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Abstract

In this paper, we investigate periodic solutions of linear and nonlinear discrete Volterra equations of convolution
or non-convolution type with unbounded memory.

For linear discrete Volterra equations of convolution type, we establish Fredholm’s alternative theorem and for
equations of non-convolution type, and we prove that a unique periodic solution exists for a particular bounded initial
function under appropriate conditions. Further, this unique periodic solution attracts all other solutions with bounded
initial function. All solutions of linear discrete Volterra equations with bounded initial functions are asymptotically
periodic under certain conditions. A condition for periodic solutions in the nonlinear case is established.
© 2003 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In the widest use of the term, “Volterra equations” are equations thataargalor non-anticipative
Discrete Volterra equations (DVES) can be considered as the discrete analogue of classical Volterra integral
equations such as

t

x(H) = f(©) —i—/ B(t, $)x(s) ds, (1.1a)
and

x(H) = f(©) +/ B(t, s)x(s) ds, (1.1b)
0
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or corresponding integro-differential equati¢h®], and they arise, in particular, when one applies certain
numerical methodfl,3] to Volterra integral (or integro-differential) equations. (They also arise directly,
from modelling of discrete systems.)

The discrete analogues of (1.1a) could quite properly be described as Veliarnaatiorequations.

In a preceding work2], we established several fixed-point theorems for discrete Volterra operators
and related existence results of solutions of discrete Volterra equations. This paper is devoted to the studs
of periodic or asymptotically periodigsee below) solutions of linear and nonlinear discrete Volterra
“summation” equations with unbounded memory, which may be of convolution or non-convolution type.
We first consider the linear system

n

x(n)=Y_ B, jx(j), n=0, (1.2a)

j==00

and? the corresponding inhomogeneous form

n

x(m) = f) + ) B, px(j), n=0. (1.2b)

Jj=—00

In addition, we consider (i®ection 4 equations of the form

x(n) = f(n) + Z B(n, px(j), n=0. (1.2c)
0
We also discuss the corresponding convolution equations, e.g.,
mm=§5Km<mm,nza (1.2d)
or o
WbMHiM%Mﬂn& (1.2e)
j=—00

where we shall assume a summability condit}off” , |K (n)| < oo.

The above equations will be consideredfiglimensional Euclidean spaf, where we takét to be
consistently eitheR or C. We assume thaf(n) € E? forn = 0,1, 2, ..., that the matriceB(n, j)
E*4 forn, j € {0,1,2,...}, satisfyB(n, j) = 0 for j > n, orthatK(n) e E¥*¢forn € {0,1,2,...}
and we seek a solutiofx(n)},-o in the appropriate space, witlin) € E¢ forn = 0,1,2, ..., given
appropriatex(n) € E¢ forn = —1,-2,-3,.... A solution {x(n)},>0 of Eq. (1.2a)or of (1.2b) is
said to be geriodic solutionif there existsN € Z, such thatx(n + N) = x(n) for n > 0. (When
{x(n) = x(n, $)},>0 IS a periodic solution, it does not follow thatn + N) = x(n) forn < 0.)

In [10], Elaydi et al. gave an overview of results, that have been obtained in the last two decades, on
the existence of periodic solutions of difference equations. That survey covers both ordinary difference

1 Eqg. (1.2b)can be converted to an explicit problem, in simple cases; (1.2b) includes corresponding explicit problems as a
special case. Generally, we cannot in practice convert implicit nonlinear discrete Volterra equations (seegtég.) to an
explicit form.
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equations, such agn + 1) = A(n)x(n), and Volterra difference equations. Although several papers
[6,8—10] relate to periodic solutions of systems of explicit difference equations, little work has been
done on questions of the periodic solution of implicit Volterra summation equations, to the best of our
knowledge.

The structure of this paper is as follows. $®ction 2 we give a representation theorem for periodic
sequences. ISection 3we deal with periodic solutions of linear convolution discrete Volterra equations
and give Fredholm’s alternative for this systemSection 4 we establish, for non-convolution discrete
\olterra equations, the existence of a unique periodic solution of (1.2b). This result is obtained under more
general conditions than those giver{@j for Volterra difference equations, and we prove the attractivity
of the periodic solution. In fact, we prove that all solutions of (1.2b) with bounded initial functions are
asymptotically periodic.

In Section 5 we discuss nonlinear discrete Volterra equations, which include nonlinear “ordinary”
implicit difference equations as a special case, and prove the existence of a unique periodic solution under
certain conditions. We investigate periodic solutions of linear and nonlinear discrete Volterra equations
of convolution or non-convolution type with unbounded memory.

2. Priminaries

We formalize our notation. Denote By 7., Z~, respectively, the set of integers, the set of nonnegative
integers, and the set of non-positive integers. In the following, we yge denote a norm of a vector in
E“ and also the corresponding subordinate norm of a matrix acting on the corresponding Banach space
of vectors.

Definition 2.1. We denote bYS(E?) = {£ : &€ = {£,}.>0, & € E¢} the linear space of sequence®i A
sequencéé(n)},-o € S(EY) is periodic of periodN € Z, if &n + N) = &n) forn > 0, and forN > 0
we denote byPy (E¢) the space oN-periodic sequences H(E4):

Py (EY) = {£]& = {Eu}nz0 € SEY), &y = &4, n > 0}, (2.1a)

with norm||&|| = supy.,<y_1 |&: 1. With this norm,Py (E¢) is a finite-dimensional Banach space whose
elements ard/-periodic sequences; furth@y (E9) is a subspace of the Banach sp&t¢E?) of bounded
sequences,

LB = {§ € SEY), [l = SUP|&,| < 00} (2.1b)

n>0

To discuss the solution of equations such as (1.2a), we need to introduce the concept of an initial
function.

Definition 2.2. We define annitial function ¢(n) for (1.2a) or (1.2b) as a function fror to E¢, such
thatx(n, ¢) = ¢(n) forn € Z~. A solutionx = {x(n) = x(n, ¢)},>0 Of (1.2a) or (1.2b) is a sequence of
elementsc(n) e E¢ that satisfies (1.2a) or (1.2b) for> 0 and

x(r, ) = ¢(r) e Bl forr e Z™. (2.2)
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Definition 2.3. We say that a homogeneous system (1.2a) or (1.2wnsritical with respect taS(E%)
if the only solution is the trivial solutiony(n) = 0 forn > 0). It admits no nontrivial solutiofw(n)},>o
in S(EY). Otherwise, (1.2a) is said to logitical with respect taS(E?).

We take eithell = C or E = R. When¢(n) € E¢ forn € Z~, K(n), B(n, j) € E¢, and f(n) € E¢
(forn, j € Z, andj < n), then any solution of (1.2a)—(1.2e) is alsdifi. In consequence, results for
E = R can be deduced from results fir= C, and it will be sufficient to discuss the caBe= C and
obtain the corresponding result féir= R as an immediate corollary.

If we introduce the inner product fd&r = {£,},20, 7 = {1:}n=0 € Py (C?), defined (wherg* = &7
denotes the conjugate transposé&)dby

N—-1
(.n) = &mn.. wheret,, n, € C’, (2.3)

n=0

then we can construct an orthogonal basis#g(C?), based upon the roots of unity and the columns of
the identity matrix of orded. For simplicity, let us discuss the cage= 1. Letw; = exp(2imj/N) be the
N-th roots of unity, where?i = —1, and let2; = {(w))"}u=0 j = 0,1,... , N — 1. Itis clear that each
2; is anN-periodic sequence and

N-1 .
(2, 2j) = Zexp[w

i| =N5jss
n=0

wheredis = 0 if j # s andgs = 1if j = 5. Thus, the sequence8;, j = 0,1,..., N — 1, form
an orthogonal basis faPy(C). Then any sequencg:(n)},~0 € Py(C) can be written in the form
u(n) = YV ewr forn = 0, wheree, € C,s = 0,..., N — 1. Since we can obviously extend the
argument to the spadey (C?) (d > 1), we have the following result.

Lemma2.4. Any{u(n)},-o0 € Py(E?) can be represented
N-1

u(m) =Yy !, n=0, (2.4)

s=0
where
2ims
ws=expl—), s=0,....,N—-1
N
The vectorg, € C, s =0, ..., N — 1, are uniquely determined by0), u(1), ..., u(N — 1).

An explicit expression foe, € C?, s = 0,..., N — 1 can be given. For the spa® (R¢) of real
sequences, it is clear th&ly (R?) can be embedded iRy (C?), and we have the following result. Any
{u(n)},=0 € Py(RY) can be represented for somes C“ by (2.4):

N-1 N-1
u(n) = Z o0y = Ru(n)) =N (Z csa);l> , n>0. (2.5)
s=0

s=0

We shall employ (2.5) for convenience, but we can deduce the following result from (2.4).
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Lemma 2.5. Any{x(n)}.>0 € Py(R?) can be represented, with correspondingb; € R?, as

m—1 . .
x(n) = ao+ (=1)"am + Y _ (aj cos (nj_n) + b; sin (m_n)) , if N =2m, (2.6a)
= m m
oras
(n) = +i ; COS Gaidll +b; sin Gaidll ifN=2m+1 (2.6b)
T AT A 1) T 2m 1) ) s '

Formulas (2.6a) and (2.6b) are from Carvalho’s Lenj#jalt is possible to use formulas (2.6) to treat
the case wherk is R. However, it is more convenient to embed the real d&aseR in the caséE = C,
and employ (2.5); we mention (2.6) only for completeness.

3. Linear equations of convolution type

In this section, we consider the system

n

x(n)= Y Kn—px(j), n=0, (3.1)

j==o00

of discrete Volterra equations of convolution type, and its inhomogeneous analogue

n

x(n) = fn)+ Y Kin— px(j), n=0, (3.2)

j=—o0

where{ f(n)},>0 € S(EY). Here,{K(n)},=0 € S(E?*?) is a sequence af x d matrices with entries ift.
We assume thtk (n)},=o € £1(E**¢), that is:

Assumption H1.
o0
Y 1K < oo.
j=0
From (3.1) and (3.2), we can obtain the equivalent forms

x(n) =Y K()x(n—j) and x(n) = fn) + Y K()x(n = j). (3-3)

j=0 j=0

Definition 3.1. The Z-transformz{u}(z) of a sequencéu(n)},=0 € S(E?) is

o0

Z{u)(2) =) umz™" (3.4a)

n=0
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Similarly, the Z-transformZ{M}(z) of a sequenceM(n)},>o € S(E4*9) is

ZM)(z) =Y Mn)z™". (3.4b)

n=0

Remark 3.2. Associated with (3.4a) and (3.4b) are the series

AW =) xmE& and AM)E) =) MmE', EcC.

n=0 n=0

If R is the largest real number such thatr)(§) converges foté| < R, then the seried -, x(n)z ™"
converges fofz| > 1/R. Itis clear that if{x(n)},>0 € ¢1(E9), then (3.4a) converges at least for> 1.
If {x(n)},=0 € £ (E?), then (3.4a) converges fty| > 1 (se€7]).

Remark 3.3. If {K(n)},>0 € 0 Z;";O K(j)w{j converges for each, (0 < s < N — 1), which

implies that for sequencdX (n)},-0 € ¢t and{w,"},>0 we can define a matrin‘;‘;o K(j)a);j by the
Z-transform. Naturally, for a vector sequerfegw; " },-0, we define a vector it? by

Y K(eswy = | Y Koy | ¢,
j=0 j=0

wherec, € C¢. Similarly, for a vector sequenc{{f’z‘o1 csw; "}u=0 we define

00 N-1 N-1 00
ZK(j) chws_j = Z (Z K(j)a)sj) Cy. (3.5)
j=0 s=0

s=0 j=0

Thus, the left-hand side of (3.5) makes sense for any veefoesC? for 0 < s < N — 1. We always
assume the above definition in this section if needed.

Having presented our notation, we can now state the main purpose of this section. It is to establish the
relationship between the periodic solutions of (3.1) or (3.2) and the roots of the corresponding equation

det(/ — Z{K}(z)) = 0.

In fact, we show that any-periodic solutions of (3.1) and (3.2) can be written down in the form of a
Z-transform. The relation between periodic solutions of (3.2) and the associated equations

x(n) = fn) + ) K(n = px(j), n=0,

j=0

will be discussed irBection 4
The main result of this section now follows. In the form stated, the results are apparently new but the
method of proof is adapted from results already in the literature.
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Theorem 3.4. Suppose (n) € E4*¢ for n € Z, . UnderAssumption H1(3.1) has a nontrivial periodic
solution inPy (EY) if and only ifdet(/ — Z{K}(z)) = 0 has a root; = € on the unit complex circle for
which6/2r is rational. Specifically, it = 2zm /N, then (3.1) has a N-periodic solution

Proof.
(i) Assuming that (3.1) has a nontrivial-periodic solution(x(n)},=0 € Py (E9), by (2.4) we can write
it in the form
N-1
x(n) =Y e, n=0, (3.6)
s=0
wherec, € C? andw; = exp(2ins/N), s = 0,..., N — 1. Thus, there exists at least one integer

(0 < g < N —1) such that, # 0. Substituting (3.6) into (3.3), yields

N-1 00 N-1 N-1
PILCEDMUPIEEDD ((me ) )
s=0 j=0 s=0 s=0

Comparing both sides, we obtain (demmma 2.4 ¢, = (Z‘]’io K(j)a);’)cs; equivalently

[I — Z{K}(ws)]es =0, O0<s<N-1, (3.7)
where Z{K}(z) is the Z-transform of{K(n)},>0, and [ is thed x d identity matrix. Notice that
¢, # 0. It follows from [I — Z{K}(w,)]c, = 0 that the equation dét — Z{K}(z)) = 0 has a root
7= w, = m/N, _

(i) Conversely, if det/ — Z{K}(z)) = 0 has aroot = w,, = €% with & = 27rm/N, andm is an integer

(0 <m < N — 1), then there exists a vectgy € C?, ¢,, # 0, such that

[/ — Z{K}(wm)]em = 0. (3.8)

Itis clear that the sequente;, ), }n>o is N-periodic. Letx(n) = ¢, o, (n > 0). From (3.8), we have
e = Z{K}@m)em = Y. 2 K(j)wn’ e and

x(n) = cnepy = Z(K}@n)cn@)y = Y K()ewwly ) =D K(j)x(n — j),

j=0 j=0
which shows that(n) = c,,@], (n > 0) is a solution of (3.1). O

Remark 3.5. Let Sy denote the set
Sy = {s: det(l — Z{K}(w,)) = 0}. (3.9)

If (3.1) is critical, then the sefy is not empty. ByTheorem 3.4{c,»/},>0 is @ non-trivial N-periodic
solution of (3.1) for each € Sy, wherec, # 0 satisfieg] — Z{K}(wy))c; = 0. Since any combination of
such solutionsgc,w! },>0 (s € Sy) is also anV-periodic solution of (3.1), we conclude that any non-trivial
N-periodic solution{x(n)},>0 of (3.1) can be represented by

x(n) = Z T‘;(C‘;a);l), Ts € C.

SESN
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The periodic solution of (3.2) is closely related to that of (3.1):

Theorem 3.6. LetAssumption Hhold and let{ f(n)},>0 € Py (EY) with f(n) = ZS"’:‘Ol fswf forn > 0.
If (3.1) is noncritical with respect t®y (E%), then (3.2) has a unique N-periodic solutipr(n)},-o given
by formula

N-1

x(m) =Y (U - 2{(K}w)] ™ f)e!, n=0. (3.10)

s=0

Proof. By Theorem 3.4if (3.1) has no nontriviaN-periodic solution, thed — Z{K}(w,) is nonsingular
fors =0,1,..., N — 1. For givenf(n) = ZSN:_Ol fil, letxg(n) = (I — Z{K}(wy)] L fy)a! for s =
0,1,..., N—1landx(n) = Zf’;ol xs(n). Obviously,{x;(n)},>0 and{x(n)},>o are N-periodic sequences.
We show tha{x(n)},>0 is a solution of (3.2). Indeed, we have

— > K(xn—=p==) KHU = Z(K} )] fa)™

Jj=0 j=0

=— Y K()o, (I - 2{K}w)] " fw!

j=0
= —Z{K}(wy) (I — Z{K} ()] L f)o!
=1 — Z{K} ][I — Z{K} ()] f)o! — (I — Z{K} )] f)o!

= fsa)’: - xs(”)

and

N-1 N-1 00 N-1 [e's)
x(n) =Y x ) =) fil+ ) K xn—j)=fn)+ Y K(x(n— ).
s=0 s=0 j=0 s=0

j=0

Thus, {x(n)},>0 is a solution of (3.2). It remains to prove that:) in (3.10) is a unique solution of
(3.2). Suppose that (3.2) has anotheperiodic solutior{y(n)},>o0. We can write it in the formy(n) =
Ve (n = 0). Now substitution ofi(n) = Y-Vt e, and f(n) = V' fiw? into (3.2) yields
[I — Z{(K}(wy)]cs = f; (0 < s < N —1). Consequently;, = [I — Z{K}(w,)]"* f;. Hencex(n) =
Zjvz‘ol([l — Z{K}(w)] 1 f)o" (n > 0) is a uniqueN-periodic solution of (3.2).
If (3.1) is critical, we have a result for (3.2) in the spirit of the Fredholm Alternative (see,[8]g.,
pp. 609—-610): O

Theorem 3.7. Suppos& (n) € E4*¢ (n = 0, 1,...) and (3.1) is critical. LetAssumption Hhold and
Suppose f(n)},>0 € Py(EY) with f(n) = Zyzj)l fiw forn = 0(f; € C%). Then (3.2) has a nontrivial
N-periodic solution irPy (E?) if and only if

N-1

Y DG =0, (3.11)

j=0
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whenevelz(n)},-0 € Py (E?) is a nontrivial N-periodic solution of

2 =) K*(pz(n—j), n=0. (3.12)

j=0
For f = { f(n)}.>0 that satisfy (3.11), (3.2) has N-periodic solutiongtg(E¢) given by
x(n) =Y cof + Y [ = Z(K) (@) filwl, n=0, (3.13)
seSn SESn
wherec; (s € Sy) satisfiedI — Z{K}(wy)]cs = f;, s € Sy. The second term
D IU = Z{K) @) M fle), n=0,
SESn

of the solution (3.13) is orthogonal to the nontrivial solutions of (3.1) lyin@inE?).

Pr oof.

(i) Suppose that (3.2) has afirperiodic solutio{x(n)},>o. It follows from (2.4) thatx(n) can be written
asx(n) = Y 1 ¢!, ¢; € C¢ (n > 0). Substitutingr(n) and f(n) = Y_"_, f;et into (3.2), yields
both '

[/ — Z{K}w)]es = f;, s€ Sy (3.14a)
and
[1 — Z{K}(@y)]es = fi, s & Sw. (3.14b)

Thus, from (3.14b)¢, = (I — Z{K}(ws)) "2 f; (s ¢ Sy). Notice that (3.14a) has a solutienfor
fixeds € Sy if and only if for all solutionsd, of

[/ — Z{K}"(0y)]ds =0, s € S, (3.15)

fs andd; are orthogonald; f; = 0). Itis readily shown that(n) = ) d;o] is a solution of the
adjointEq. (3.12)if 4 satisfies (3.15). In addition, dgemark 3.5any N-periodic solution{z(n)},>0
of (3.12) is in the forme(n) = Y ¢ ds} andd, e C satisfies (3.15). Sincg M wiw} = 0if
i # jandY Mt wlal = N, we have

N-1 N-1 N-1
(e} (fmh) =) ) fn)y =Y > Y di fioia)

n=0 n=0 seSy j=0
N-1 N-1
J— * £ n-—n __ % _
=2 D dfi) el =N dif=0.
seSy j=0 n=0 SESN

or { f(n)},>0 is orthogonal to all solutiong (n)},>0 of (3.12) in the inner product defined by (2.3).
Similarly, any nontrivialN-periodic solution{xo(n)},>o 0f (3.1) is in the formxg(n) = ZseSN eswl,
wheree; satisfies | — Z{K}(wy)]es = 0,5 € Sy. If x.(n) = ZS¢SN[(I — Z{K}(wy) L fi]o"
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(n > 0), then< {xo(n)}, {x4(n)} >= 0, which implies thafx;(n)},>0 is orthogonal to the nontrivial
N-periodic solutions of (3.1).

(i) Conversely, suppose thain) = Z?’:lo fjo} (n > 0) satisfies (3.11). Note that ary-periodic
solution{z(n)},>0 0f (3.12) is in the forny(n) = ZSGSN d,! andd, € C4 satisfies (3.15). It follows
from < {z(n)}, { f(n)} >= 0 thatd f; = 0 fors € Sy. Thus, (3.14a) has a solutienfor each fixed
s € Sy. Let

Yy = el + Y (U= 2K} )] o), n =0,
seSy S¢Sy

wherec, (s € Sy) satisfies (3.14a). Obviousl{y(n)},>0 is N-periodic sequence. It remains to show
that{y(n)},>o satisfies (3.2). Indeed, from (3.14a) we have

=Y Ky — ==Y K(pesw T =" S K = Z{K}wy)] el

j=0 seSy j=0 s¢Sy j=0
=— > Z{K}w)e,o! — > Z{KNw) (I — Z{K}(w)] " f)o!
seSy SESN
=Y (fi— Do} + Y [ = Z{KN )] — 2K} )] f)o!
seSy SESN
= (U = 2K} @) o)
s¢SnN
=Y (=)ol + Y fuor = Y (I = Z{KHw)] " f)w!
SESN s¢SN S¢Sy
= f(n) — y(n).
Thus, (3.13) is a solution of (3.2), and the proof is completed. O

4. Equations of non-convolution type

Consider the discrete Volterra equations of non-convolution type,

x(n) = fn)+ Y Bn, px(j), n=0, (4.2)

Jj=0

wheren and j are integersx(n) € E?, B(n, j) € E®4, B(n, j) = 0for j > n, and{f(n)},=0 € E* is
a given sequence. We shall show that the boundedness of the solution of (4.1) is closely related to the
existence of periodic solutions of (1.2b), namely,

2m) = f)+ Y B, z(p), n=0, (4.2)

Jj=—00
when
B(n+ N,m+ N) = B(n,m)foralln,m € Z, (4.3a)
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f(n+ N)= f(n)foralln € Z (4.3b)

whereN is some positive integer.

Definition4.1. If f(n+ N) = f(n) foralln € Z holds, we say that the terfi= { f(n)},<z iS N-periodic
and if{B(n, j)}n.jez (OF B : Z4 x Z, — E4*?) satisfies (4.3a) we say it i§-periodic.

Remark 4.2. Although theN-periodic sequencds(n)},cz and{B(n, j)},, jcz are defined on the set of
integers by the above definition, we show in the following that ARgeriodic sequencgf(n)},cz or
{B(n, )}a,jez is, in fact, uniquely determined by the restrictipfin)},cz, or {B(n, j)}n jez, -

Suppose thatl : Z x Z — E?*? is N-periodic. Denote by, : Z, x Z, — E9*¢ the restriction
of the mappingA fromZ x Zto Z, x Z,. Then,A, satisfiesA, (n + N,m + N) = A (n, m) for all
n,m € Z,. In this case, we say that, is N-periodic onZ,.. We use the sequen¢g . (n, m)}, ez, 10
define a matrix mappin® : Z x Z — E4*4, or {D(n, m)}, mcz, as follows:

Ay (n, m) foralln > andm > 0,

. 4.4
A;(n+IN,m+IN) if n +IN > andm +IN > 0, (4.4)

D(n,m) = {
where! > 0 is any positive integer. It is clear th@i(n, m) is well defined for any:, m € Z, and
{D(n, m)},.mez is alsoN-periodic. It is readily shown that

A(n,m) = D(n,m) foranyn,m e Z. (4.5)

SinceD is constructed only by extendif@\ ;. (n, m)}, .cz, by the relation (4.4), we can conclude that
any N-periodic matrix mapping\, : Z, x Z, — E%*¢ can be extended uniquely to be Arperiodic
matrix mappingD : Z x Z — E**4 py the relation (4.4). Corresponding arguments apply.to

Definition 4.3. The sequenc® = {D(n, m)}, ncz defined by (4.4) is called the periodic extension of
{A1(n, m)}, mez, satisfying (4.3a).
There are some preliminary results that we need. We assumB(that) (n > 0) satisfies
det/ — B(n,n)) #0 foralln > 0. (4.6)

Thus, the unique solution of (4.1) and (4.2) exists. Bot, m) in (4.2), we assume

Assumption H2.
> |B(.n—r)| <oo foreacm e Z,.
r=0

Then, the sun{jj:_oo B(n, j)g(j) is bounded in the case suplg(n)| < oo.
For our main result we need the following crucial lemma.

Lemma 4.4. If {x(n)},=0 is a solution of (4.1) andx(n)},=0 € £>°(E9), then there is a corresponding
solution{z(n)} of (4.2) such that (for eveny = 0, 1, +2, ...) z(n) is the limit of some subsequence of
x(n).
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Proof. Our proof is a more detailed version of that[By pp. 485-486]Let {x(n)},>0 be a bounded
solution of (4.1). Ther{x(jN)}j?';l, with N as defined in (4.3a), is bounded and thus has a convergent

subsequencex(jio)} Which convergences to a point if, sayz(0). Similarly, there is a subsequence
{jin} of {jio} such that both subsequendesl + jioN)} and{x(—1+ ji;oN)} converge ta (1) andz(—1),
respectively. Inductively, one may show that for each nonnegative intede(t(n — 1) + jiu—1yN)}
converge taz;(n — 1) andz(—(n — 1)), respectively, andx(£n + jinN)} converge ta;(n) andz(—n),
respectively, whergji,} is a subsequence 6f;,—1)}.

We need to show thdt(n)}> is actually a solution of (4.2). From (4.1) and (4.3a), we have

n+jinN

x(n + jinN) = fn + jnN) + Y B+ jinN, )x(r)
r=0

n

=fm) + Y B+ jnN,r+ jinN)x(r + jinN)
r=—jinN

n

=fm)+ Y B rx(r+ jnN). (4.7)

r=—jinN

Since{z(r)} (—oo < r < o0) is bounded) " B(n, r)z(r) is well defined for each > 0. For fixed
n > 0 and any > O, it follows from Assumption HZhat there is gin, > 0 such that

_jinON

&
> BNl < =

r=—00

whereM = sup,.q|x(n)| < oo. Then forji, > jin,, We have

Y. BNz — Y B, 0x(r+ jinN)
r=—00 r=—jinN

—jino N _jinON

< Y B z(r) = x(r+ jinN)| <2M Y |B(n, 0| < e.

r=—00 r=—00

Then, we can take the limitin (4.7) by letting — oo. In this case, the left-hand side of (4.7) converges
to z(n) and the right-hand side of (4.7) convergesfta) + > '____ B(n,r)z(r). Hencez(n) = f(n) +
e B(n, r)z(r) is a solution of (4.2). O

r=—00

Definition 4.5. The resolven{R(n, m)} of the kernel{ B(n, m)} in (4.1) is defined by the solutions of
the matrix equations

R(n,m) = Z R(n, )B(j,m) — B(n,m), 0<m<n, n=>0, (4.8)

J=m

with R(n, m) =0 forn < m.
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The existence and uniquenesq 8fn, m)} is guaranteed by (4.6). By using the resolvg®Rn, m)}, the
solution of (4.1) can be given by thariation of constants formula

x(n) = fin) = Y_ R, Nf(j), n=0. (4.9)

j=0

For details of resolvent matrices and variation of constants formulfl, 8@ he periodic relation between
the kernel B(n, m)} and the resolver{tR(n, m)} is as follows.

Lemma 4.6. If, for some positive intege¥, B(n + N, m + N) = B(n, m) for all 0 < m < n, then the
solution of (4.8) satisfies

Rn+N,m+ N)=Rmn,m), 0<m<n. (4.10)

Proof. Forany 0< m < n, we have

n+N
R+ N.m+N)y= Y Rm+N, )B(j,m+N)—Bn+Nm+N)
j=m+N

:ZR(n+N,i+N)B(i+N,m+N)—B(n,m)

i=m

:ZR(n + N, m + N)B(j, m) — B(n, m),

j=m

implying thatR(n + N, m + N) is also a solution of (4.8). Hence, (4.10) follows. O

Lemma 4.6shows that if the kerne{B(n, m)} in (4.1) is N-periodic onZ,, then its resolvent
{R(n, m)}, mez, is alsoN-periodic onZ,. FromRemark 4.2we can extendR(n, m)}, mez, by the
relation (4.4) to beV-periodic forn, m € Z. In this section, we always assume this extension.

To investigate periodic solutions, we assume the following conditions.

Assumption H3. The resolvenfR(n, m)} satisfies lim_,, |R(n, r)| = 0 for eactr € Z,..
Assumption H4. The resolven{R(n, m)} satisfiesy -~ |R(n,n — r)| < oo for eachn € Z,.

Remark 4.7. Suppose thaB(n,m) = K(n —m) (for all 0 < m < n), thenR(n, m) = RX(n — m)

is a convolution type. In addition, K (n)},-0 € ¢*, de{/ — K(0)) # 0 and det/ — Z{K}(z)) # O

for |z| > 1, then{RX(n)},=0 € £* by the discrete Paley-Wiener theorem (see, §18]). In this case,
one readily sees that tessumptions H2, H3 and Hdre satisfied. Thus, our discussion in this section
includes corresponding convolution equations as a special case.

Remark 4.8. In [13], the discrete Paley-Wiener theorem for convolution equations has been extended
to non-convolution equations. From the result§lig], we know that if sup. o Z?:O |B(n, j)| < 1, then

Sup,-o Z'}:o |R(n, j)| < oo.If,inaddition, lim,_, ., B(n, j) = 0foreachj > 0,thenlim,_. R, j)) =0

for eachj > 0. For details, sef 3] or [15].
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Remark 4.9. If {R(n, m)} satisfies
|[R(n,m)| < v ™for0<m <n, (4.12)

wherev € (0, 1), then{R(n, m)} satisfies conditionassumption H3 and H4Thus, condition&ssumption
H3 and H4include the condition (4.11) as a special cas¢6]nElaydi investigated periodic solutions of
linear Volterra difference equations under the condition (4.11).

The remarks followingAssumption HZoncerning the summability ¢B(n, )} apply here equally for
{R(n, r)}. The number in Assumption H2 and Héan only be taken with G n < N — 1 if B(n, m)
satisfies (4.3a). We have the following.

Lemma 4.10. Suppose thaB(n, m) satisfies (4.3a) and thAssumptions H2 and HHold. Then the
following conditions are true:

() SUP,ez, D =o|B,n —1)| =SUP,cz, D v . |B(n,1)| < ooand
su B 00;
M?D (n,7)| <

(i) foranye > 0Othere exists a numbeg = ro(¢) € Z, such that, foralk € Z,

n—ro

Z|B(n n—r)| = Z |B(n, r)| < e

r=ro

(i) SUp, ;. Y20 IR(1.n — )| = SUPcy. Y1 o IR(n. )| < oo, and

suleR(n )| < oo;

n>0

(iv) foranye > 0Othere exists a numbeg = ro(¢) € Z, such that, foralk € Z,

o n—ro
Y IRm.n=r= Y |R@.D|<e
r=ro r=—00

Proof. We notice that each > 0 can be written as = s + IN, where 0< s < N — 1 and! € Z,.. Since
B(n+ N,m + N) = B(n,m) forn, m € Z, then,

|Bn,n —r)| = |B(s+IN,s+IN—r)|=|B(s+IN,s—r+IN) = |B(s,s —r).

Thus, sup.z, > 20| B(t, n—r)| = Ma¥%<<n-1 )_,—o|B(s, s —r)| < oo by Assumption H2Similarly,
foranye > 0and 0< s < N — 1, it follows from Assumption H2hat there existsy € Z, such that
e . |B(s,s — )| < &. Then for anyn € Z,, there exists (0 < s < N — 1) and/ € Z, such that
n = s+ IN. Thus,

D IB.n—n|=) |Bls,s—n|<e

r=ro r=ro



C.T.H. Baker, Y. Song/Mathematics and Computers in Simulation 64 (2004) 521-542 535

As for the proof of statementsii) and {v), we notice thatR(n, m) satisfies (4.10). With the same
technique, we can readily complete the proof. O

4.1. Existence and unigueness of periodic solution
We are now in a position to state the main result in this section.

Theorem 4.11. LettheAssumptions H2, H3 and Hihd (4.3a) and (4.3b) hold. Then (4.2) has the unique
N-periodic solution

n

z(n) = f(n)— Y_ R(.m)fm), n=0. (4.12)

m=—0oQ

Proof. FromLemma 4.1((iii) and formula (4.9), it can be readily shown that the solution of (4.1) is
bounded. ByLemma 4.6 one can construct a sequenge + rin N) from a solutionx(n) of (4.1) such
thatx(n + rin N) converges to a solutiof(n) of (4.2). Formula (4.9) gives

n+rinN

x(n + rinN) = f(n + rinN) — Z R(n +rinN, ) f())
j=0

n

= fn) — Z R(n + rinN, i + rinN) f(i + rinN)
i=—rinN

n

=fln)— > R i)fG). (4.13)

i=—rinN

Note that) " R(n, i) f(i) is well defined byAssumption H4 For fixedn and anys > 0, it follows
from Assumption H4hat there exists,, > 0 such that

rlno

R
Z RO < T e ||f||oo

where|| flloc = SUp,cz | f(n)]. Then forri, > rin,, we have

n n —ringN —JingN
Y RmLDAD = Y ROLASG+raN)| < Y IRDIFDI <l Y, IR <&
i=—00 i=—rinN r=—00 r=—00

Thus, we can take the limit in (4.13) by letting — oo and obtain

r=—00

2(n) = lim [f(n) > R(n,i)f(i)}=f(n)— Y R, ) fr).

i=—rinN

By Lemma 4.6z(n) is N-periodic.
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It remains to show that(n) in (4.12) is the onlyN-periodic solution of (4.2). Let us assume that there
is anotherN-periodic solutiorz (n) of (4.2). Themy(n) = z(n) — z(n) is anN-periodic solution of the
equation

n -1
Y(n) =Y Bn,ny(r)+ Y Bn,ny).

r=0 r=—00
By the variation of constants formula (4.9), we have

-1

n -1
Y=Y B nyr) =Y R, j) { > BG r)lﬂ(r)}

r=—00 j=0 r=—00

=) B(n,nr)wmr)ZR(n,j){Z B(j,jrwur)]

r=n+1 j=0 r=j+1
Thus,
W <M Y [Bn.n—n|+ M) R, j) [ > IBGj— r)|} ,
r=n+1 j=0 r=j+1

whereM = sup,.; {|¥(n)|}. For anye > 0, it follows from Lemma 4.1Qhat there exists a number
ro =ro(e) € Zy suchtha® " '|B(n,n —r)| < eforalln e Z,. Thus,3 2 ., |B(n,n—r)| < e for

n>ro—1.LetC =sup,y, Y 2 o|B(n,n—r)|andn > ro. (By Lemma 4.10C < co.) From the above
inequality, we obtain

Yy <M Z |B(n,n—r)|+MZ|R(n,j)| |:Z B(j,j—r):|

r=n+1 j=0 r=j+1
ro—1 00 n 00
<Me+ MY R, DI Y 1B, j—nl+MY [Rm, I Y 1BG, j—1)
j=0 r=j+1 Jj=ro r=j+1
ro—1 00
<Me+MCY |R(n. )I+MC Y |B(j.j—rl
j=0 r=ro+1

It follows from Assumption H3that for the above: > 0, there exists a number > 0 such that
Y05 IR, j)| < eforn > ry. Letr, = max(ro, r1). Forn > rp, we have

[ (n)| < Me +MCe + MCe = M(1+ C + C)s.

Hence, lim_ o ¥(n) = 0. Sincey(n) is periodic, it follows thaty(n) = 0. Consequently;(n) =
z(n). O

Remark 4.12. Suppose that system (4.1) has\periodic solutiof{x(n)},>0 and{z(n)},>ois the unique
N-periodic solution (4.12) of (4.2). Thew;(n) = z(n) — x(n) is a solution of the equation
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-1 n
Y= Y B, Do)+ Y B NV, (4.14)
Jj=—00 j=0
whereg is the initial function ofz(n). By the variation of constants formula (4.9) we have

-1

n -1
Y(n) =Y B, Do) — Y R, j) ( > B, z‘)¢(i)) . n=0.

Jj=—00 j=0 i=—00

Using the same technique in the proof of the uniquenes§taforem 4.11 we can show that
M, ¥(n) = lim,« (z(n) — x(n)) = 0. Consequentlyz;(n) = x(n) by periodicity. It follows
from (4.14) thaty" > B(n, j)¢(j) = 0.

4.2. The periodic attractor

FromTheorem 4.1 lwe know that only one particular bounded initial function generatégé-aeriodic
solution of (4.2). By the followingTheorem 4.14we show that all solutions of (4.2) with bounded
initial functions are asymptotically/-periodic. More specifically, all these solutions are attracted by the
N-periodic solution (4.12). Let us first give the definition of asymptoticAllperiodic sequence.

Definition 4.13. Let N be a positive integer. A sequenge= {¢(n)},-0 € S(E?) is called asymptotically
N-periodic if and only if there exists a sequenge= {y/(n)},>0 Which isN-periodic, namelyy(n+ N) =
Y(n) for eachn € Z, such that linip(n) — Y (n)) = 0 asn — oo. In this case, we write ~ 1.

We are now in a position to give a theorem on periodic attraction.

Theorem 4.14. Let theAssumptions H2, H3 and Hand (4.3a) hold. Then all solutions of (4.2) with
bounded initial function orZ~ are asymptotically N-periodic. In fact, all these solutions tend to the
N-periodic solution (4.12) a8 — oo.

Proof. Suppose thaty(n)},>0 is a solution of (4.2) with bounded initial dagdr), r € Z~. Then,

-1

Yy = fn)+ > B, ny(r) = fn)+ Y B, re(r)+ Y Bn,nyw).

r=—00 j=—00 r=0
From the variation of constants formula, we obtain

-1

n -1
yny=fn)+ Y Bn,n¢r)— Y Rn,r (f(r)+ > B, j)¢<j))
r=—00 r=0 j=—00

-1

n n -1
=f(0) =Y R, 1 f)+ Y B, rg(r) — Y R, r) Y B Ho().

r=0 r=-—00 r=0 Jj=—00

The last term of the right-hand side of the above equation tends to zero-asoo by the proof of
Theorem 4.11It remains to show thaE;:lfoo B(n, r)¢(r) tends to zero angi(n) — Y '_, R(n, r) f(r)
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tends to the solution (4.12) as— oo. To do this, we notice that every> 0 can be written ag = s+IN,
where0< s < N—1and € Z,. Thereforen — oo implies that — oo and vice versa. Let = s+ IN.
Thus,

-1 -1 —1-IN
> Bn,n¢(r)= Y Bs+IN.Np(r) = Y Bls+IN,i+IN)$(i +IN)
N o o

= > B(s.))¢G +IN).

n

It follows from Assumption HZhaty" >, [B(n,n —r)| = Zj?oo |B(n, j)| < oo for eachn. Therefore,

| SN BGs, iy 4+ IN)| < M YN |B(s, )] — 0 asl — oo, whereM = sup, _q ¢ (n)|. Similarly,

letn = s + IN. Then,

n s+IN
f) = > R0 fr) = fs +IN) = Y R(s +IN, ») £(r)
r=0 r=0

N

= fls+IN) = > R(s+IN.7 +IN) f(r + IN)
r=—IN

s

= f(s) = Y R(s,n)f(r),

r=—IN

which tends tof(s) — > > R(s, r) f(r). This provesTheorem 4.14 O

r=—00

Theorem 4.14hows that thev-periodic solution (4.12) is attractive.

Remark 4.15. If the kernelB(n, m) = K(n — m) in (4.1) is of convolution type, then the resolvent
R(n,m) = RX(n — m) is also of convolution typeB(n + N,m + N) = K(n,m) = K(n — m) and
R(n + N,m + N) = R¥(n,m) = RX(n — m) for all N > 0. If in addition {K(n)},=0 € £*(R?),
det(7 — K(0)) # 0 and det/ — Z{K}(z)) # O for |z| > 1, then{RX (n)},=0 € £}(R%), by the discrete
Paley-Wiener theorem (s¢E3]). In this case, one readily sees that ssumptions H2, H3 and Hdre
satisfied. ThusTheorem 4.1-andTheorem 4.14nclude convolution equations as special cases.

5. Thenonlinear case

Consider the nonlinear discrete Volterra equation®QKE?)
z(n) = f(n) + 4 Z B(n, pz(j) + Qn, z(n)) + G(z)(n), (5.1)
j=—00
where
fin+ N) = f(n), B+ N,m+ N)= B(n,m), (5.2)
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forall n, m € Z and for some positive intege¥, G : Py(EY) — Py(E?) is a functional,Q(n + N, -) =
Q(n, ), n € Z, are functions fron? to E¢, and the parametéris a small real number.
In this section, we assume th@tand Q satisfy the following conditions:

Assumption H5. (i) G(0) = 0 andQ(-, 0) = 0, (i) for eachtr > 0, there exists a numbér> 0 such
that

|G(P)(n) — G ()| < Tl — ¥l foralln (5.3)
whenevew, ¥ € Py(EY) with ||¢]le < 8, |¥]lee < 8, and {ii) for all n
10, x) — Q(n, y)| < tlx—yl, if |x] <4, [yl <. (5.4)

As examples of this kind of “small” functiona&F we have those of the form

n

G@)(n)= Y Cn, NP*() or G@n) =dm) Y Cn, Ho()

Jj=—00 j=—00

whereC(n + N, m + N) = C(n, m), which occur in many applications.
If {f(n)},=0 € Py(EY) is N-periodic, which meang(n + N) = f(n) for everyn > 0, we can readily
extend it to beV-periodic in—co < n < oo by setting

f(n) = f(—n)ifn < 0. (5.5)

In the sequel, we always assume this extension when needed and use the same ffdattoandoubly
infinite sequence as for the original sequence. In this case, we notB,iti&t) is the Banach space of
doubly infinite sequences and the nopfy(n)}ll.c = sup,z| f(n)| is the same as that of the one-side
infinite sequences.

Let S(e) = {¢p € Pv(EY) : |14l < ¢} (a ball of radiuss > 0); it is a closed subset @y (EY).

Theorem 5.1. Let Assumption Hand Assumption HHold. Then there existg > 0 such that for each
g, 0 < & < g, there exists a number > 0 such that if||{ f(n)}|lc < n and|A| < 5, thenEq. (5.1)
namely

2(n) = fn) +x Y Bn, pz(j) + Q(n, z(0)) + G()(n),

j=—00

has a unique periodic solutiofz(n)} in S(e).

Proof. By Lemma 4.10there is a constar@ > 0 such that sup; > 2 |B(n,n —r)| < C (< o0). By
AssumptionAHS5, there exists a numidet 0 such that
{llg — ¥}

G — G| < Tao it ldlle =68, l¥lle <6

and

{lx = yl}

1Q(n, x) = Q(n, y)| < {4c)

if |x]<dand|y|] <$
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forall n. Leteg = 8. Giveneg, 0 < ¢ < gq, define

o e e 1 _ dy .
n = min {6, ac) @ oy 1} and S(e) ={¢ € Py(E?) : ¢l < €}

For anyg € S(e), { f(n)} € Py(EY) with || fllo < n andx satisfying|r| < 1, we define the operatdt
on S(e) by the relation

(Tp)(n) = f(n) + 4 Z B(n, po(j) + Q(n, ¢(n)) + G(P)(n).

j=—00

It is readily shown thafp € Py (EY). It follows from Assumption H2and Assumption H5that 7 is
well defined and

[(T) )| < [ A+ 1A D 1B, D) + 1Q(n, p(m))] + |G (@) ()|

Jj=—00

foralln > 0. Thus,|| To||s < e. Similarly, if ¢, ¥ € S(¢), then

Tp(n) — Ty < |21 D 1B, DlIg() — Yl + 10, p(n)) — Q(n, Yr(n)))|

j=—00

+1G(@)(n) = G ()|

and

T T <c I3 I3 £ - 3
179 — Tyl < Ellqﬁ—lﬁllooJrEII¢—WIIOO+EII¢—¢IIOO_ZS-

Hence,T is a contraction mapping afie). By the contraction mapping theorem (4&6]), the system
(5.1) has a unique solution By (E). The proof is completed. O

Next we represent this periodic solution using the resolve®,0& AB(n, m). We assume déf —
AB(n, n)) # 0. As inSection 4 we define the resolvem®, (n, m) as the unique solution of the following
two equations

R.(n,m) =" Ry(n, )B,(j, m) — By(n, m). (5.6)
j=m

Thus, R; (n, m) is N-periodic, and the solution(n) of (5.1) (if it exists) can be given byariation of
constants formula

n -1
2n) = fn) = Y Ron, D) + QG 2(D) + G@G) + Y Baln. )z(j)

J=0 j=—00

n -1
~ Y R, ) ( 3 B.(i. i)z(i)) . (5.7)
j=0

i=—00
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Corollary 5.2. Suppose thaB, (n, m), R; (n, m) satisfyAssumptions H2, H4 and HFhen the unique
solutionz(n) of (5.1) satisfies the equation

z(n) = f(n) — Z Ry.(n, () + QU z(N) + G@())- (5.8)

j=—00
Proof. Sincez(n) is N-periodic, one gets for any integet 0

n+IN
z(n) = z(n +IN) = (f(n +IN) — Z Ri(n+IN, p(f()) + QU z() + G(Z)(j)))

j=0

-1 n-+IN -1
+ ( 3 Bun +IN, pz(j) — Y Ri(n +IN. j) ( 3 B i)z(i)))

Jj=—00 j=0 i=—00

= (f(n) — Y R, DU + QG2 + G(Z)(j)))

j=IN
—1-IN n —1-IN
+ 3 Bz — Y RMn,k)(Z B,\(k—I—IN,i+IN)z(i+IN)>
j=—00 k=—IN i=—00

= (f(n) — Y R, DU + QG 2(G) + G(Z)(j)))

j=—IN

—1-IN n —1-IN
+ ( > B pz() = Y Ri(n, k) ( > Bk, i)z(i))).

j=—00 k=—IN i=—00

Let! — oo, the first term of the above equation tends to (5.8) and the second term t€peotlary 5.2
is proved. O

Remark 5.3. If the kernel{ B(n, j) = K(n — j)} is of convolution type an@K (n)},>o is in Y(R?), then
the resolvent; (n, m) = RX(n — m) is also of convolution type anfRX (n)} € L(RY) if and only if
det/ — AK(0)) # 0 and det/ — AZ{K}(z)) # O for |z| > 1, by virtue of the discrete Paley-Wiener
Theorem (se@l3]), whereZ{K}(z) is the Z-transform of{ K (n)},>o.

If A =0, theEq. (5.1)reducesta(n) = f(n)+ Q(n, z(n)) + G(z)(n), an implicit ordinary difference
equation. Themheorem 5.4ncludes implicit ordinary difference equations as a special case.

Remark 5.4. We may relate our work to that [i4], concerning nonlinear equations, that are analogous
to (4.2) but have the form

x(n) = f(n) + Z B(n, p{x() + G;(x(j)}, n=0. (5.9)

j=0
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Notice that, in contrast to (4.2), the lower limit of summation in (5.9) is 0. We have discussed asymptoti-
cally periodic solutions for (5.9) if14]. We show that if f(n)},>0 iS an asymptotically periodic sequence,

the Assumptions H3 and Hdnd the condition (4.3a) are satisfied, then (5.9) has a unique asymptotically
periodic solution under certain conditions 1Gr(-) (see[14] for details).
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