it is hyperbolic and require appropriate initial and boundary
conditions for each test case. Unless otherwise stated, the numerical scheme uses free flow boundary
conditions,

wnþ1
�i ¼ wn

0 and wnþ1
Iþi ¼ wn

I .

For the regime under investigation, the gas phase is subcritical whilst the solids phase may be supercritical.
Thus, if physical boundary conditions are required only four can be prescribed at the upstream boundary
and one at the downstream boundary.

Table 3
Roe average values for the general system

Roe averages,

~qg ¼
ffiffiffiffiffiffiffiffiffiffi
ð�gÞL

p
ðqgÞL þ

ffiffiffiffiffiffiffiffiffiffiffi
ð�gÞR

p
ðqgÞRffiffiffiffiffiffiffiffiffiffi

ð�gÞL
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
ð�gÞR

p ; ~ug ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�gqgÞL

q
ðugÞL þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�gqgÞR

q
ðugÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�gqgÞL
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�gqgÞR

q ;

~cg ¼

ffiffiffiffiffiffi
Dpg

Dqg

q
if Dqg 6¼ 0;

cgðqgÞ otherwise,

8<
: ~c2

s ¼ ~T sð~d0 þ ~�s~c2
0Þ; ~dk ¼

ð~kk � ~ugÞ2~�g � ~c2
g

~qg~c2
g

~us ¼
ffiffiffiffiffiffiffiffiffiffi
ð�sÞL

p
ðusÞL þ

ffiffiffiffiffiffiffiffiffiffi
ð�sÞR

p
ðusÞRffiffiffiffiffiffiffiffiffiffi

ð�sÞL
p

þ
ffiffiffiffiffiffiffiffiffiffi
ð�sÞR

p ; ~T s ¼
ffiffiffiffiffiffiffiffiffiffi
ð�sÞL

p
ðT sÞL þ

ffiffiffiffiffiffiffiffiffiffi
ð�sÞR

p
ðT sÞRffiffiffiffiffiffiffiffiffiffi

ð�sÞL
p

þ
ffiffiffiffiffiffiffiffiffiffi
ð�sÞR

p ; ~�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�kÞRð�kÞL

q
;

~d0 ¼
ffiffiffiffiffiffiffiffiffiffi
ð�sÞL

p
ðd0ÞL þ

ffiffiffiffiffiffiffiffiffiffi
ð�sÞR

p
ðd0ÞRffiffiffiffiffiffiffiffiffiffi

ð�gÞL
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
ð�gÞR

p and ~c0 ¼
ffiffiffiffiffiffi
Dd0

D�s

q
if D�s 6¼ 0;

c0ð�sÞ otherwise.

(

Eigenvalues,

~k1;2 ¼ ~ug � ~cg

ffiffiffiffiffiffiffi
~��1

g

q
; ~k3 ¼ ~us and ~k4;5 ¼ ~us � ~cs.

Eigenvectors,

~e1;2 ¼

1
~k1;2

0

0

0

2
6666664

3
7777775

and ~e3;4;5
k ¼

1
~kk

~dk

~kk
~dk

~dk
~d0
ðð~kk � ~usÞ2 � ~�s

~T s~c2
0Þ

2
6666664

3
7777775

.

Wave strengths,

~a1;2 ¼ �
~k3~a3 þ ~k4~a4 þ ~k5~a5 � ð~a3 þ ~a4 þ ~a5 � Dð�gqgÞÞ~k2;1 � Dð�gqgugÞ

~k1 � ~k2

;

~a3 ¼ �
~d0~�sDT s

~d3~c2
s

and ~a4;5 ¼
1

2~d4;5~c2
s

ðDð�sT sd0Þ � ~cs~�sDusÞ.

Inhomogeneous terms,

~b3;4;5
k ¼ ð2~us � ~ka � ~kbÞ~r4 þ ~d0~r5

~dkð~kk � ~kaÞð~kk � ~kbÞ
and ~b1;2 ¼ �

~k3
~b3 þ ~k4

~b4 þ ~k5
~b5 � ð~b3 þ ~b4 þ ~b5Þ~k2;1 � ~r2

~k1 � ~k2

;

where ~r4 ¼ �
x3

qs

Dpg þ ð1� x4ÞDð�sT sd0Þ;

~r2 ¼ ð1� x1ÞDpg � qsx2Dð�sT sd0Þ and ~r5 ¼ �
2

3
~d0~�s

~T sDus.
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5.1. Advection test problem

The first test case is a simple solids advection problem where an analytical solution can be obtained and is
useful in determining that the numerical scheme is behaving appropriately. We obtain an analytical solution of
the full model by assuming that the gas density and both phase velocities are constants,

qgðx; tÞ ¼ Cq and ugðx; tÞ ¼ usðx; tÞ ¼ Cu.

Thus, the model simplifies to

ð�sÞt þ Cuð�sÞx ¼ 0; ðpsÞx ¼ 0 and ðT sÞt þ CuðT sÞx ¼ �
2

3
ðc� ðjðT sÞxÞxÞ.

Assuming collisions are elastic, rs = 1, so c = 0, and by setting the diffusion coefficient j = 0, we obtain the
following analytical solution:

�sðx; tÞ ¼ �sðx� Cut; 0Þ and T sðx; tÞ ¼
CT

�sd0

;

where CT is a constant. To simulate a solids pulse propagating downstream, we use the initial conditions,

�sðx; 0Þ ¼
0:1þ 0:1 sin2 p

10
ðx� 5Þ

� �
if 5 6 x 6 15;

0:1 otherwise,

(

with

Cq ¼ 1:2885; CT ¼ 0:001 and Cu ¼ 5.

Table 4 denotes the L1 error,

jjEjj1 ¼ Dx
XI

i¼0

jEN
i j; where E ¼ wðx; tÞ � wn

i

for the sum of all variables at t = 10 s (N is the total number of time steps required to reach this time) for both
first order (U = 0) and high resolution (with minmod limiter) versions of the Scheme (5). The numerical solu-
tion converges to the analytical solution as the mesh size is reduced. Notice that the results of both models are
almost identical with the first order results producing a higher L1 error than the high resolution scheme. These
findings are verified in Fig. 6, where it is clear that the first order scheme suffers more from diffusion. Thus, the
results show that the high resolution scheme is superior to the first order version of the scheme.

5.2. Square pulse test problem

For the second test case, we simulate a square pulse of solids in the centre of the domain, which is at rest. In
this simple simulation, we imagine that ‘‘walls’’ at x = 40 m and x = 60 m confine the solids to the region
40 < x < 60 of the domain and they are kept in suspension by a ‘‘stirrer’’. The ‘‘walls’’ are then removed at
time t = 0 and the solids are allowed to move freely. The initial conditions for this test case are

qgðx; 0Þ ¼ 1:2885; ugðx; 0Þ ¼ usðx; 0Þ ¼ 0; T sðx; 0Þ ¼ 0:01�sðx; 0Þ
and

�sðx; 0Þ ¼
0:2 if 40 6 x 6 60;

0:1 otherwise.

	

Table 4
The L1 error of the scheme at t = 10 s

Model Scheme Dx = 1 0.5 0.1 0.05 0.01

A FO 0.97005 0.76820 0.32796 0.19609 0.04723
A HR 0.56395 0.28067 0.02763 0.00790 0.00039
B FO 0.97005 0.76820 0.32796 0.19609 0.04723
B HR 0.56395 0.28067 0.02763 0.00790 0.00039
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The granular temperature (fluctuation energy) of the grains is higher within the region of the square pulse
compared to that outside in order to simulate the effect of a stirrer.

For this test case, we assume that the collisions are elastic, i.e., the coefficient of restitution is rs = 1.
Figs. 7 and 8 illustrate the results of the square pulse test problem at t = 200 s for the different models using

the high resolution scheme (5) with the minmod limiter (8) and either the upwind (7) or pointwise (6) approx-
imation for the inhomogeneous terms with first derivatives, respectively. Two spatial step sizes were used: the
standard Dx = 1 m and a fine mesh (FM) of Dx = 0.1 m.

Models A and B produce practically identical results. The upwind method (CP) for the inhomogeneous
terms produces a numerical kink at the stagnation point (x = 50 m), which is not present in the results for
the pointwise method (PW). It occurs when the solids velocity changes sign and can be reduced by using a
finer mesh. A similar problem arises in single-phase gas dynamics in cases where the entropy condition is
violated, see LeVeque [26] for more information. However, the results show that the discretisation of the
inhomogeneous terms is responsible because it is absent using the pointwise method. Moreover, it also occurs
with the first order version of the scheme, U = 0, thus applying limiters for the approximation of the inho-
mogeneous terms with first order derivatives is not the cause of the problem. Pointwise discretisation appears
to be more accurate than the upwind method for this test case. See Sweby [40] for an example of a similar
situation.

Fig. 9 illustrates the evolution of the test case for the fine mesh results, where the results are shown on a
coarser grid (100 grid points) instead of the computed grid (1000 grid points). Initially the square pulse starts
to collapse with two waves propagating in opposite directions. The shapes of the waves are such that after 40 s
a peak has appeared at each side of the square pulse in the granular temperature. Although it appears to be
similar to an entropy violation, the HLLE scheme [8] was used as a check and produced identical results to
those displayed here, indicating that there is no entropy violation.
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Fig. 6. Results of the advection test problem at t = 10 s.
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5.3. Steady state test problem

The simplest family of steady state solutions are obtained by setting the velocities equal, i.e., ug = us. The
inter-phase drag force is then zero. For our purposes, a better steady state solution of the model is one with
different velocities so that the drag force is included.

For the general system, a steady state solution exists if the discharges for both phases are constant, i.e.,

Qg ¼ �gqgug and Qs ¼ �sqsus;

and the three ordinary differential equations

QgðugÞx þ x1ðpgÞx þ x2ðpsÞx ¼ �bðug � usÞ; ð10aÞ
QsðusÞx þ x3ðpgÞx þ x4ðpsÞx ¼ bðug � usÞ; ð10bÞ
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Fig. 7. Results for the square pulse test problem at t = 200 s (CP).
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and

QsðT sÞx ¼ �
2

3
ðpsðusÞx þ c� ðjðT sÞxÞx þ 3bT sÞ ð10cÞ

are satisfied.
To obtain a steady state solution for non-equal velocities, different velocities are imposed at the upstream

boundary and the scheme iterated until a steady state has been reached. The initial conditions are:

qgðx; 0Þ ¼ 1:2885; ugðx; 0Þ ¼ u0
g;

�sðx; 0Þ ¼ 0:1; usðx; 0Þ ¼ 1 and T sðx; 0Þ ¼ 0:1

with boundary conditions

qgð100; tÞ ¼ 1:2885; ugð0; tÞ ¼ u0
g; ð11aÞ

�sð0; tÞ ¼ 0:1; usð0; tÞ ¼ 1 and T sð0; tÞ ¼ 0:001. ð11bÞ
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Fig. 8. Results for the square pulse test problem at t = 200 s (PW).
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The condition for a steady state to have been reached is

jwnþ1
i � wn

i j 6 tol 8i;
where tol = 1E � 8.

Figs. 10 and 11 illustrate a comparison of the different models using either u0
g ¼ 1:5 m=s or u0

g ¼ 5 m=s,
respectively. All models were approximated using the high resolution scheme with the van Leer flux-limiter
(9) and the upwind approach for the inhomogeneous terms. Two spatial step sizes were used: the standard
Dx = 1 m and a fine mesh (FM) of Dx = 0.1 m.

The results show that as the gas velocity is increased, the gradient of the variables at the upstream boundary
increases due to the drag force dominating the pressure gradient terms as the difference between the velocities
becomes larger. From Eqs. (10a) and (10b)

ðug � usÞx þ
x1

Qg

� x3

Qs

 !
ðpgÞx þ

x2

Qg

� x4

Qs

 !
ðpsÞx ¼ �b0 Qg þ Qs

QgQs

 !
ðug � usÞ2;

Fig. 9. Fine mesh results for the square pulse test problem for t = 0–200 s (PW).
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where the drag force has been simplified and b0 is assumed to be a constant

b0 ¼ 3CD

4ds

q0
g�

0
g�

0
s

obtained from the boundary values (denoted by a 0 superscript). Supposing the drag force is large compared
with the pressure gradient terms, the latter may be neglected and we obtain an equation for the difference in
velocities

ðug � usÞx ¼ �b0 Qg þ Qs

QgQs

 !
ðug � usÞ2

with solution

ug � us ¼
u0

g � u0
s

b0 QgþQs

QgQs

� �
ðu0

g � u0
s Þxþ 1

.

1.2885

1.28855

1.2886

1.28865

1.2887

1.28875

1.2888

1.28885

1.2889

0 20 40 60 80 100

x

G
as

 D
en

si
ty

1

1.05

1.1

1.15

1.2

1.25

1.3

0 20 40 60 80 100

x

S
ol

id
s 

V
el

oc
ity

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 20 40 60 80 100

x

G
ra

nu
la

r 
T

em
pe

ra
tu

re

1.46

1.465

1.47

1.475

1.48

1.485

1.49

1.495

1.5

0 20 40 60 80 100

x

G
as

 V
el

oc
ity

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0 10 20 30 40 50 60 70 80 90 100

x

S
ol

id
s 

V
ol

um
e 

F
ra

ct
io

n

A A-FM B B-FM

Fig. 10. Results for the steady state test problem with u0
g ¼ 1:5 m=s.
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Fig. 12 illustrates this equation for the boundary values (11) with u0
g ¼ 2–5. Notice that there is a vertical

asymptote close to the origin,

x� ¼ �1

b0 QgþQs

QgQs

� �
ðu0

g � u0
s Þ
;

which gets closer to the origin as the difference between ug � us increases.
As the difference between the velocities increases at the upstream boundary, a kink becomes discernible a

distance Dx, (one grid point) away from the upstream boundary and is due to the effect of the drag force
on the gradient in the variables at the upstream boundary. As the difference between the two velocities
increases, the gradient increases at the upstream boundary and the kink becomes more prominent. This
may be rectified by using a finer space mesh so that the gradient is more accurately calculated. As the dif-
ference between the velocities increases, e.g. ug � us > 5, the drag force term becomes ‘‘stiff’’ and the scheme
becomes unstable.
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Fig. 11. Results for the steady state test problem with u0
g ¼ 5 m=s.
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This test case is very sensitive to the type of flux-limiter. If the min mod limiter (8) is used then numerical
oscillations are produced in the solids variables whereas the van Leer (9) limiter produces no numerical oscil-
lations. If the Superbee limiter of Roe [33] is used, the numerical scheme becomes unstable. Model A is more
sensitive to the type of limiter than Model B, which may be due to Model A being conditionally hyperbolic
and the model contains more inhomogeneous terms than Model B. Model A remains hyperbolic for this test
case, but the dissipation term (c) in the fluctuating energy Eq. (3e) reduces the granular temperature towards
zero. Using a larger value of Ts at the upstream boundary increases the gradient in the variables there. The
numerical scheme also becomes unstable for Ts P 1. Using smaller values of Ts at the upstream boundary
causes Model A to be hyperbolic only near the upstream boundary.

Concerning the inter-phase drag force, in Model B, if gravity is present Gidaspow [11] deduced that the
drag force coefficient must be replaced with

bB ¼ bA�
�1
s

in order for Archimedes principle to be satisfied. In the problems considered here, gravity is absent and so the
same drag force coefficient was used in both models. Boemer et al. [4] also illustrated a difference between the
models for certain test cases of 2D fluidized beds. They deduced that Model B results in a physical modifica-
tion of the problem which can lead to an artificial increase in the forces carrying the particles. Moreover, even
though Model A is deemed to be more physically correct than Model B, Boemer et al. also demonstrated that
Model B produced numerical results that were closer to experiments than Model A.

6. Conclusion

In this paper, we have presented a general Eulerian two-phase gas–solid flow model and discussed three
different variations of this model. We discretised the general system by using a high resolution scheme and
investigated the different models for three different test cases.

The results for the different models are given above. The high resolution scheme needed to be slightly
adapted (e.g. a different limiter or discretisation of the inhomogeneous terms) for certain test cases in order
to ensure that no numerical oscillations or kinks developed. Other test cases were also investigated, which
are not presented in this paper. When approximating the inhomogeneous terms with first order derivatives,
the upwind method (7) is more accurate than the pointwise method (6) for test cases where the solids velocity
was not close to zero. When the solids velocity was sufficiently close to zero, the pointwise method is superior to
the upwind method, the latter producing numerical kinks in the results. Moreover, if the solids velocity changes
sign, a numerical problem occurs at the stagnation point, which is not present with the pointwise method,
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Fig. 12. Illustration of the significance of the drag force.
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thereby illustrating that the problem is mainly due to the approximation of the inhomogeneous terms. This is in
contrast to other systems of inhomogeneous conservation laws (e.g. shallow water equations, Euler equations,
etc.), where the pointwise method has been known to produce inaccurate results. Sweby [40] also discovered a
situation for the Euler equations where the pointwise method was superior to the upwind method.

The high resolution scheme is sensitive to the type of limiter used, some test cases requiring the van Leer
limiter (9), others requiring the minmod limiter (8) to minimise numerical oscillations. The choice of limiter
can affect the stability of the scheme when applied to inhomogeneous terms (see Hudson [18] and Hubbard
and Garcia-Navarro [16]), the scheme was sensitive to the choice of limiter when the pointwise method is used
for the inhomogeneous terms.

We have demonstrated that Model A is hyperbolic for a region of small relative velocities, due the inclusion
of the solids pressure in the solids phase momentum equation. The size of the region is dependent on the values
of �s, Ts and qg. Model B is unconditionally well-posed whereas Model C is only well posed for ug = us or for
large relative velocities. For small relative velocities, the regime of physical interest, Model A remains well-
posed, although it becomes ill-posed as Ts! 0.

For the test cases investigated here, the gas density qg remains almost constant and the gradient of gas pres-
sure is small. Models A and B only differ due to the gas pressure derivatives thus, there is little difference
between them if the gradient of the gas pressure term is negligible.

A final conclusion is that both Models A and B can be accurately approximated using the high resolution
scheme presented in this paper. Model A has the better physical foundation, so the fact that the presence of the
solids pressure increases the regime of well-posedness, leads to the final conclusion that Model A is preferable
for gas-grain two phase flow.
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Appendix A. Derivation of Roe average values

The numerical scheme discussed in Section 4.2 is based on Roe’s scheme [32] and thus, requires Roe aver-
aged values. In this section, we briefly outline the derivation of the Roe averaged values for the general system.

A.1. Roe averages

We first obtain a Roe averaged Jacobian matrix, ~AðwL;wRÞ, which satisfies the following u-properties [32],

� ~AðwL;wRÞ must be diagonalisable with real eigenvalues (hyperbolicity);
� ~AðwL;wRÞ ! ~AðwÞ as wL,wR! w (consistency);
� DF ¼ ~AðwL;wRÞDw (conservation).

We obtain such a Roe averaged Jacobian by using the conservation u-property to obtain Roe averaged values
of the variables. For our general system, we must satisfy

DF ¼ ~ADw;

where

~A ¼

0 1 0 0 0

~��1
g ~c2

g � ~u2
g 2~ug ~qg~�

�1
g ~c2

g 0 0

0 0 0 1 0

0 0 ~�s
~T s ~c0

2 � ~u2
s 2~us

~d0

0 0 �~us
~T s

~T s ~us

2
6666664

3
7777775
; w ¼

�gqg

�gqgug

�s

�sus

�sT s

2
6666664

3
7777775

and F ¼

�gqgug

�gqgu2
g þ pg

�sus

�su2
s þ �sT sd0

�susT s

2
6666664

3
7777775

.
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Thus, we must ensure that:

Dð�gqgugÞ ¼ Dð�gqgugÞ; ðA:1aÞ
Dð�gqgu2

gÞ þ Dpg ¼ ð~c2
g~�
�1
g � ~u2

gÞDð�gqgÞ þ 2~ugDð�gqgugÞ þ ~qg~�
�1
g ~c2

gD�s; ðA:1bÞ
Dð�susÞ ¼ Dð�susÞ; ðA:1cÞ
Dð�su2

s Þ þ Dð�sT sd0Þ ¼ ð~�s
~T s ~c0

2 � ~u2
s ÞD�s þ 2~usDð�susÞ þ ~d0Dð�sT sÞ; ðA:1dÞ

Dð�susT sÞ ¼ �~us
~T sD�s þ ~T sDð�susÞ þ ~usDð�sT sÞ. ðA:1eÞ

Clearly, Eqs. (A.1a) and (A.1c) are automatically satisfied. To obtain Roe average values of the velocities, we
let:

~u2
gDð�gqgÞ � 2~ugDð�gqgugÞ þ Dð�gqgu2

gÞ ¼ 0;

~u2
s D�s � 2~usDð�susÞ þ Dð�su2

s Þ ¼ 0.

Thus, by obtaining the roots of these two quadratic equations (of ~uk) we can use one of the roots for the Roe
averaged value,

~ug ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�gqgÞL

q
ðugÞL þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�gqgÞR

q
ðugÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�gqgÞL
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�gqgÞR

q and ~us ¼
ffiffiffiffiffiffiffiffiffiffi
ð�sÞL

p
ðusÞL þ

ffiffiffiffiffiffiffiffiffiffi
ð�sÞR

p
ðusÞRffiffiffiffiffiffiffiffiffiffi

ð�sÞL
p

þ
ffiffiffiffiffiffiffiffiffiffi
ð�sÞR

p .

We can now obtain

~T s ¼
ffiffiffiffiffiffiffiffiffiffi
ð�sÞL

p
ðT sÞL þ

ffiffiffiffiffiffiffiffiffiffi
ð�sÞR

p
ðT sÞRffiffiffiffiffiffiffiffiffiffi

ð�sÞL
p

þ
ffiffiffiffiffiffiffiffiffiffi
ð�sÞR

p
by substituting ~us into (A.1e) and simplifying.

Thus, we only have two equations left to satisfy:

~�gDpg ¼ ~c2
gðDð�gqgÞ � ~qgD�gÞ; ðA:2aÞ

Dð�sT sd0Þ ¼ ~�s
~T s ~c0

2D�s þ ~d0Dð�sT sÞ. ðA:2bÞ

We can simplify (A.2a) by letting

~c2
g ¼

Dpg

Dqg

and substituting into (A.2a), thus,

Dð�gqgÞ ¼ ~�gDqg þ ~qgD�g.

Here, we have two options:

~�k ¼
1

2
ðð�kÞL þ ð�kÞRÞ and ~qg ¼

1

2
ððqgÞL þ ðqgÞRÞ ðA:3Þ

or

~�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�kÞLð�kÞR

q
and ~qg ¼

ffiffiffiffiffiffiffiffiffiffi
ð�gÞL

p
ðqgÞL þ

ffiffiffiffiffiffiffiffiffiffiffi
ð�gÞR

p
ðqgÞRffiffiffiffiffiffiffiffiffiffi

ð�gÞL
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
ð�gÞR

p . ðA:4Þ

We can also satisfy (A.2b) by letting

~c2
0 ¼

Dd0

D�s
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and substituting into (A.2b),

Dð�sT sd0Þ ¼ ~�s
~T sDd0 þ ~d0Dð�sT sÞ.

Hence,

~d0 ¼
Dð�sT sd0Þ � ~�s

~T sDd0

Dð�sT sÞ
.

If the Roe averages (A.4) are used, then ~d0 simplifies to

~d0 ¼
ffiffiffiffiffiffiffiffiffiffi
ð�sÞL

p
ðd0ÞL þ

ffiffiffiffiffiffiffiffiffiffi
ð�sÞR

p
ðd0ÞRffiffiffiffiffiffiffiffiffiffi

ð�sÞL
p

þ
ffiffiffiffiffiffiffiffiffiffi
ð�sÞR

p
Thus, all the Roe average values have been obtained. Notice that these values ensure that the other u-prop-
erties are satisfied.

A.2. Eigenvalues and eigenvectors

The eigenvalues and eigenvectors are obtained directly from the Roe averaged Jacobian matrix. We can
easily obtain the eigenvalues

~k1;2 ¼ ~ug � ~cg

ffiffiffiffiffiffiffi
~��1

g

q
; ~k3 ¼ ~us and ~k4;5 ¼ ~us �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~T sð~d0 þ ~�s~c2

oÞ
q

.

The eigenvectors are determined in terms of the numerical eigenvalues and are obtained by solving

�~k 1 0 0 0

~��1
g ~c2

g � ~u2
g 2~ug � ~k ~qg~�

�1
g ~c2

g 0 0

0 0 �~k 1 0

0 0 ~�s
~T s ~c0

2 � ~u2
s 2~us � ~k ~d0

0 0 �~us
~T s

~T s ~us � ~k

2
66666664

3
77777775

1

e2

e3

e4

e5

2
6666664

3
7777775
¼ 0.

Thus,

e2 ¼ ~k; ðA:5aÞ
~��1

g ~c2
g � ~u2

g þ ð2~ug � ~kÞe2 þ ~qg~�
�1
g ~c2

ge3 ¼ 0; ðA:5bÞ
e4 ¼ ~ke3; ðA:5cÞ
ð~�s

~T s ~c0
2 � ~u2

s Þe3 þ ð2~us � ~kÞe4 þ ~d0e5 ¼ 0; ðA:5dÞ
� ~us

~T se3 þ ~T se4 þ ð~us � ~kÞe5 ¼ 0. ðA:5eÞ

Now, by substituting (A.5a) into (A.5b), we obtain

e3 ¼
~u2

g~�g � ~c2
g � ð2~ug � ~kÞ~�g

~k

~qg~c2
g

¼
ð~k� ~ugÞ2~�g � ~c2

g

~qg~c2
g

.

Also, by substituting (A.5c) into (A.5d), we obtain

e5 ¼
e3

~d0

ð~k� ~usÞ2 � ~�s
~T s~c2

0

� �
.

Hence, we obtain
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~e1;2 ¼

1
~k1;2

0

0

0

2
6666664

3
7777775

and ~e3;4;5 ¼

1
~k3;4;5

~d3;4;5

~k3;4;5
~d3;4;5

~d3;4;5

~d0
ð~k3;4;5 � ~usÞ2 � ~�s

~T s~c2
0

� �

2
66666664

3
77777775
;

where

~dk ¼
ð~kk � ~ugÞ2~�g � ~c2

g

~qg~c2
g

.

A.3. Wave strengths

We obtain wave strengths through the decomposition,

Dw ¼
X5

k¼1

~ak~ek;

which for the general system results in solving

Dð�gqgÞ ¼ ~a1 þ ~a2 þ ~a3 þ ~a4 þ ~a5; ðA:6aÞ
Dð�gqgugÞ ¼ ~k1~a1 þ ~k2~a2 þ ~k3~a3 þ ~k4~a4 þ ~k5~a5; ðA:6bÞ
D�s ¼ ~d3~a3 þ ~d4~a4 þ ~d5~a5; ðA:6cÞ
Dð�susÞ ¼ ~k3

~d3~a3 þ ~k4
~d4~a4 þ ~k5

~d5~a5; ðA:6dÞ
~d0Dð�sT sÞ ¼ ~d3 ð~k3 � ~usÞ2 � ~�s

~T s~c2
0

� �
~a3 þ ~d4 ð~k4 � ~usÞ2 � ~�s

~T s~c2
0

� �
~a4 þ ~d5 ð~k5 � ~usÞ2 � ~�s

~T s~c2
0

� �
~a5 ðA:6eÞ

for ~ak. The algebraic expressions obtained by solving this set of simultaneous equations ~a1;2 are complicated.
To keep the algebraic expressions in a compact form, we solve (A.6c)–(A.6e) to obtain ~a3;4;5,

~ak ¼
ð~ka

~kb � ~u2
s þ ~�s

~T s~c2
0ÞD�s � ð~ka þ ~kb � 2~usÞDð�susÞ þ ~d0Dð�sT sÞ

~dkð~kk � ~kaÞð~kk � ~kbÞ
;

where k 6¼ a 6¼ b, and then solve ~a1;2 in terms of the other wave strengths,

~a1;2 ¼ �
~k3~a3 þ ~k4~a4 þ ~k5~a5 � ð~a3 þ ~a4 þ ~a5 � Dð�gqgÞÞ~k2;1 � Dð�gqgugÞ

~k1 � ~k2

.

Moreover, by substituting the expressions for ~kk and using

~�s
~T s~c2

0D�s þ ~d0Dð�sT sÞ ¼ Dð�sT sd0Þ and Dð�susÞ ¼ ~usD�s þ ~�sDus; ðA:7Þ
we obtain

~a3 ¼ �
~d0~�sDT s

~d3~c2
s

and ~a4;5 ¼
1

2~d4;5~c2
s

Dð�sT sd0Þ � ~cs~�sDusð Þ;

where ~c2
s ¼ ~T sð~d0 þ ~�s~c2

0Þ.

A.4. Inhomogeneous terms

The values of ~bk are also determined from the decomposition,
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Dx~R ¼
X5

k¼1

~bk~ek;

which for the general system results in solving

0 ¼ ~b1 þ ~b2 þ ~b3 þ ~b4 þ ~b5; ðA:8aÞ
ð1� x1ÞDpg � qsx2Dð�sT sd0Þ ¼ ~k1

~b1 þ ~k2
~b2 þ ~k3

~b3 þ ~k4
~b4 þ ~k5

~b5; ðA:8bÞ
0 ¼ ~d3

~b3 þ ~d4
~b4 þ ~d5

~b5; ðA:8cÞ

� x3

qs

Dpg þ ð1� x4ÞDð�sT sd0Þ ¼ ~k3
~d3

~b3 þ ~k4
~d4

~b4 þ ~k5
~d5

~b5; ðA:8dÞ

� 2

3
~d2

0~�s
~T sDus ¼ ~d3 ð~k3 � ~usÞ2 � ~�s

~T s~c2
0

� �
~b3 þ ~d4 ð~k4 � ~usÞ2 � ~�s

~T s~c2
0

� �
~b4 þ ~d5 ð~k5 � ~usÞ2 � ~�s

~T s~c2
0

� �
~b5

ðA:8eÞ

for ~bk. As with the wave strengths, algebraic expressions of ~b1;2 are complicated. Thus, we solve (A.8c)–(A.8e)
to obtain ~b3;4;5,

~bk ¼
ð2~us � ~ka � ~kbÞ~r4 þ ~d0~r5

~dkð~kk � ~kaÞð~kk � ~kbÞ
;

where k 6¼ a 6¼ b, and then solve ~b1;2 in terms of the other values of ~b,

~b1;2 ¼ �
~k3

~b3 þ ~k4
~b4 þ ~k5

~b5 � ð~b3 þ ~b4 þ ~b5Þ~k2;1 � ~r2

~k1 � ~k2

;

where

~r2 ¼ ð1� x1ÞDpg � qsx2Dð�sT sd0Þ; ~r4 ¼ �
x3

qs

Dpg þ ð1� x4ÞDð�sT sd0Þ and ~r5 ¼ �
2

3
~d0~�s

~T sDus.

Appendix B. C-property proof

To demonstrate that the numerical scheme satisfies the C-property, we apply the following basic steady
state solution to the numerical scheme,

qg ¼ R; ug ¼ us ¼ 0; �s ¼ GðxÞ and T s ¼
L
�sd0

.

For this steady state solution, the discharges and pressures are constant and rs = 1 with j = 0. When the diffusion
and dissipation terms of fluctuating energy are present, i.e., c and j, boundary conditions are required in order to
obtain a steady state solution since these two terms imply that Ts! 0. Similarly, the two velocities must be equal
since, in the presence of the drag force, the two velocities tend to equality if no boundary conditions are pre-
scribed. Thus, the above steady state solution is the only viable test case without applying boundary conditions.

When we apply this steady state solution to the numerical scheme, the eigenvalues become,

~k1;2 ¼ �~cg

ffiffiffiffiffiffiffi
~��1

g

q
; ~k3 ¼ 0 and ~k4;5 ¼ �~cs;

with corresponding eigenvectors

~e1;2 ¼

1
~k1;2

0

0

0

2
6666664

3
7777775
; ~e3

k ¼

1

0
~d3

0

� ~d3
~d0

~�s
~T s~c2

0

2
6666664

3
7777775

and ~e4;5
k ¼

1
~kk

~dk

~kk
~dk

~dk
~T s

2
6666664

3
7777775

.
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Since the pressures are constant, the wave strengths simplify to

~a1;2 ¼
1

2
ðDð�gqgÞ � ~a3Þ; ~a3 ¼

R~d0~�sDT s

~c2
s

and ~a4;5 ¼ 0

and the inhomogeneous terms are all zero, i.e., ~bk ¼ 0.
We can simplify ~a1;2 even further to

~a1;2 ¼ �
R

2~c2
s

~c2
s D�s þ ~d0~�sDT s

� �
¼ � R

2~c2
s

~T s
~d0D�s þ ~T s~�s~c2

0D�s þ ~d0~�sDT s

� �
and by using (A.7),

~a1;2 ¼ �
R

2~c2
s

~T s~�s~c2
0D�s þ ~d0Dð�sT sÞ

� �
¼ � R

2~c2
s

Dð�sT sd0Þ ¼ 0.

Thus, since ~akj~kkj ¼ 0 for all k, the numerical flux-function becomes

F�iþ1
2
¼

0

pg

0

L

0

2
6666664

3
7777775
) F�iþ1

2
� F�i�1

2
¼ 0.

Hence, the scheme is exact when applied to this steady state solution and, thus, satisfies the C-property.

Appendix C. The gas energy equation

For non-isentropic flow, the gas energy equation

ð�gEgÞt þ ðugð�gEg þ x1pg þ x2psÞÞx þ pgðx1Þt þ psðx2Þt ¼ �bugðug � usÞ

is appended to the model (3), where the total energy per unit volume is

Eg ¼ eg þ
1

2
u2

g

� �
qg

and the specific internal energy (for ideal gases) is

eg ¼
pg

ðcg � 1Þqg

) pg ¼ ðcg � 1Þ Eg �
1

2
qgu2

g

� �
.

For further discussion on the presence of the time derivatives (xk)t, see Gidaspow [13]. The analysis presented
in this paper indicates that Model A remains conditionally hyperbolic and Model B unconditionally hyper-
bolic when the gas energy equation is included.
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