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The paper “A weak embedding property of probability measures on Lie
groups” by S. G. Dani and M. McCrudden, was accepted for publication in final
form by Math. Res. Letters in August 2007. Subsequently the paper was with-
drawn by the authors when an error was discovered in the proof of Proposition
3.1, invalidating the proof of Corollary 3.2.

The proof of Theorem 1.1 in Section 4 is correct except for the last sentence
where Corollary 3.2 is used. As a consequence the proofs of Theorem 1.1,
Corollary 1.3 and Corollary 1.4 are all invalidated.
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1 Introduction

Let G be a Lie group. We denote by P (G) the space of all probability
measures on G, equipped with the convolution product and the usual weak*
topology. A µ ∈ P (G) is said to be infinitely divisible if for every n ∈ N, there
exists ν ∈ P (G) such that νn = µ, and it is said to be embeddable if there
exists a continuous one-parameter convolution subsemigroup {µt} of P (G)
such that µ1 = µ; in this case we say that µ is embeddable in {µt}. Clearly
every embeddable measure is infinitely divisible, and it is conjectured that
for a connected Lie group G, conversely, every infinitely divisible measure is
embeddable; when the latter holds we say thatG has the embedding property.
In [1] the conjecture was shown to hold for a large class of Lie groups, and an
improved and transparent proof of the result was given in [2]; in the latter
paper the groups in question are called class C groups.

In this note, from the results of [2] we deduce the following weak version
of embeddability, for measures on any connected Lie group. Together with a
result of Y. Guivarch and Riddhi Shah this enables us to deduce embeddabil-
ity of a class of infinitely divisible measures, not covered by earlier results;
see Corollaries 1.3 and 1.4.

We now begin with the details. Let G be a connected Lie group and
R be the solvable radical of G. Then [R,R] is a connected nilpotent Lie
group. Therefore every compact subgroup of [R,R] is contained in its center,
and there is a unique maximal torus, say T , in [R,R]; we call T the C-
kernel of G. The C-kernel of G is contained in the center of G; firstly,
being invariant under all automorphisms of R it is normal in G, and since
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G is connected every compact abelian normal subgroup is contained in the
center. A connected Lie group G is of class C in the sense of [2] (for which
the embedding property is established in [2]) if and only if the C-kernel of G
is trivial (see [2], Proposition 2.5). On the other hand, if G is a connected
Lie group and T is its C-kernel then G/T is of class C; see Proposition 2.2
below. In this note we prove the following “weak embedding property” for
all connected Lie groups.

Theorem 1.1. Let G be a connected Lie group and µ ∈ P (G) be infinitely
divisible. Let T be the C-kernel of G. Let

M = {g ∈ G | gxg−1x−1 ∈ T for all x ∈ suppµ}

and M0 be the connected component of the identity in M . Then there exists
an embeddable measure σ on G, and a sequence {gi} in M0 such that µ is
the limit of the sequence {giσg

−1
i } of embeddable measures.

A similar result was proved in [11] in the special case of a 4-dimensional
solvable group, called the Walnut (see the part preceding the proof of Corol-
lary 1.4 below, for a description of the group); also, the arguments as in [3]
yield such a result for a somewhat larger class of groups (though the proof
of the main theorem there, asserting the embedding property, turns out to
be erroneous).

We next note the following, which is a special case of Theorem 1.3 of [6].

Theorem 1.2. Let G be a Lie group (not necessarily connected) and µ ∈
P (G). Let T (µ) = {g ∈ G | gµg−1 = µ} and T 0(µ) the connected component
of the identity in T (µ). Let Z0(G) be the connected component of the iden-
tity in the center of G, and suppose that T 0(µ)/Z0(G) is compact. Suppose
also that there exists a sequence {µi} in P (G) such that µi → δe, the Dirac
measure at the identity, and µni

i → µ for a sequence {ni} of natural numbers.
Then µ is embeddable.

Theorems 1.1 and 1.2 together imply the following.

Corollary 1.3. Let the notation be as in Theorems 1.1 and 1.2. Suppose
that T 0(µ)/Z0(G) is compact, and that µ has no idempotent factor other than
δe. Then µ is embeddable.

In particular we get the following corollary for the “Walnut group” con-
sidered in [11] and [3] (described below).

Corollary 1.4. The Walnut group has the embedding property.
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2 Preliminaries

LetG be a Lie group and µ ∈ P (G). For any n ∈ N we denote byRn(µ,G) the
set of all n th roots of µ on G, namely Rn(µ,G) = {ρ ∈ P (G) | ρn = µ} and
by R(µ,G) the set of all roots of µ on G, namely R(µ,G) = ∪n∈NRn(µ,G).
We recall that µ is said to be strongly root compact if R(µ,G) is relatively
compact in P (G). Also, µ is said to be rationally embeddable on G if there
exists a homomorphism ψ of Q+ (nonnegative rational numbers) into the
semigroup P (G) such that ψ(1) = µ.

We denote by suppµ the support of µ, and by G(µ) the smallest closed
subgroup containing suppµ. For every subgroup H of G we denote by
Z(µ,H) the centraliser of G(µ) in H, i.e. Z(µ,H) = {h ∈ H | gh =
hg for all g ∈ G(µ)}, and by Z0(µ,H) the connected component of the iden-
tity in Z(µ,H).

A connected Lie group is said to be of class C if it admits a representation
π : G → GL(V ) over a finite-dimensional real vector space V such that the
kernel of π is a discrete subgroup of G. In [2] we proved the following; see
Theorem 1.2 and Remark 1.4 in [2].

Theorem 2.1. Let G be a Lie group of class C. Let µ ∈ P (G) be infinitely
divisible, and let r : N → P (G) be a map such that r(m)m = µ for all m ∈ N.
Then there exist sequences {mi} in N and {zi} in Z0(µ, [G,G]), and n ∈ N,
such that n divides mi for all i and the sequence {zir(mi)

mi/nz−1
i } converges

to a n-th root ν of µ which is strongly root compact and rationally embeddable
on the subgroup

{g ∈ G | gx = xg for all x ∈ Z0(ν,G)},

the centraliser of Z0(ν,G) in G. Furthermore, the sequence {mi} can be
chosen such that for all i, i!n divides mi, and for every k ∈ N the sequence
{zir(mi)

mi/k!nz−1
i }∞i=k converges.

For the proof of Theorem 1.1 we need also the following.

Proposition 2.2. Let G be a connected Lie group and T be the C-kernel of
G. Then G/T is of class C.

Proof. Let R be the radical of G. Then T is contained in R, and R/T is the
radical of G/T , and we have [R/T,R/T ] = [R,R]/T . Let T ′ be the subgroup
of G containing T and such that T ′/T is a the unique maximal torus in
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[R/T,R/T ]. Then T ′ is a compact connected nilpotent Lie group, and hence
it is a torus. Since T is the (unique) maximal torus of [R,R] it follows that
T ′ = T and hence [R,R]/T contains no nontrivial torus. Thus the C-kernel
of G/T is trivial. This shows that G/T is of class C; see [2], Proposition 2.5).
This proves the proposition. �

3 Some topological dynamics

We now note some observations involving topological dynamics.

Consider a compact metric space (X, d) with a continuous action of a
locally compact group L. The action is said to be distal if for any distinct
pair of points x, x′ ∈ X, {d(gx, gx′) | g ∈ L} is bounded away from 0. We
note that distality of the action depends only on the topology, and not the
specific metric (though it is convenient to express it with respect to a metric);
an L-action on (X, d) as above fails to be distal if and only if there exists,
x, x′ ∈ X, x 6= x′, a sequence {gi} in L, and y ∈ X such that, as i → ∞,
gix→ y as well as gix

′ → y (then ρ(gix, gix
′) → 0 for any metric ρ equivalent

to d).

Now let G be a connected Lie group, T be the C-kernel of G and p : G→
G/T be the quotient homomorphism. Let µ ∈ P (G) and θ = p(µ) ∈ P (G/T ).
Let X = {λ ∈ P (G) | p(λ) = θ}, equipped with a metric d compatible with
the topology induced by the weak* topology on P (G). We note that (X, d)
is a compact metric space. Let L = p−1(Z(θ,G/T )) and consider the action
of L on X, where g ∈ L acts on X by λ 7→ gλg−1 for all λ ∈ X. We note the
following:

Proposition 3.1. The L-action on X is distal.

Proof. Let λ, λ′ ∈ X ⊂ P (G), and suppose that there exists a sequence {gi}
in L such that d(giλg

−1
i , giλ

′g−1
i ) → 0. Then for any bounded continuous

function f on G,
∫

G
f d(giλg

−1
i )−

∫
G
f d(giλ

′g−1
i ) → 0, as i→∞.

The measures λ and λ′ can be expressed as
∫

G/T
λxdθ(x) and

∫
G/T

λ′xdθ(x)

respectively, where {λx}x∈G/T and {λ′x}x∈G/T are systems of conditional mea-
sures for λ and λ′ respectively, λx, λ

′
x ∈ P (G), x ∈ G/T , being measures

supported on p−1(x); we note that such a decomposition is uniquely defined
θ-a.e..

Now let x0 ∈ G/T be arbitrary. We can find a neighbourhood Ω of p−1(x0)
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and a submanifold Σ (of dimension same as that of G/T ) transversal to T ,
such that the multiplication map m : Σ× T → G is a homeomorphism onto
Ω. We identify the open subset Ω/T of G/T with Σ, via the map x 7→ xT for
all x ∈ Σ. We consider bounded continuous functions f on G which vanish
outside Ω and on Ω have the form ϕ(x)ψ(t), where ϕ is a continuous function
with compact support on Σ and ψ is a continuous function on T . We note
that the fiber p−1(x) over x ∈ G/T is {xt | t ∈ T}. We write the conditional
measures λx and λ′x as xσx and xσ′x, where σx, σ

′
x are probability measures

on T .

Since L = p−1(Z(θ,G/T )) it follows that the action of each gi leaves
p−1(x) invariant for θ-almost all x and hence∫

G

f d(giλg
−1
i ) =

∫
Ω

f d(giλg
−1
i ) =

∫
Σ

∫
p−1(x)

f(y) d(giλxg
−1
i )(y)dθ(x).

For each i let αi : G/T → T be the map defined by αi(xT ) = x−1gixg
−1
i for

all x ∈ G; the map is well-defined since T is contained in the center of G.
Then for all x ∈ Σ and i = 1, 2, . . . we have giλxg

−1
i = (gixg

−1
i )(giσxg

−1
i ) =

xαi(x)σx. It follows that for all x ∈ Σ and i = 1, 2, . . .∫
p−1(x)

f(y) d(giλg
−1
i )(y) =

∫
xT

f(y) d(xαi(x)σx)(y) =

∫
T

ϕ(x)ψ(t) d(αi(x)σx)(t).

Substituting from the displayed equations and their analogues for λ′, the
original condition as above yields∫

Σ

ϕ(x)[

∫
T

ψ(t) d(αi(x)σx)(t)− ψ(t) d(αi(x)σ
′
x)(t)]dθ(x) → 0,

as i → ∞. As this holds for every continuous function ϕ with compact
support on Σ it follows that the sequence of functions appearing in the square
brackets must converge to 0, θ a.e., on Σ ≈ Ω/T . Again, since the conclusion
holds for each bounded continuous function ψ on T , we get that for almost
all x in Ω/T (with respect to θ), ρ(αi(x)σx, αi(x)σ

′
x) → 0 as i→∞, where ρ

is a metric on P (T ). Since ρ can be chosen to be translation invariant this
implies that σx = σ′x for almost all x ∈ Ω/T . Hence λx = xσx = xσ′x = λ′x,
for θ-almost all x in Ω/T . Thus we have shown that every x0 ∈ G/T has
a neighbourhood in G/T such that for θ-almost all x in the neighbourhood
λx = λ′x. Hence λx = λ′x a.e. on G/T , with respect to θ, and therefore
λ = λ′. This shows that the L-action on X is distal. �

5



We need the following corollary in the proof of Theorem 1.1.

Corollary 3.2. Let M be a closed subgroup of L. Let ν ∈ P (G) and suppose
there exists a sequence {gi} in M such that giµg

−1
i → ν as i → ∞. Then

there exists a sequence {hi} in M such that hiνh
−1
i → µ, as i→∞.

Proof. Since, by Proposition 3.1, the action of L on X is distal, the action
of M on X is also distal. Under a distal action the space decomposes as
a disjoint union of minimal (nonempty) closed invariant sets; cf.[5], Theo-
rem 3.2. In particular, the closure, say C, of the M -orbit of µ is a minimal
closed M -invariant subset, containing ν as in the hypothesis. By minimality
of C, the closure of the M -orbit of ν must coincide with C, and in particular
contains µ. This proves the corollary. �

4 Proof of Theorem 1.1

Let G and T be as in the hypothesis of the theorem. By Proposition 2.2
G/T is of class C. Let G′ = G/T and let p : G → G′ be the quotient
homomorphism. Let µ ∈ P (G) be infinitely divisible.

For each m choose λm ∈ Rm(µ,G) and let r : N → P (G′) be a map de-
fined by r(m) = p(λm). Then clearly r(m)m = p(µ) for all m. Therefore by
Theorem 2.1 there exist sequences {mi} in N, and {zi} in Z0(p(µ), [G′, G′]),
and n ∈ N such that for all i, i!n divides mi, for every k ∈ N the se-
quence {zir(mi)

mi/k!nz−1
i }∞i=k converges, and the limit ν ′ of {zir(mi)

mi/nz−1
i }

is strongly root compact and rationally embeddable on the centraliser of
Z0(ν ′, G′) in G′. Let H ′ = Z0(ν ′, G′) and H = p−1(H ′).

Let M be the subgroup as in the statement of the theorem. We note that
p(M) = Z(p(µ), G′). Considering the connected components we see that
p(M0) = Z0(p(µ), G′); that is, M0 maps onto Z0(p(µ), G′) under p. Since
zi ∈ Z0(p(µ), [G′, G′]), for all i, we can pick gi ∈ M0 such that p(gi) = zi,
for all i. For each i we have σi ∈ Rmi

(µ,G) such that p(σi) = r(mi). For

each k ∈ N consider the sequence {giσ
mi/k!n
i g−1

i } in P (G). Its image under
p is the sequence {zir(mi)

mi/k!nz−1
i }, which is convergent. Since the kernel

of p is compact it follows that {giσ
mi/k!n
i g−1

i } is relatively compact for all k.
Passing to subsequences successively we see that there exists a sequence {ij}
of integers such that for each k, {gijσ

mij
/k!n

ij
g−1

ij
} converges, as j → ∞; let

ψk denote the limit. Then ψk ∈ P (H) for all k, and ψk
k = ψk−1 for all k ≥ 2.
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This shows that ψ1 is infinitely divisible on H. Also, p(ψ1) = ν ′, and since
ν ′ is strongly root compact on H ′ = p(H) we get that ψ1 is strongly root
compact on H. Therefore ψ1 is embeddable on H (see [7], Chapter 3). Also,

as {gijσ
mij

/n

ij
g−1

ij
} converges to ψ1 and σ

mij

ij
= µ we have gijµg

−1
ij

→ ψn
1 as

j →∞. Hence by Corollary 3.2 there exists a sequence {hi} in M0 such that
hiψ

n
1h

−1
i → µ as j →∞. As ψn

1 is embeddable, this proves the theorem. �

For possible future reference we note that the above proof shows in fact
that {gi} as in Theorem 1.1 may be found in the Lie subgroup {g ∈ [G,G] |
gxg−1x−1 ∈ T for all x ∈ suppµ}, or even in the connected component of
the identity in that subgroup. We caution the reader that in general [G,G],
and the subgroups as above may not be closed subgroups.

Proof of Corollary 1.3: By Theorem 1.1 there exist a one-parameter con-
volution semigroup {σt} in P (G) and a sequence {gi} in M0 such that
giσ1g

−1
i → µ. Then σ0 is an idempotent and it is the normalised Haar

measure of a compact subgroup, say C. Since σ0σ1 = σ1 and p(σ1) = p(µ) it
follows that p(C) is contained in p(G(µ)). Therefore every z ∈ Z(p(µ), G′)
centralises p(C). Let K = CT and ϕ : Z(p(µ), G′) → Hom (K,T ) be the
map defined by ϕ(z)(g) = xgx−1g−1, for all g ∈ K and z ∈ Z(p(µ), G′),
with x ∈ G such that p(x) = z; since ker p = T is contained in the center of
G the map is well-defined, independently of the choice of the representative
x. It can be verified that ϕ is a homomorphism of the topological groups.
Since Hom (K,T ) is a discrete group, it follows that for all z ∈ Z0(p(µ), G′),
ϕ(z) is the trivial homomorphism. We note that p(M0) ⊂ Z0(p(µ), G′), and
hence the preceding conclusion implies that M0 centralises K. In particular
every gi centralises C. It follows that ωC , the normalised Haar measure of
C, is a factor of giσ1g

−1
i for all i, and hence also of µ. Since by hypothesis

µ has no idempotent factor other than δe, we get that C must be trivial.
Hence σt → δe as t→ 0, and in turn, for each i, giσtg

−1
i → δe. Therefore we

can find a sequence {ni} of natural numbers, tending to infinity, such that
giσ1/ni

g−1
i converges to δe. Now for all i let µi = giσ1/ni

g−1
i . Then µi → δe,

and µni
i = giσ1g

−1
i → µ, as i→∞. Thus the conditions of Theorem 1.2 hold

for the measure µ and so it is embeddable. This proves the corollary. �

The condition in the hypothesis of Corollary 1.3 that T 0(µ)/Z0(G) be
compact is rather strong, in the context of the general embedding problem
for connected Lie groups. Nevertheless, Corollary 1.3 does yield embedding
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property for the “Walnut” group, which had earlier seemed a test case among
Lie groups for which the embedding property was not known; though em-
bedding property was asserted for the group in [3] the argument turned out
to have a flaw, as noted in the erratum to the paper. The argument in [3]
did however establish the weak embedding property, namely the assertion as
in Theorem 1.1, for the class of groups considered there, including the Wal-
nut group. We now deduce the embedding property for the Walnut group
as an illustration of application of the ideas as above. Further study along
the lines, especially through use of the underlying general ideas involved in
the proof of Theorem 1.2 rather than the specific theorem itself, is expected
to yield stronger results, and is being taken up in collaboration with Riddhi
Shah.

We shall begin with a description of the Walnut group. The reader is
referred to [9] for more details. Let N be the 3-dimensional Lie group con-
sisting of {(v, θ) | v ∈ R2, θ ∈ S1}, where S1 is the unit circle consist-
ing of complex numbers of modulus 1, with the multiplication defined by
(v1, θ1) · (v2, θ2) = (v1 + v2, θ1θ2e

iα(v1,v2)), where α : R2 × R2 → R is an
nonzero alternating bilinear form; such a form is unique up to scalar multi-
ples, and the corresponding Lie groups are isomorphic. Then N is a nilpotent
Lie group, with Z = {(0, θ) | θ ∈ S1} as its center. Let K be the group of
rotations of R2. Then for κ ∈ K, (v, θ) → (κ(v), θ) for all v ∈ R2 and θ ∈ S1,
defines a Lie automorphism of N , and thus K can be realised as a group of
Lie automorphisms of N . The semidirect product of K and N with respect
to the action of K on N as above is called the Walnut group. It does not
belong to class C and is also not nilpotent; it is a Lie group of minimum
possible dimension satisfying the twin conditions. Thus the earlier known
results on the embedding property do not apply to this case. We now show
that nevertheless the embedding property does hold for the Walnut group, in
the light of Corollary 1.3 and earlier known results for the case (see below).

Proof of Corollary 1.4: Let G be the Walnut group, with N and K as above.
The T = {(0, θ) | θ ∈ S1} is the C-kernel of G. Let p : G → G/T be the
quotient homomorphism. By an argument as in the proof of Corollary 1.2 in
[3] (originally from [11], Proposition 82) to prove the embedding property for
G it suffices to prove embeddability of every infinitely divisible probability
measure µ such that G(µ) ⊂ N . If µ is infinitely divisible on N then it
is embeddable, since N is nilpotent. We may therefore assume that µ is
such with suppµ contained in N but not infinitely divisible on N . We note
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that in this case p(µ), which is a measure on N/T ≈ R2 is invariant under
all rotations, namely under the action of K; see [4], Lemma 2.2. Hence
G(p(µ)) = N/T unless p(µ) is the point mass at {0}, in which case G(µ) is
contained in T . In case G(µ) is contained in T , using the fact that every
root is of the form xλ with λ ∈ P (T ) and T is central we conclude that µ is
infinitely divisible on T , and hence embeddable. Therefore we may assume
that p(µ) is not the point mass at {0}. Hence G(p(µ)) = N/T , and this in
turn implies that G(µ) = N .

If ωC is a factor of µ for a compact subgroup C, then clearly C must be
contained in T . As T is contained in the center of G it follows that there
exists a unique maximal compact subgroup C of T such that ωC is a factor
of µ. Let q : G → G/C be the quotient homomorphism. Since ωC is a
factor of µ, to prove that µ is embeddable it suffices to prove that q(µ) is
embeddable; see [7], Theorem 1.2.15. We note that if C = T then G/C
is the group of motions of the plane, which is a group of class C and has
the embedding property (see [1]; in this special case the result also from
an earlier paper of the authors, cited in [1]), it follows that the infinitely
divisible measure q(µ) is indeed embeddable. We may therefore assume C to
be a proper, and hence finite, subgroup of T . Then G/C is isomorphic, as a
Lie group, to the Walnut group, and q(µ) is an infinitely divisible measure on
G/C with no nontrivial idempotent factor. Therefore to prove the corollary,
by modifying the notation, we may further assume that µ as above has no
nontrivial idempotent factor.

By Corollary 1.3 it now suffices to prove that T 0(µ) is compact. Clearly
T 0(µ) is a closed subgroup containing T . Suppose it is noncompact. Then
p(T 0(µ)) is a closed noncompact subgroup of G/T . The latter is the semidi-
rect product of K and R2, with K acting as rotations. Therefore p(T 0(µ))
contains a one-parameter subgroup of R2. Hence T 0(µ) contains a one-
parameter subgroup of N , that is not contained in T , say {xt}t∈R. This
means that µ is invariant under the maps g 7→ xtgx

−1
t = (xtgx

−1
t g−1)g,

g ∈ G(µ) = N . These maps leave invariant each fibre p−1(y), y ∈ N/T , and
in the fibre containing g ∈ N the action of xt is by translation by the element
xtgx

−1
t g−1. We note that for g other than those commuting with each xt the

action of the one-parameter subgroup is transitive on the fibre. We note also
that g commutes with each xt if and only if p(g) ∈ L = {p(xt) | t ∈ R}, which
is a line in R2 = N/T . Let {µy}y∈N/T be a system of conditional measures
for µ with respect to the fibration p : N → N/T . The preceding observations
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therefore imply that µy is T -invariant for p(µ)-almost all y ∈ R2\L. Since
L is a line and by our assumption p(µ) is invariant under all rotations, and
is not the point measure at {0}, it follows that p(µ)(L) = 0. Thus we get
that µy is T -invariant for p(µ)-almost all y. Therefore µ is T -invariant; that
is, the normalised Haar measure ωT is a factor of µ. This contradicts the
assumption as above, that µ has no nontrivial idempotent factor. It follows
therefore that T 0(µ) is compact, and this proves the corollary. �
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