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The effect of noise on pitchfork
and Hopf bifurcations

B y Anne Juel1†, Alan G. Darbyshire1 and T o m Mullin2

1Department of Atmospheric, Oceanic and Planetary Physics,
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK

2Schuster Laboratory, University of Manchester, Manchester M13 9PL, UK

We present the results of an experimental and numerical investigation of the effects
of noise on pitchfork and Hopf bifurcations. Good quantitative agreement is found
between calculations and experiment. In the case of the pitchfork we find that natural
imperfections override the effects of the noise. However, novel noise amplification
effects have been uncovered in the study of the Hopf bifurcation. These destroy
the critical event found in the noise-free case and could be of considerable practical
importance in systems containing dynamic bifurcations.

1. Introduction

The dynamical state of a physical system can be considered to consist of a deter-
ministic part together with the effects of internal or external random fluctuations.
In most cases, this leads to small variations about a deterministic state but near
critical events such as bifurcations, the system can show great sensitivity to small
scale random perturbations. The effect of noise on critical phenomena has been of
great interest in statistical physics and nonlinear optics for a number of years (see,
for instance, Graham 1973). More recently, the concepts have been applied to chaotic
systems as reviewed in the monograph by Horsthemke & Lefever (1984). They focus
on non-intuitive events such as noise-induced transitions, where interactions between
deterministic dynamics and random perturbations result in a broad range of novel
dynamical phenomena.

The present combined experimental and numerical study is concerned with the
effects of small additive random perturbations in the form of white noise on
codimension-one bifurcations from a fixed point. Specifically, we have studied the
effects of additive noise on the dynamics near supercritical Hopf and pitchfork bifur-
cations. In these transitions the singly peaked probability distribution of the noise
is split into a bimodal one as a bifurcation point is passed. The experimental sys-
tem we use consists of a high-quality nonlinear electronic oscillator which has a very
low inherent noise level. In a previous theoretical and numerical study, Healey et al.
(1991) show that a codimension-two organizing centre for the dynamics is formed by
a Hopf and pitchfork bifurcation. Specifically, they find that period-doubling routes
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to chaos form parts of Silnikov homoclinic orbits. The relevant details of the circuit
are described in §2 where we also discuss the numerical methods.

The stability of pitchfork symmetry-breaking bifurcations subject to random exter-
nal fluctuations is of relevance to a number of practical applications and numerous
studies have been reported. Among these, Ariaratnam & Xie (1992) find that noise
has a destabilizing effect so that the critical value of the parameter is reduced com-
pared to the noise free case. In practice, however, the bifurcation is disconnected by
the presence of small naturally occurring imperfections. An experimental study by
Kondepuki et al. (1986) and a combined theoretical and numerical one by Kondepuki
(1989) show that when the imperfection parameter is weaker than the magnitude of
the noise, the disconnection has a profound influence on the dynamics depending on
the rate that the control parameter is swept through the bifurcation. In particular,
the probability of reaching the connected state increases with the magnitude of the
disconnection parameter and decreases when the sweeping rate is raised. Watson &
Reiss (1982) report on the effects of noise on the connected branch of an imper-
fect pitchfork bifurcation using a statistical approach and find a scatter around the
averaged solution curve. The amount of broadening is greatest in the vicinity of the
critical value of the parameter corresponding to the perfect bifurcation. The broad-
ening appears because time scales of perturbations become very long at a bifurcation
point. This phenomenon is often referred to as critical slowing down by analogy with
critical phenomena in phase transitions as discussed by Pfister & Gerdts (1981).

In the present work, we have adopted an alternative approach to the effects of noise
on bifurcations which focuses on the dynamical behaviour of the system. Specifically,
we investigate the dynamics of the system using modern ideas from nonlinear time
series analysis and in doing so have uncovered some novel noise induced dynamics. We
begin our study with the pitchfork bifurcation in both its connected and disconnected
form and a combination of numerical and experimental results is reported in §3. We
then compare and contrast the results obtained for the pitchfork bifurcation with
those observed with a Hopf bifurcation.

Interesting novel dynamical behaviour which was found as a precursor to the Hopf
bifurcation from a steady state in the presence of noise is discussed in §4 a. Similar
effects are reported by Schöpf & Rehberg (1992) who studied convective instabilities
in binary-fluid mixtures although they attribute them to spatial wave instabilities.
Evidence of fluctuations is also discussed by Fronzoni et al. (1987) in their study of
an analogue electronic circuit model of the Brusselator. Wiesenfeld (1985) reports
different classes of ‘noisy precursors’ which are also a direct consequence of nearby
bifurcations of periodic orbits subject to external perturbations. Theoretical predic-
tions by Wiesenfeld & McNamara (1986) concerning the amplification of periodic
perturbations near a critical event are confirmed experimentally by Martin & Mar-
tienssen (1987). They investigated small signal amplification in the vicinity of a Hopf
bifurcation found in the electrical conductivity of barium sodium niobate single crys-
tals. They show that for small amplitude excitations, the system follows linear theory
but for large amplitudes, the response is nonlinear and the spread of the fluctuations
is independent of the bifurcation parameter.

In both the Hopf and the symmetry-breaking bifurcations, a shift in the critical
value of the parameter is potentially of significant practical importance and hence, it
has been investigated by several authors. Namachchivaya & Ariaratnam (1987) find
that the Hopf bifurcation point can be shifted in either direction using a Markov dif-
fusion process. Altares & Nicolis (1988) show that the Hopf bifurcation is systemati-
cally postponed under stochastic forcing using a Fokker–Planck approach. Similarly,
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Hoffman (1982) reports that the onset of the limit cycle is spread over a parameter
interval rather than arising at a precise critical value. The width and position of
the interval depends on the noise power. In a similar vein, Zhu & Yu (1987) point
out that noise has the effect of smearing out two-peak distributions found near the
bifurcation point. Finally, Kabashima & Kawabuko (1979) report an experimental
observation of a noise-induced phase transition in a parametric oscillator, where the
external noise both shifts the bifurcation point and modifies the properties of the
oscillation near its threshold. In §4 b, we investigate the shift in the Hopf bifurcation
point using a statistical approach and a method involving the fast Fourier transform
and show empirically that the magnitude of the shift as well as its direction depend
on the method employed. Results from the numerical simulations are presented in
parallel with the experimental study and show that the noise tends to smear out
the bifurcation as seen from the study of the dynamics in the vicinity of the bifur-
cation point. We comment on our results and compare and contrast the qualitative
differences between the Hopf and pitchfork bifurcations in §5.

2. Experimental methods and numerical procedure

The experiments were performed using a modified Van der Pol LCR oscillator
which contains variable nonlinear elements in the feedback circuit. A schematic cir-
cuit diagram is presented in figure 1. The behaviour of the system was controlled
by the settings on the two variable resistances which determine the magnitude of
the nonlinearities. These are in turn used to define the axes on a control parameter
plane. Details of the circuit together with the results of an extensive theoretical and
experimental study of the dynamical behaviour can be found in Healey et al. (1991).
They show that homoclinic orbits, of Silnikov type, underpin the period-doubling
sequences to chaos. The fundamental components which combine to give the observed
Silnikov dynamics are pitchfork and Hopf bifurcations. These two codimension-one
bifurcations were the subject of the present study where noise was injected into the
circuit as shown in figure 1. The particular point of injection was selected since it was
found that the external noise circuit had minimal effect on other characteristics of
the oscillator, so that the impedance matching of the noise circuit and the nonlinear
oscillator resulted in small parameter changes of less than 0.5%.

Initial results suggested that long-term small amplitude drift in the output volt-
age was significant near bifurcation points. It had a timescale of hours and was
mainly caused by heating of the diodes which formed the positive nonlinear conduc-
tance since all other components had high-temperature stability. The problem was
overcome by attaching a thermal bath to the base of the oscillator and thermally
insulating the remainder of the system. The temperature of the bath was kept con-
stant to within 0.02 ◦C using a commercial circulator so that the long-term drift was
effectively eliminated.

The noise generator comprises of a high-quality electronic random-number genera-
tor which produces a random sequence of zeros and ones where each digit is generated
at a fixed clock rate. Thus the lowest frequency is determined by the length of the
sample and the upper limit is set by the clock rate so that the bandwidth is 1 MHz
with a flat spectrum over the range. However, when the noise generator was con-
nected to the oscillator, the characteristics of the noise were modified in two ways.
Firstly, the high Q of the resonant circuit severely colours the noise with a roll off
around 150 Hz which is the centre frequency of the oscillator. As we shall see later,
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Figure 1. Schematic diagram of the electronic circuit.

this was not as big a problem as one might intuitively expect since the dominant
features near bifurcation points are controlled by time scales which are much longer
than this. This observation was supported by the numerical results where the effec-
tive bandwidth is an order of magnitude greater than in the experiment. Secondly,
when the noise source is connected to the oscillator, the RMS amplitude of the noise
signal is reduced compared to that measured when the generator is disconnected.
This effect was taken into account when comparing with the numerical results.

When the system was disconnected from the noise source a very small amount
of 50 Hz interference from the mains supply to the laboratory was observed. This
contamination was reduced using a battery supply and suitable orientation of the
inductor coil. However, it could not be completely eradicated although its contri-
bution was of an order of magnitude less than the added noise. There is no such
contribution in the numerical model and good agreement between the experiment
and numerical simulations discussed in §§ 3 and 4 shows that the mains’ effect is not
significant.

Also, our experimental system is not, of course, strictly ‘noise free’. The inherent
noise level in the oscillator was determined by retaining the background level of the
power spectrum at a fixed point. It was found to be approximately 2.5 orders of
magnitude smaller than that measured when the noise generator was connected to
the oscillator.

The system is governed by the following non-dimensional equations which have
been derived using Kirchhoff’s laws:

ẋ = γ[fβ(y − x)− fα(x)], (2.1 a)

ẏ = −z − fβ(y − x), (2.1 b)

ż = y − ρz, (2.1 c)
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where the nonlinear conductances are modelled to cubic order using the relations

fα(v) = −α1v + α3v
3, (2.2 a)

fβ(v) = β1v + β3v
3. (2.2 b)

The position of the Hopf bifurcation in the system of equations was calculat-
ed using the numerical bifurcation solver AUTO developed by Doedel (1986). The
parameter values (α1, β1 and β3) can be calculated directly from the experimen-
tal settings. The value of the parameter α3 in the circuit was estimated using the
position of the quartic point where the nature of the Hopf bifurcation changes from
supercritical to subcritical as discussed by Healey et al. (1991). The actual value of
α3 does not affect the position of the Hopf bifurcation; however, too low a value
changes the qualitative form of the bifurcation from supercritical to subcritical and
hence made the integration of the solution beyond the bifurcation point difficult.

A stochastic term, ε(t), was introduced into equation (2.1 c) in an additive manner
which simulates the way the noise is injected in the experiment. Equation (2.1 c) then
becomes

ż = y − ρz + ε(t). (2.3)
It is, of course, not known if this models all the details of the experimental situation
but the close correlation between experimental and numerical results suggests that
this is an appropriate way to simulate the injection of the noise into the circuit. We
also subjected the equations to multiplicative noise where it was appropriate and did
not uncover any significant difference.

The numerical noise was generated from a Gaussian probability distribution with
zero mean and RMS amplitude, σ. The equations were integrated using an implicit
method where the value of the noise term, ε(t), was held constant during the inte-
gration time step, ∆t. This procedure limits the effective bandwidth of the noise but
it is an order of magnitude greater than that used in the experiment as discussed
above. In all the integrations ∆t was set to 10−1 in non-dimensional units, which is
equivalent to a sampling rate of 11.6 kHz.

In order to make direct comparisons between the experiment and the numerical
integrations, the amplitude of the noise term in the equation was set to be of the
same order as that used in the experiment. The amplitude of the noise added in
the experiment was estimated by measuring the RMS amplitude of the signal at a
point in parameter space well below the Hopf bifurcation point. Then the amplitude
of a limit cycle was measured in the experiment with no added noise at a point
in parameter space some way above the bifurcation point. The equations were also
integrated with σ = 0, and hence ε(t) = 0, at the same point in parameter space.
The ratio of the measured and the calculated magnitudes of the limit cycles gives a
scaling factor between the measured noise level and the amplitude of the noise to be
added to the equations. This led to a value, σ = 10−2, being chosen as the additive
noise level in the numerical integrations.

3. The pitchfork bifurcation

In this section, we examine the effect of noise on both a perfect and an imperfect
symmetry-breaking bifurcation. The latter is encountered in practice where imper-
fections present in all physical systems cause the disconnection of the bifurcation
(Golubitsky & Schaeffer 1985). The imperfections in the electronic oscillator origi-
nate from different sources and their effect was modelled in the numerical simulations
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Figure 2. Schematic representation of a perfect (a) and imperfect (b) pitchfork bifurcation.

by adding a static disconnection term, δ, to equation (2.1 b). Schematic diagrams of
the perfect and imperfect pitchfork bifurcations are presented in figure 2.

As will be shown below, the study of the perfect case allowed us to compare and
contrast the results with those obtained for the Hopf bifurcation while the imperfect
case enabled us to make a direct comparison with results from the oscillator. In the
following, α1 is chosen as the bifurcation parameter and its critical value is denoted
by α1cp for the perfect pitchfork while α′1cp gives the position of the saddle-node
point resulting from the disconnection of the bifurcation.

In all cases, the initial condition of the integration was set to be the origin. In order
to visualize the effect of noise on the symmetry-breaking bifurcation, normalized
probability distributions of the amplitude of the solution were estimated using the
computed time series. For a perfect noise-free system, the probability distributions
evolve from a single Dirac delta function at zero amplitude for α1 < α1cp to two
such functions at a pair of symmetric finite values of the amplitude for α1 > α1cp.
However, in the added-noise case the distributions will have finite width which will
be greatest at the bifurcation point. All of the discussion below will be concerned
with the case of added noise unless otherwise stated.

(a ) The perfect pitchfork bifurcation
A series of probability distributions are shown in figure 3. Each one was calculated

for both the perfect and the imperfect pitchfork bifurcation from numerically inte-
grated time series, comprising 1.5×107 samples in total. We present the distributions
of the perfect and the imperfect cases together to aid the discussion.

We will first discuss the results of the numerical study of the case of a perfect
pitchfork bifurcation. The corresponding distributions are drawn in figure 3 with
rhombi. The distribution shown in figure 3a was formed from a time series calcu-
lated at α1/α1cp = 9.973 × 10−1. Here the probability distribution of the noise is
broadened by a factor of four due to the reduction of the damping in the vicinity of
the bifurcation point. The distribution shown in figure 3b was formed at α1/α1cp = 1.
It can be seen that the width of the probability distribution is now greater than that
shown in figure 3a and it is also flattened on top. This is because large time scales
dominate the dynamics at the bifurcation point. Indeed, an infinitely long time series
would be required to obtain a true estimate of the distribution, since the transient
behaviour of the system scales with 1/(α1cp − α1). The distributions corresponding
to the successively supercritical values of α1/α1cp equal to, respectively, 1.002, 1.005
and 1.007 are shown in figures 3c–e. It can be seen that the system alternates between
the two stable symmetric solution branches. The distributions hence consist of two
peaks centred at symmetric positions connected together by a channel. The width
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Figure 3. Numerical probability distributions represented by rhombi for the perfect pitchfork
bifurcation and solid lines for the imperfect one: (a) α1/α1cp = 9.973× 10−1; (b) α1/α1cp = 1;
(c) α1/α1cp = 1.002; (d) α1/α1cp = 1.005; (e) α1/α1cp = 1.007; and (f) α1/α1cp = 1.010.

of the channel between the two peaks narrows as α1 increases so that transition
between the two solution branches becomes less and less likely as the parameter is
increased. Hence long time scales again become important in the formation of the
distribution. This phenomenon is often referred to as the first passage time problem
and more details can be found in the textbook by Van Kampen (1992).

The apparent asymmetry in the amplitude of the peaks observed as α1 is increased
is a direct result of the passage time effect, i.e. the integrations would have to be
run for longer and longer times to achieve equality of the peak amplitudes. However,
the ratio of peaks was always found to tend to one for long enough time steps in the
vicinity of the bifurcation point. When α1 is further increased as in figure 3f where
α1/α1cp = 1.010 the peaks become more distinct and in practice, the system settles
onto a particular stable branch although in principle there is a finite probability that
it can reach the other state. Thus, the probability distribution is again Gaussian but
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Figure 4. Numerical time series in the case of a perfect pitchfork bifurcation with added noise:
(a) α1/α1cp = 0.5; (b) α1/α1cp = 1.

now centred on one or other of the branches. Hence, the symmetry of the bifurcation
is not broken by the addition of noise to the system. However, the noise interacts
with long-time-scale dynamics at the bifurcation point and introduces large time
scale variations in the resulting time series. This can be seen in figure 4 where two
time series calculated for α1/α1cp = 0.5 (figure 4a) and α1/α1cp = 1 (figure 4b) are
compared.

The critical value of the parameter can be evaluated from the probability distribu-
tions by determining the distance between either peak and the origin as a function of
supercritical values of α1. This distance corresponds to the distance between either
branch of the pitchfork and the trivial solution and, thus, varies as the square root of
the excess parameter so that the critical value of the parameter can in principle be
estimated. The method was applied to the distributions shown in figures 3c–f and
the critical value of the parameter was found to remain located at α1cp.

(b ) The imperfect pitchfork bifurcation
The electronic oscillator is a very well controlled experiment but, as in the case of

any physical system, the presence of imperfections is inevitable. In the present case,
the effect of the imperfections is much smaller than is typically found in other phys-
ical systems as discussed by Mullin & Cliffe (1986). Hence, if the critical dynamics
found in the abstract perfect case are to be of relevance to the physical situation
then detectable phenomena ought to be found in the numerical model when a small
imperfection term is added. In order to check this, we carried out tests with a range
of imperfections in the model and found no evidence for critical dynamics. We have
decided to present results with the disconnection parameter, δ, set to 10−4 to empha-
size this point since this value is approximately one order of magnitude smaller than
in the experiment.

The probability distributions for the imperfect case are plotted as thin solid lines
in figure 3. In the subcritical case shown in figure 3a, the distribution can be seen to
be asymmetric even with the small imperfection term. The probability distribution
is slightly broadened at the base when α1/α1cp = 1, due to the underlying dynamics
which result from the remnants of the pitchfork bifurcation. All supercritical dis-
tributions have a bias so that the distribution is centred on the connected branch.
As α1 is increased a second branch appears which is disconnected. It can be seen
in figure 3e that even with this small imperfection, the probability of reaching the
disconnected state is exceptionally small so that we have not observed this sponta-
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Figure 5. Experimental pitchfork bifurcation diagram with added noise. It is indistinguishable
from that measured in the ‘noise-free’ case.

neous transition in the numerical simulations. However, when the system was given
an appropriate initial condition so that it reached the disconnected branch, it was
found to remain in this state.

In the imperfect case there is no critical event, as a parameter is smoothly swept
up and down so that the system follows the connected solution. However, a practical
measure of a pitchfork can be made by observing the critical value of the saddle-node
bifurcation. This can be done in practice by jumping to the disconnected state and
then reducing the control parameter. If the disconnection is small, as it is here, then
a good estimate of the pitchfork bifurcation of the perfect model can be obtained.

The experimental disconnected pitchfork bifurcation diagram was reconstructed
with and without noise added to the system. The noise level was the same as that
applied in the numerical simulations. Each experimental point was determined by
retaining the mean value of times series comprising 105 points and sampled at a rate
of 1000 Hz. The bifurcation diagrams were undistinguishable when superimposed and
data sampled with the noise generator connected is displayed in figure 5. However, a
careful study of the disconnected branch close to the saddle-node bifurcation point
showed that the critical value of α1 was systematically reduced by less than 0.1%
compared to the ‘noise-free’ case. This shift is small and is indistinguishable from
the slight parameter change, caused by the impedance matching of the noise circuit
and the nonlinear oscillator.

Probability distributions were constructed from the experimental time series used
in the bifurcation diagram of figure 5. Noise added to the system smooths out the
probability distribution at the fixed point so that it becomes a broadened Gaussian
distribution as discussed in §2. Probability distributions taken from the disconnected
branch close to the saddle-node point are shown superimposed in figure 6. In the
‘noise-free’ system, the saddle-node point is located at α′1cp. For α1/α

′
1cp = 1.0025,

1.0011 and 1.0003, only a very small broadening of the distributions is observed.
However, for α1/α

′
1cp = 1.0000, distinct broadening is found due to the long-time-

scale dynamics of the critical point as discussed above.
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Figure 6. Experimental probability distributions from the disconnected branch close to the
saddle-node point. In each case the mean has been removed so that all distributions are centred
on zero.

4. The Hopf bifurcation

Experimental results of the effect of noise on a Hopf bifurcation are potentially
much more interesting since this is a dynamic critical event which cannot be unfold-
ed by the presence of physical imperfections. Indeed, initial observations of time
series sampled in the vicinity of the bifurcation point showed particularly interest-
ing novel features such as significant noise amplification which is discussed in §4 a.
Another feature, which has been extensively reported in the literature, is that the
presence of noise can produce a shift in the critical value of the bifurcation parameter
(Namachchivaya & Ariaratnam 1987; Altares & Nicolis 1988; Hoffman 1982; Zhu &
Yhu 1987; Kabashima & Kawakubo 1979). However, we show in §4 b that the mea-
sure used to determine bifurcation points can lead to apparently conflicting results
in both the experimental and numerical investigations.

(a ) Dynamics close to the bifurcation point
In this section we discuss experimental and numerical observations of the dynamics

found in the vicinity of a Hopf bifurcation in the presence of noise. In all of the present
results the parameter β1 in equation (2.2 b) is fixed, α1 is used as the bifurcation
parameter and its critical value is denoted by α1cH. Experimental time series were
sampled at a rate of 300 Hz for different values of α1 either side of the bifurcation
point of the ‘noise-free’ system. The sampling rate corresponds to twice the frequency
of the oscillation which arises at the Hopf bifurcation, is approximately 150 Hz and
while it does not provide a good measurement of the oscillation, the long-time-scale
dynamics close to the bifurcation region are clearly represented. Experimental time
series were sampled over a period of 180 s and examples are shown in figures 7a–f
They correspond to the parameter values α1/α1cH = 6.373 × 10−1, 9.522 × 10−1,
9.746× 10−1, 9.862× 10−1, 9.981× 10−1 and 1.001, respectively and were recorded
after switching α1 instantaneously from a small value where the solution was a steady
state to the given values.
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Figure 7. Experimental time series in the vicinity of a Hopf bifurcation: (a) α1/α1cH =
6.373×10−1; (b) α1/α1cH = 9.522×10−1; (c) α1/α1cH = 9.746×10−1; (d) α1/α1cH = 9.862×10−1;
(e) α1/α1cH = 9.981× 10−1; and (f) α1/α1cH = 1.001.

The experimental time series displayed in figure 7a was taken far below the bifur-
cation point and the small level of added noise is present. A detailed study of the
time series showed that it was strongly coloured around 150 Hz. As α1 is progressive-
ly increased (figures 7a–e), low-frequency variations appear in the form of correlated
oscillations in the envelope of the time series. Both the characteristic time scale and
amplitude of these variations increase as α1 is increased towards the critical value.
In the time series displayed in figures 7b–e, the system oscillates about the zero volts
state. However, the one shown in figure 7f , where α1 is set 0.06% above its critical
value in the unperturbed case and which was sampled using the same procedure as
for the previous ones, appears to be a transient growth from the trivial solution to
the oscillatory one since the low-frequency amplification of the noise persists but at a
non-zero amplitude. However, there is in principle a finite probability that the noise
can perturb the system back onto the trivial branch and, thus, this time series should
still be considered to display low-frequency variations on a characteristic time scale
which is much longer than the sampled data record. Alternatively, the amplification
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(a) Phase portrait (b) Phase portrait

y

x

y

x

Figure 8. Experimental phase portraits of transient time series just beyond α1cH in the
‘noise-free’ case (a) and just below α1cH in the case of added noise (b).

of the noise as the bifurcation point is approached could be described as arising
from a reduction of the damping. The noise level in the system is constant and the
damping associated with the stable fixed point restricts the noisy trajectory to a
small neighbourhood of the trivial solution. As the bifurcation point is approached
the damping decreases, the trajectory becomes less constrained and hence explores
a larger neighbourhood of the fixed point leading to an apparent amplification of the
noise.

Further analysis was carried out on the experimental data by reconstructing phase
portraits using the singular value decomposition technique proposed by Broomhead
& King (1986). We show two examples of these in figure 8 from transient time
series which were sampled by switching the parameter from a subcritical to a small
supercritical value, respectively, without and with noise. When the external noise
source is disconnected, the solution stays close to the fixed point for a very long
time since here the system is only just supercritical and thus the time constant is
large. It then spirals out uniformly towards the final limit cycle corresponding to
the periodic orbit. The phase portrait only shows the initial transient so that the
limit cycle is outside of the displayed record. In the case of added external noise, the
solution is almost immediatly kicked off the fixed point. It then spirals locally in and
out, tends to stabilize temporarily at certain amplitudes before it is kicked off and
starts spiralling out again. It finally reaches a limit cycle, represented by the outer
dark circle in figure 8b, which is broadened due to the effect of the noise.

Numerical results were calculated for values of α1 so that the ratios α1/α1cH cor-
responded to those used in the experiment and shown in figure 7. In each case
the initial condition of the integration was taken to be the origin of statespace. A
sequence is shown in figure 9 of six time series of the x variable as α1 is increased
towards the critical value. Each series contains 5 × 105 points so that, in real time,
they correspond to a quarter of the length of the experimental set shown in figure 7.
It can be seen that there is a striking similarity between the experimental and the
numerical results. As the bifurcation point is approached from below, the interaction
between the applied noise and the dynamics of the bifurcating limit cycle results in
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Figure 9. Numerical time series in the vicinity of a Hopf bifurcation: (a) α1/α1cH = 6.375×10−1;
(b) α1/α1cH = 9.508 × 10−1; (c) α1/α1cH = 9.742 × 10−1; (d) α1/α1cH = 9.862 × 10−1; (e)
α1/α1cH = 9.962× 10−1; and (f) α1/α1cH = 1.0014.

the introduction of increasingly long time scales into the time series. However, there
are interesting differences between the experimental time series shown in figure 7
and those of figure 9. The sequence in figure 9 shows a steady increase in amplitude
while a qualitative change occurs between figures 7e, f . The time series displayed in
figures 7f and 9f were sampled very close to the critical point where the character-
istic time scales are very large and the precise state of the system appears to depend
on details in the noise. Thus, this remains an unresolved issue and further work is
needed to understand the behaviour of the system at the bifurcation point.

The above integrations were carried out in order to simulate the procedure used
in the experiment. An alternative method was also applied where the periodic orbit
produced by the Hopf bifurcation was used as the initial condition and then noise was
added. A typical time series, calculated at α1/α1cH = 1.0014, is shown in figure 10
and is to be compared with figure 9f . Both time series are very similar at this small
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Figure 10. Numerical time series at α1/α1cH = 1.0014 where the initial condition is the Hopf
limit cycle.

value of the excess parameter. This suggests that the observed behaviour is not a
transient which will eventually dissipate.

We next investigated the possibility that this long-time-scale dynamical behaviour
was a special property of this particular oscillator. In order to do this we repeated
the above integration procedure with a pair of ordinary differential equations which
can be shown to undergo a Hopf bifurcation at ρ = 0 as discussed by Drazin (1992).

u̇ = −v + u(ρ− u2 − v2), (4.1 a)
v̇ = u+ v(ρ− u2 − v2). (4.1 b)

Again a Gaussian noise term is added to one of the equations so that equa-
tion (4.1 b) becomes

v̇ = u+ v(ρ− u2 − v2) + ε(t). (4.2)
The parameter σ was set to 5× 10−3 and the integration was performed the same

way as described above, with an integration time step ∆t = 10−1 and the initial
condition set to be the origin. A sequence of time series of the u variable comprising
of 5 × 105 points and calculated for values of ρ between −5 × 10−2 and 1 × 10−3 is
shown in figure 11. Here the bifurcation occurs at ρ = 0. Again the scenario observed
in the experiment and the integration of the oscillator equations is found. Thus, as
the bifurcation point is approached, time scales much longer than the period of the
periodic orbit or of that of the added noise are contained in the dynamics of the
system.

Finally, Healey et al. (1991) showed that there exist Hopf bifurcations in this oscil-
lator on the non-trivial symmetry broken states. A similar investigation to the above
of these Hopf bifurcations again shows time series remarkably similar to the sequence
described in the experiment. In addition, these bifurcations were also investigated
using multiplicative noise and the same qualitative features were found.

(b ) Shift in the critical value of the bifurcation parameter
Both the perfect and imperfect cases of the pitchfork bifurcation have been consid-

ered and no significant change has been found in the critical values of the parameter.
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Figure 11. Time series from the integration of the normal form of a Hopf bifurcation: (a)
ρ = −5.0 × 10−2; (b) ρ = −2.5 × 10−2; (c) ρ = −5.0 × 10−3; (d) ρ = −1.0 × 10−3; (e) ρ = 0.0;
and (f) ρ = 1.0× 10−3.

In the case of a perfect pitchfork bifurcation, we used probability distributions to
characterize the transition and showed that, far enough beyond the critical event,
they followed a square-root dependence in agreement with the noise-free bifurcation.
In the imperfect case, we showed experimentally in figure 5 that the bifurcation dia-
gram remained unchanged when noise was added to the system. We now use these
techniques to characterize the more interesting effects of noise on the dynamics of
the Hopf bifurcation.

Experimentally, the investigation was carried out by studying the transient
behaviour of the system as it evolves from a fixed point to a limit cycle. The growth
of the transients can be modelled by the Landau equation of the form

A(t) =

√
A2

ee2t/τ

e2t/τ + (Ae/Ai)2 − 1
, (4.3)
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Figure 12. Hyperbolic fit to experimental Landau time constants determined at small values
of the excess parameter in the ‘noise-free’ case (dashed line) and when noise is added to the
system (solid line). The critical value of the parameter is determined in each case from the
vertical asymptotes.

where τ is the growth time of the transient, Ai the initial amplitude and Ae the
final amplitude of the signal. This approach was used by Pfister & Gerdts (1981) to
show critical slowing down close to a Hopf bifurcation in the flow between concentric
cylinders commonly called the Taylor–Couette problem. The growth time is itself a
function of the parameter value α1 of the form

τ =
τ0

α1 − α1cH
= f(α1), (4.4)

where α1cH is the critical value of α1 and τ0 a constant. The growth time, τ , was
determined for several values of α1 in order to reconstruct the function τ = f(α1)
and thus extrapolate the critical value α1cH. In principle, a more robust estimation
of α1cH could be obtained by measuring a series of decay rates for α1 < α1cH in
addition to the growth rates. However, the design of the oscillator did not allow a
systematic study of the decaying transients and thus, the investigation was restricted
to growing ones alone.

It was more difficult to determine growth times close to the bifurcation point in
the case of added noise since the envelopes of the time series contained long time
scale variations as discussed in §4 a. A systematic reduction of the critical value of
the parameter was found for three different levels of noise applied as shown by the
results presented in figure 12 for the level of noise adopted in the simulations. Crosses
represent the data from the ‘noise-free’ system while the corresponding hyperbolic
fit is drawn as a dashed line. In the case of added noise, the data points are repre-
sented by empty circles while the hyperbolic fit is drawn as a solid line. The vertical
lines (dashed for the ‘noise-free’ case and solid in the case of added noise) show the
positions of the extrapolated bifurcation points. The shift was found to be of 0.2%
towards subcriticality which is at the limit of experimental and fitting uncertainties.

Another method commonly used to determine the critical value of the parameter
for a Hopf bifurcation involves the fast Fourier transform. The height of the domi-
nant peak in the power spectrum is measured and related to the amplitude of the
oscillation. The plot of power versus the parameter α1 should be linear since the
amplitude varies as the square root of the excess parameter. Thus the critical value
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Figure 13. Power in the vicinity of a Hopf bifurcation calculated from numerical time series with
added noise. A least-squares fit to the points of significant power suggests that the critical value
of the parameter is shifted by 0.32% towards subcriticality.

of α1 can be extrapolated using a linear regression. This method was first applied to
numerical data calculated in the presence of noise. It can be seen from figure 13 that
the bifurcation point is smeared out since the plot of power against the parameter α1
does not follow a linear law close to the bifurcation point. A least-squares fit to the
data where there is significant power suggests that the bifurcation point is virtually
shifted towards subcriticality by 0.32%.

This method was also used on a set of experimental measurements and the results
are shown in figure 14. They were taken in the vicinity of the Hopf bifurcation on the
connected asymmetric branch at β1 = 1.879 × 10−1 alternatively with and without
noise. The time series comprised 4 × 105 points which were sampled at a rate of
1000 Hz. The data points without noise are represented by solid circles to which a
solid straight line is fitted. The data points taken in the case of injected noise are
shown by empty circles with a dashed straight line fitted to them. In the absence
of added noise, all the data points beyond the critical value of α1 approximately
form a straight line except for the ones immediately past α1cH since no physical
system is strictly noise free. Thus, in the experimental situation, the effects observed
numerically in figure 13 are expected to be less pronounced so that the bifurcation
point needs to be approached more closely. This last point ties in with the differences
observed between the experimental and numerical time series in the vicinity of the
Hopf bifurcation, shown in figures 7 and 9, which were discussed in §4 a. When noise
is added to the system, the data in the immediate vicinity of the bifurcation point,
both in subcritical and supercritical regions, show a smooth increase which becomes
linear only at a certain distance from α1cH. This effect is due to the long-time-
scale dynamics which amplifies the noise in the immediate vicinity of the bifurcation
point and effectively smears it out; i.e. each of the low-frequency envelopes comprises
a randomly modulated oscillation at the frequency which will be present above the
Hopf bifurcation point. Hence the peak in the power spectrum grows smoothly as
the parameter is increased.

As stated above, this effect applies to a considerably smaller interval of values
of α1 than that encountered in the numerical simulations. The estimate of α1cH is
shifted towards supercriticality by 0.06%. However, the injection of the noise in the
experimental system results in a slight change in the parameters as discussed in §3 b.
Proc. R. Soc. Lond. A (1997)
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Figure 14. Power in the vicinity of a Hopf bifurcation calculated from experimental time series
with (empty circles and dashed line) and without added noise (solid circles and solid line). The
least square fit to the noisy data is shifted with respect to the ‘noise-free’ one. This is due to a
slight change in the parameter values caused by the connection of the noise source.

This parameter change can be taken into account by translating the dashed line
which fits the measurements taken in the presence of noise onto the solid one so as
to make the experimental results directly comparable with the numerical ones. The
two straight lines are parallel and, thus, superimpose so that no significant change
in the value of the critical parameter α1cH is observed.

The bifurcation point can also be estimated by calculating amplitude probability
distributions from sets of time series as in the case of the pitchfork bifurcation. For
the Hopf bifurcation, the probability distribution consists of a single peak centred
on zero amplitude in the subcritical state where the system is at a fixed point. It
then splits into two symmetrically dispersed peaks after the bifurcation. The distance
between peaks can then be determined as a function of α1 as the bifurcation point
is approached. The inter-peak distance corresponds to the amplitude of the limit
cycle and thus varies as the square root of the parameter α1. The position of the
bifurcation point can then in principle be estimated. However, when noise is added
to the system, the bifurcation point is smeared out which results in a broadening
and flattening of the amplitude distribution very close to the bifurcation point. It
is therefore difficult to determine accurately when the transition to the oscillatory
state occurs and in many common experimental situations the accuracy would be
very difficult to achieve. In figure 15, the bifurcation curve calculated in the noise-
free case is plotted as a solid line together with numerical inter-peak distances as
functions of α1/α1cH. A square-root fit, drawn as a dashed line in figure 15, was used
to estimate the bifurcation point which was found to be shifted by 0.43% towards
supercriticality.

Experimentally, probability distributions were determined from the time series
previously used for the calculations of figure 14. In figure 16, a series of probability
distributions for α1/α1cH = 9.9984×10−1, 1.0002, 1.0007, 1.0011 and 1.0019 illustrate
the transition from a single- to a double-peaked distribution. It should be noted
that the experiment shows an apparent delay in the critical event as in the case of
the numerical results. These results are in agreement with those of Kabashima &
Kawabuko (1979).

It could be argued that since we are concerned with noise-related phenomena
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supercriticality.

Figure 16. Experimental probability distributions in the vicinity of a Hopf bifurcation.

then the statistical approach of constructing probability distributions provides the
best approach. However, the transition from a single to a double peak is a smooth
process and the long-term dynamics near the origin dominates close to the critical
point. Hence it is difficult in practice to ascribe a critical parameter value at which
the distribution splits. In addition, the peaks in the double distribution are not
Gaussian and hence the simple measure of the distance between their maxima is not
an accurate indicator of the amplitude of the oscillation: similarly, the amplitude of
the peak in the power spectral density representation is affected by the noise. Hence
we conclude that there is no significant shift in the Hopf bifurcation point but that
there are very interesting long-term dynamics induced which smears out the critical
event of the ‘noise-free’ system.
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5. Conclusion

We have presented a combined experimental and numerical investigation of the
effect of added noise on codimension-one bifurcations from a fixed-point solution.

Comparison was made numerically between the perfect and imperfect pitchfork
bifurcation which showed no significant shift in the critical value of the parameter in
either case. However, long-time-scale dynamics were found at the bifurcation point in
the perfect case. Experimentally, a slight broadening of the probability distributions
was obtained at the saddle-node point and no significant long-term dynamics were
observed.

Long-time-scale-correlated oscillations were found as precursors to Hopf bifurca-
tions both experimentally and numerically. These are qualitatively distinct from
those found in the case of the pitchfork since oscillations at the Hopf frequency are
always present and the long-time-scale dynamics takes the form of random modula-
tions. This effect does not appear to have been discussed in the literature and could
be of considerable practical importance since it involves significant amplification
of small-scale noise at subcritical parameter values. The integration of the normal
form of a Hopf bifurcation showed that this effect may be present in a wide range
of systems. In the presence of noise, the critical value of the parameter was deter-
mined using three different methods. Small deviations from α1cH in either direction
were obtained, due to the long-time-scale dynamics mentioned above. Thus, ‘new’
dynamics are introduced in the system by the presence of noise which causes the
Hopf bifurcation to become dynamically imperfect.
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