
Recovery Patterns for Iterative Methods in a
Parallel Unstable Environment

Bosilca, G and Chen, Z and Dongarra, J and Langou, J

2007

MIMS EPrint: 2007.125

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Recovery Patterns for Iterative Methods in a

Parallel Unstable Environment ∗

J. Langou† Z. Chen‡ G. Bosilca § J. Dongarra§¶

May 3, 2007

Abstract

Several recovery techniques for parallel iterative methods are pre-
sented. First, the implementation of checkpoints in parallel iterative
methods is described and analyzed. Then, a simple checkpoint-free fault-
tolerant scheme for parallel iterative methods, the lossy approach, is pre-
sented. When one processor fails and all its data is lost, the system is
recovered by computing a new approximate solution using the data of the
non-failed processors. The iterative method is then restarted with this
new vector. The main advantage of the lossy approach over standard
checkpoint algorithms is that it does not increase the computational cost
of the iterative solver, when no failure occurs. Experiments are presented
that compare the different techniques. The fault tolerant FT-MPI library
is used. Both iterative linear solvers and eigensolvers are considered.

1 Introduction

Among the most remarkable features of the ongoing computational revolution
in science is the ease with which the aspirations of domain researchers have
overtaken and outstripped the explosive growth in computing power described
by Moore’s law. The unquenchable desire of scientists to run ever larger simu-
lations and analyze ever larger data sets is fueling an escalation in the size of
supercomputing clusters from hundreds, to thousands, and even tens of thou-
sands of processors. Unfortunately, the struggle to design systems that can
scale up in this way also exposes the current limits of our understanding of
how to efficiently translate such increases in aggregate computing resources into
corresponding increases in scientific productivity.

∗This research was supported in part by the Los Alamos National Laboratory under Con-
tract No. 03891-001-99 49 and the Applied Mathematical Sciences Research Program of the
Office of Mathematical, Information, and Computational Sciences, U.S. Department of Energy
under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

†University of Colorado at Denver and Health Sciences Center, CO, USA
‡Jacksonville State University, Jacksonville, AL, USA
§University of Tennessee, Knoxville, TN, USA
¶Oak Ridge National Laboratory, Oak Ridge, TN, USA

1

One increasingly urgent aspect of this knowledge gap lies in the critical area
of reliability and fault tolerance. Even making some generous assumptions (e.g,
that the reliability of a single-processor system is several years), it is clear that,
as the processor count in high end clusters grows into the thousands, the mean
time to failure (MTTF) will drop from a few days to a few hours, or less. The
type of 100,000-processor machines projected in the next few years can expect
to experience a processor failure almost hourly. Although today’s architectures
are robust enough to incur process failures without suffering complete system
failure, at this scale and failure rate, the only technique available to application
developers for providing fault tolerance within the current parallel program-
ming model “checkpoint/restart” has performance and conceptual limitations
that make it inadequate to the future needs of the large scale simulation and
modeling community who will use these systems. An excellent summary of
current research in fault-tolerant algorithms is provided in [11].

To fulfill these needs, a new message passing library has been created called
FT-MPI [7, 8]. FT-MPI enables an implementer to create fault tolerant algo-
rithms while maximizing freedom to the user. Based on this library, it becomes
possible to create more and more fault-tolerant algorithms and software with-
out the need for specialized hardware; thus providing the numerical analyst the
ability to explore a new area for implementation and development. For more
about how to make an application fault tolerant with the FT-MPI library, we
refer to [7].

In order for applications to survive faults, we design the following model.
The recovery process for the application is made of three phases:

• Phase I : recover a correct computational environment,

• Phase II : recover the static data lost,

• Phase III: recover the dynamic data lost.

Phase I is the need to recover a correct MPI environment. In this paper, the
recovered environment has the same number of processors as the failed one. This
is the task of the FT-MPI library. Phase II consists of recovering the static data
lost. By static data, we mean for example the matrix, the right-hand side, the
preconditioner. This represents data that is computed once in the initialization
phase of the application and is unchanged after. Phase III consists of recovering
the dynamic data, which is the data that changes during the algorithm.

In this paper we mainly discuss Phase III. Previous solutions to recover the
dynamic data were based on checkpointing. Checkpointing is a way to provide
fault tolerant applications that require additional time and memory (or disk, or
processors). In Section 2, we explain how to implement checkpoints efficiently
in some iterative solvers. The checkpoint technique used in the experiments
is called diskless checkpointing (see Section 2.1) and is particularly suited for
parallel distributed computing.

Diskless checkpoints involve global operations with large size data, and their
overhead is in direct relation with the number of nodes involved in the applica-
tion.

2

In the context of iterative methods, where scalability bottlenecks reside
mostly in global operations, such as scalar product computations [16, §12.2],
adding diskless checkpoints just makes the scalability worse. For most comput-
ing systems today, applications are unlikely to encounter a failure and thus many
users prefer to take their chance. The mode is to run the application with no
checkpointing and, if a failure occurs, restart the application from scratch. The
aim of this paper is to find a way to operate Phase III without any significant
overhead in the original application.

Our primary concern are iterative methods to solve the linear system Ax = b.
Parts of the vectors are stored on each of the processors. A failure of one of
the processors results in the loss of all the data stored in its memory (local
data). Therefore, when a failure occurs, a part of our approximate solution is
lost. Assuming that no checkpoint of the dynamic variables has been performed
and a failure occurs, what can be done? At this point, the local data of the
approximate solution before failure x(old) is lost on a processor. Being positive,
we prefer to say that the approximate solution before failure x(old) is still known
on all the processors but one. Thus our idea is to restore a new approximate
solution from this data. This is done by solving the local equation associated
with the failed processor. In the sequel, xj is the local part of the vector x
stored on processor j, and Ai,j represents the sub-matrix whose rows are stored
on processor i and with column indexes corresponding to the rows stored on
processor j. If processor f fails, then we propose to construct a new approximate
solution x(new) via

x
(new)
j = x

(old)
j for j 6= f

x
(new)
f = A−1

f,f (bf −
∑
j 6=f

Af,jx
(old)
j) (1)

provided that Af,f is of full rank (see Section 3.2 if not).
If x(old) is the exact solution of the system, Equation (1) will construct

x
(new)
f = x

(old)
f ; the recovery of x will be exact. In general, the failure happens

when x(old) is an approximate solution, in which case x
(new)
f is not exactly x

(old)
f

but should be close. This assertion is justified theoretically in Section 3.1. After
the recovery step, the iterative method is restarted from x(new). The goal of
Section 3 is to explain this technique and give some theoretical results about it.
This method is sometimes referred to as lossy algorithm (as opposed to loss-less
for the checkpoint method). Because the dynamic data of the failed processor
(e.g, x

(old)
f) is lost and not recovered, but we recover x

(new)
f an approximation

of it. In Section 3.3, we also explain how Equation (1) can be generalized for
eigensolvers. In Section 4, we present some experimental results that compare
the lossy method with some checkpointing approaches.

This study is dedicated to one failure at a time. Theoretically, it is not an
issue to generalize the results to multiple failures at a time. Some hints for
addressing this problem are given in Section 3.2.

3

2 Checkpoint Techniques for Parallel Iterative
Methods

Our discussion will focus on the GMRES method [13] but there is no problem
generalizing to the other iterative methods.

In this discussion, we describe how we perform a recovery of vector quanti-
ties. The scalar quantities (e.g, the number of iterations) are trivial to restore
in case of a failure.

2.1 Diskless Checkpoint-Restart Technique

The information of the computing processors is saved in a checkpoint in case of
a failure. In order to save the data from any of the processors while maintaining
a low overhead in the storage, we are using a checksum approach to checkpoint-
ing. If there is n processors for each of which we want to save the vector xk

(for simplicity, we assume that the local sizes of xk are the same on all the
processors), then we store the checksum xn+1 such that xn+1 =

∑
i=1,...,n xi. If

processor f fails, we can restore xf via xf = xn+1−
∑

i=1,...,n;i 6=f xi. The arith-
metic used for the operations + and − can either be binary or floating-point
arithmetic. (However note that, if the floating-point arithmetic is used, then
one has to be aware that the recovered data is not the same as the initial one
due to round-off errors; in particular, one shall expect important relative errors
if the coefficients of x differ by large orders of magnitude.) Our checkpoints are
diskless, in the sense that the checkpoint is stored in memory of a processor and
not on a disk. To achieve this, an additional processor is added to the environ-
ment. It will be referred to as the checkpoint processor and its role is to store
the checksum. The checkpoint processor can be viewed as a disk but with low
latency and high bandwidth since it is located in the network of processors. For
more information, we refer the reader to [12], where special attention is given
to simultaneous failures.

2.2 Classification of Checkpointing Strategies

To perform the checkpoint, we will classify the algorithms in different categories.
But first of all, we need to classify the variables of the algorithms. The goal of
this classification is to define which variables:

• need to be stored once, they are referred to as “static” (e.g, the system
matrix A, the right-hand side b, or the preconditioner P);

• are changing along the iterations, they are referred to as “dynamic” (e.g,
the approximate solution x);

• should be recomputed after a failure rather than checkpointed (e.g, ob-
taining the residual via r = b−Ax might be faster than via a checkpoint);

4

• can be recomputed in case of a rollback but are worth saving their values
in order to gain time (e.g, a scalar product is expensive to compute, easy
to store and its value is the same on all processors thus it makes sense
to store those values in an array on all processors, at recovery time, we
provide those values to the failed processor and this avoids recomputing
those values during the rollback).

Once this classification of the variables is done, we give two different strate-
gies for checkpointing. The first strategy (chkpt F) checkpoints the data at
each iteration (see 2.3). It is suited for Full GMRES and Arnoldi. The second
strategy (chkpt R) checkpoints the data every k iterations and implies rollback
(see 2.4). It is suited for GMRES with restart and Conjugate Gradient (CG).
In the experimental part (Section 4), both categories are represented and com-
pared with the lossy approach. We note that a checkpoint approach can be used
to recover the static data (matrix, right-hand side, preconditioner) in Phase II
(instead of a disk I/O for example).

2.3 Checkpointing at each iteration (chkpt F)

In Full GMRES and Arnoldi methods, in order to perform iteration k, we need
the knowledge of k vectors, thus all the vectors need to be checkpointed. Full
GMRES and the Arnoldi method therefore have a very simple checkpoint strat-
egy: each time a vector is computed, it is checkpointed. This strategy is called
chkpt F.

2.4 Checkpointing with Rollback (chkpt R)

The common point of CG and GMRES with restart is that, in both methods,
the iteration k can be performed using only the knowledge of a constant number
of vectors (independent of k).

For example in CG, in order to perform the kth iteration, we need the
knowledge of three vectors: x(k−1), p(k−1) and r(k−1). The vectors constructed
at iteration (k − 2) are no longer needed. (Actually, in practice, the CG im-
plementation simply overrides those vectors by the new ones.) In this case,
it makes sense to checkpoint all the vectors involved in a given iteration only
occasionally. If a failure happens, then we restart the computation from the
last checkpointed version of those vectors. This is called a rollback. Rollback
implies that some computations need to be performed again.

It is clear that the checkpointing rate has to be chosen carefully. On the
one hand, distant checkpoints require long rollback. On the other hand, close
checkpoints imply a large overhead due to a large number of global communi-
cations. Gropp and Lusk [9] explain how to choose the checkpointing frequency
in an optimal manner. The analysis below is based on their initial work.

5

To know the optimal rate of checkpoints, we use the following notations:

Titer the time for an iteration (or any unit time step of the code),
Tchkpt the time to perform a checkpoint,
Trecov the mean time to repair and bring the application back to the last checkpoint,
k the checkpoint frequency: a checkpoint is performed every k iterations (or units of time),
N the number of iterations (or units of time) to converge (without failure),
Trollback(k) the mean time to perform the rollback.

Given these definitions, we can write

Ttotal = NTiter + Tchkpt

N

k
+

Ttotal

TMTTF

(Trecov + Trollback(k)),

which means that the total time is the sum of the time to perform the N
iterations, the time to perform the checkpoints every k iterations and the time
to perform the recovery of the encountered failures. The time to perform the
recovery of the encountered failures is the number of failures (Ttotal/TMTTF) times
the mean time for a recovery (Trecov + Trollback(k)).

As in [9], we assume that the probability of failure is constant over time which
implies that the distribution of failures is exponential. Taking into account that
the distribution of failures is exponential of parameter TMTTF, the distribution of
failures that have happened between t = 0 and t = kTiter is

1
TMTTF(1− e−kTiter/TMTTF)

e−t/TMTTF ,

for t between 0 and kTiter; and 0 elsewhere. The mean time of this law,
Trollback(k), is given by

Trollback(k) = TMTTF − kTiter

e−kTiter/TMTTF

1− e−kTiter/TMTTF
.

When kTiter � TMTTF, then a good approximation of Trollback is kTiter/2,
which means that the failures happen, on average, in the middle of the check-
point interval. This makes sense since, when kTiter � TMTTF, the exponential
distribution of parameter TMTTF on 0 and kTiter is close to a uniform distribution.

Returning back to the expression of the total time we can write

Ttotal =
(

NTiter + Tchkpt

N

k

) (
kTiter

TMTTF

e−kTiter/TMTTF

1− e−kTiter/TMTTF
− Trecov

TMTTF

)−1

. (2)

Our goal is to minimize the total time Ttotal with respect to the parameter k.
For the sake of simplicity, we linearize the exponentials assuming kTiter � TMTTF,
and get

Ttotal =
(

NTiter + Tchkpt

N

k

) (
1− kTiter

2TMTTF

− Trecov

TMTTF

)−1

. (3)

6

The minimum is obtained for

k =

√
Tchkpt(2TMTTF + Tchkpt − 2Trecov)

Titer

−
Tchkpt

Titer

.

This gives us the optimal time between two checkpoints

kTiter =
√

Tchkpt(2TMTTF + Tchkpt − 2Trecov)− Tchkpt. (4)

With the assumptions TMTTF � Tchkpt and Tchkpt = Trecov, we recover Gropp and
Lusk [9]’s formula

k · Titer ∼
√

2TMTTF · Tchkpt. (5)

The assumption Tchkpt = Trecov holds well when the fault-tolerant library
is unaware of the application, therefore checkpoints of the whole memory are
made at regular intervals, which is the context of [9]. In our experiments (see
Section 4), there is a significant difference between Trecov and Tchkpt. This is
due to the fact that our checkpointing algorithm only checkpoints the dynamic
data.

For GMRES with restart m, to compute the vector vk+1 at iteration k, we
need k[m] + 1 vectors. The checkpointing strategy we choose is to checkpoint
the data when k[m] = 0 (at the restart). In this case, we just have one vector to
checkpoint (the approximate solution x) per m iterations. This strategy is called
chkpt R. Note that if the size of the restart is long relative to the mean time
between failure, it is more advantageous to checkpoint GMRES with restart as
Full GMRES (at every iteration) in order to avoid long rollback.

3 The Lossy Approach

The lossy approach with the Block Jacobi step is defined by Equation (1). The
lossy approach is strongly connected to the Block Jacobi algorithm. Indeed, a
failure step with the lossy approach is a step of the Block Jacobi algorithm on
the failed processor. Related work is by Engelmann and Geist [6], where the
authors propose to use the Block Jacobi method itself as a scalable algorithm
to failure. In fact, the Block Jacobi method needs only to be performed at the
recovery step but it can be embedded in any iterative solver. This way, one can
choose the iterative solver desired, for example a Krylov method. On a related
note, we remind the reader of the work of Jacobi and Gauss at the time when
computations were done by hand. Gauss [10, p.321] states that the method was
extremely tolerant to errors.

3.1 Quality of the New Approximate Solution Given by
the Lossy Approach

The lossy approach implies that the method is no longer the same as the method
without failure. In this section, we give some hints on the convergence of the
lossy method. Surprisingly enough, failures sometimes enhance the convergence.

7

To quantify the convergence property of the lossy approach, we focus on the
size of the residual difference norm between before and after the failure. We
also discuss the speed of convergence after the recovery.

Since the lossy approach is nothing more than a step of a Block-Jacobi-like
method, a part of the theory of stationary iterative methods applies and one
can prove that

‖x(new) − x∗‖ ≤

1 + ‖A−1
f,f‖

2
∑
j 6=f

‖Af,j‖2

1/2

‖(x(old) − x∗)‖, (6)

‖r(new)‖ ≤

1 + ‖A−1
f,f‖

2
∑
j 6=f

‖Aj,f‖2

1/2

‖r(old)‖. (7)

(A formal proof is omitted in this paper. The results follow easily from the
discussion of Saad[§4.2] [15].)

As a result of these inequalities, we can clearly quantify the jump of the
residual norm after a recovery; the new residual norm is close to the previous
one if (‖A−1

f,f‖2
∑

j 6=f ‖Aj,f‖2)1/2 is small compared to 1 (or at least of the same
order). This assumes that the diagonal blocks are not ill-conditioned and the
extra-diagonal blocks have small norms relative to the diagonal block norms.

The residual norm of the approximate solution is not the only thing that
matters. The iterative solver computes other information that is stored in other
vectors. Losing those vectors and restarting from the new approximate solution
could theoretically lead to some delay in the convergence. This problem is the
same problem as the one induced by any restart in an iterative method. In a
general manner, the lossy approach will perform well if the convergence behavior
of the method is linear or sub-linear. Thus, the lossy approach is justified in
all the restarted methods (in particular GMRES with restart) as long as the
residual norm difference (Equation (7)) is not too high.

GMRES with restart has the drawback of stagnating fairly easily on practi-
cal examples. If a failure occurs during stagnation, the lossy approach computes
a new approximate solution with the same quality in term of error norm and
residual norm, Equations (7) and (6), but with different spectral properties.
In our experiments (see Table 3 and Table 4), we often observe that the GM-
RES with restart algorithm with a failure and a lossy recovery step performs
better in term of number of iterations than the non-failed GMRES with restart
algorithm. This observation suggests that including Block Jacobi steps inside
GMRES cycles might cure the stagnation of restarted GMRES.

3.2 Remarks About the Lossy Approach

Block Jacobi preconditioner
The main cost of the recovery step in Phase III is to perform the LU factorization
of the local matrix. However, it is worth noting that, if the preconditioner used

8

is a Block Jacobi preconditioner, those factors are available from step II and
thus, the recovery of x can be done for the price of a preconditioner step and
the local contribution of a matrix-vector product.

What about a singular diagonal block Ai,i?
If the matrix A is nonsingular (which is given), we can extract rows from the
column block A:,i such that these rows form a nonsingular square block. Thus in
theory, a singular diagonal block Ai,i is not an issue. In practice, we only focused
on matrices with nonsingular (and even well-conditioned) diagonal blocks. Once
more in the case of a Block Jacobi preconditioner, this property is assumed and
thus the lossy approach fits well.

What about a matrix-free method?
The lossy approach needs to know the diagonal block corresponding to the failed
processor. In some matrix-free methods, those blocks are known; when they are
not, the lossy approach will not work. An idea is to apply the global matrix-
vector product to solve iteratively the local system (with restriction operators).
Since the space in which we are working is smaller than the size of the initial
matrix, the iterative solve should converge faster than restarting the method
from scratch.

What about multiple failures on a single instance ?
This is not a theoretical issue. If processors i and j fail at the same time, we
have to solve a system of linear equations involving the coefficient matrix(

Ai,i Ai,j

Aj,i Aj,j

)
.

Implicit knowledge of x
The lossy recovery requires the approximate solution x at each step of the
iterative method. This assumption is true for most of the iterative methods
(stationary iterative methods, Conjugate Gradient, Orthomin, GCR, BiCGStab,
etc.) but not all. For example, in the Full GMRES method, the approximate
solution is computed only at the end of the algorithm. In this latter example,
we use the following trick. The solution x(k) at step k is implicitly known via
the formula:

x(k) = x(0) + (v(1), . . . , v(k))y(k), (8)

where v(i) represents the Krylov basis generated by GMRES. The quantities
y(k) are contained in a small vector that can be computed from the data of any
non-failed processors, and the vectors x(0), v(1),...,v(k) are classically distributed
among the processors. From Equation (8), if a failure occurs on the processor
f , the local part of x(k) (i.e x

(k)
i , i 6= f) can be computed on all the non-failed

processors. Thus the lossy approach can also be used without modifying the
generic algorithm.

Superlinear convergence
The lossy algorithm performs a restart of the iterative method when a failure
occurs. Adding an extra restart is fully justifiable in the context of restarted
methods (e.g. GMRES with restart). In the context of nonrestarted method
(e.g. Full GMRES or CG), we expect to lose the superlinear convergence after

9

restart. As a rule of thumb, the lossy algorithm will perform well in term of
iterations when the convergence of the iterative methods is linear (or sublinear).

3.3 Generalization to Eigenvalue Computation

We believe that the concepts presented in the lossy algorithm for solving systems
of linear equations could be applied to other methods as well. In this section, we
move from linear solvers to eigenvalue solvers. We use the Arnoldi algorithm (see
e.g, [14, §7.5]). For the sake of simplicity, we assume in this description that the
blocksize of the method is one and that we are looking for the largest eigenvalue
of the matrix A. (In the experimental Section 4, we take more complex cases.) If
the processor f fails at iteration nf , the lossy approach for the Arnoldi method
is defined as follows:

1. For each non failed processor, compute the largest eigenvalue λ(Ritz) and
the associated eigenvector w(Ritz) of the nf -by-nf Hessenberg matrix,

2. For each non failed processor k, compute the local part of the Ritz vector:
v
(Ritz)
k = (v(1)

k , . . . , v
(nf)
k)w(Ritz),

3. The failed processor sets its local part of the Ritz vector to 0: v
(Ritz)
f = 0,

4. Compute the residual: x = Av(Ritz) − v(Ritz)λ(Ritz),

5. Solve the residual equation on the failed processor f , xf = (Af,f −
Iλ(Ritz)) xf ,

6. The new vector x is an approximation of the eigenvector associated with
the largest eigenvalue, then the Arnoldi method can be restarted with x
as starting vector.

4 Numerical Experiments

Experiments were performed on the boba Linux cluster at the University of
Tennessee composed of 64 dual processors Intel Xeon at 2.40 GHz with Myrinet
interconnect. We used the double precision floating-point arithmetic. The MPI
library used is FT-MPI. Test matrices were from the University of Florida sparse
matrix collection [1]. We chose the matrices among the largest unsymmetric
matrices available in the collection at the time of publication. It turns out
that, for those matrices, GMRES with restart and Block Jacobi preconditioner
converges nicely.

The presented results are simulations of our final goals, we are still far from
the targeted thousands of processors experiment. However, we want to make
clear that the simulation stops there. The process failures are real. It is simu-
lated in the experiments by a forced exit in the process designed to fail. The
software developed could be used on a larger-scale system with real failures.

10

4.1 Experiment Setup

We recall that the recovery is performed in three phases: Phase I: recover the
MPI environment, Phase II: recover the static data, and Phase III: recover the
variable data. The subject of the paper is neither Phase I nor Phase II; however,
we give some clues about our actual implementation choices.

Phase I is based on FT-MPI, and we used the classical approach described
in [7].

To recover the matrix A and the right-hand side b, we have chosen to perform
a disk I/O. Since the matrix is stored in a file, this is a rather natural solution.
We changed the original storage format of the matrices. They are not stored
on the Harwell Boeing compressed sparse column format but rather we pre-
processed them to a compressed sparse row format. Doing this, each processor
needs access to a contiguous part of the file in disk. At the first reading of the
matrix (initialization of the code), we store the pointers where each processor
starts to read the file (we use the C routine ftell), this part of the initialization
is sequential. We spread these pointers on all the processors. If a failure occurs,
at Phase II of the recovery, we first recover the pointer corresponding to the
restarted processor and then we access the data in this huge file as if we had
one small file for the failed processor (we use the C routine fseek). Another
solution would have been to perform a diskless checkpoint of the matrix at the
initialization. This solution is currently an option of the code we have, and
the performance are similar to disk I/O on our small examples. This subject is
not discussed any further, but it would become an interesting subject when the
number of processors gets larger. If there is a preconditioner (static data) then
our choice is to recompute the lost LU factors (no checkpoint).

For the lossy approach, the local solve is done via UMFPACK Version
4.3 [2, 3, 4, 5]. The default parameters are used. Before going through our
main results in Section 4.2 , we finish this section by explaining in detail the
scenario for a given matrix. In particular, we will justify technical choices of
our implementation.

In the remainder of this section, we will study two diskless checkpointing
options. Namely, the first question is whether we shall perform the checksum
in floating-point arithmetic or in binary arithmetic; and the second question is
whether it is advantageous to save scalar products during the algorithm in case
of a rollback or not.

The studied matrix is cage14 and it is of order n = 1, 505, 785 with nnz =
27, 130, 349 nonzero elements. The run is performed on 32 computing processors
(which means that there is a 33rd processor used to store the checkpoint data).
The right-hand side is b = Ax∗ where x∗ is the vector with all ones. The
iteration stops when the iterative method has found an approximate solution x
such that ‖b − Ax‖/‖b‖ ≤ tol, where tol= 10−6. The method is GMRES(30)
without preconditioner. Without failure, this method converges in 13 iterations
and the run takes 15.47s (Cf. Table 1).

The first experiment consists of the same run but with a failure at iteration 10
of processor 0, and the recovery mode is chkpt R. In this case (see Section 2.4),

11

the chkpt R algorithm performs checkpoints at each restart. Since the failure
(iteration 10) is earlier than the first restart (iteration 30), the only checkpoint
made is the one from iteration 0. Thus, when the failure occurs at iteration
10, the algorithm has to rollback to the last checkpoint, that is to rollback to
iteration 0. And then it performs the 13 iterations necessary to converge. This
explains why it takes 23 iterations for the chkpt R algorithm to converge (see
Table 1). The choice of chkpt R is not appropriate and one should certainly
have performed checkpoints of the vectors at each iteration (chkpt F) in order
to have no rollback at the failure (see Section 4 to see that chkpt F is more
efficient than chkpt R on this example). This example is good to stress that
the optimization of the number of checkpoints versus the rollback (discussed in
Section 2.4) is an important issue. In most of the cases, this problem can be
anticipated.

In Table 1, we compare three variants of the chkpt R algorithm. The first
variant uses double-precision arithmetic, the second variant uses binary arith-
metic, the third uses double-precision arithmetic and the scalar products are
recomputed during rollback. # iters represents the number of iterations for the
algorithm to converge and TWall the time to solution (in seconds). The detailed
timing of the recovery will be discussed in the next section. The first row of
the table gives the name of the matrix, the order (n), the number of nonzero
elements (nnz), the tolerance (tol) and the number of computational processors
(# procs). We are considering only one failure, and for the sake of comparison
between the methods, it happens always on the same processor and at the same
iteration. For the local matrix of the failed processor, we give its order(nf) and
its number of nonzero elements (nnzf). These two numbers are representative
of the amount of work that we will need to accomplish during a recovery step.
The load balancing among the processors is done by setting ni = n/ (# procs).
For our matrices, this proves to equilibrate nnzi well.

From Table 1, we can conclude the following points:

1. At our problem scale, reusing the scalar products seems not to have a
large effect on the overall time. We expect that this effect will be more
important when the size of the problem or the rollback gets larger. In the
sequel, we do not recompute the scalar products at rollback.

2. Using either binary arithmetic or double-precision arithmetic seems not
to be a big issue. Both arithmetics lead to similar timings. The errors due
to the floating-point arithmetic are not affecting the overall algorithm. In
the sequel, the checkpoints are made using the binary arithmetic.

4.2 Experimental results

Seven matrices are tested and the results for a given matrix are given in Table 2
(GMRES(30) with Block Jacobi preconditioner), Table 3 (GMRES(30) without
preconditioner) and Table 4 (Arnoldi Method).

12

cage14
recovery iterf # iters TWall

no 13 15.47
chkpt R(1) 10 23 28.66
chkpt R(2) 10 23 28.92
chkpt R(3) 10 23 28.80

Table 1: Comparison of three variants of the checkpoint fault-tolerant algo-
rithms chkpt R with GMRES(30): chkpt R(1) performs checkpoints in double
precision arithmetic and stores scalar products; chkpt R(2) performs check-
points in double precision arithmetic and recomputes scalar products during
a roll-back; chkpt R(3) performs checkpoints in binary arithmetic and stores
scalar products. Times are given in seconds and the parameters for the problem
are: n = 1, 505, 785; nnz = 27, 130, 349; tol=10−6; # procs = 32; nf = 47, 056;
nnzf = 414, 240.

The meaning of the tables is the same as described in Section 4.1. Regarding
the Arnoldi method, defining x

(k)
i , the approximate solution of unit norm of the

kth eigenvector, and λ
(k)
i , the approximate value for the kth eigenvalue, λ

(k)
i =

(x(k)
i)T Ax

(k)
i , and the eigensolver is stopped at iteration i if: ‖Axi − xiλi‖2 ≤

|λi|·tol. Note that if the algorithm uses checkpoints, the number of processors
used is (# procs + 1) whereas for the lossy variant it is # procs.

For the different matrices and the different iterative methods, we test the
three recovery modes explained in Section 2.1 and 3: chkpt R, chkpt F or lossy
(whenever they apply). For the sake of comparison, we also provide failure-free
data (with or without checkpoints).

The iteration where the failure occurs is iterf . By default, iterf is set to
(roughly) half of the number of iterations for the scheme without failure. To
assess the robustness with respect to the location of iterf , we also present exper-
iments with two failure locations: one at the first third, the second at the second
third. The checkpointing choices and timing of faults have been chosen so that
there is no rollback for chkpt R, this setup is made to favor the checkpointing
methods in order to test the lossy algorithm against the harshest competition.
The LU factors of the block diagonals of the initial matrices used in the Block
Jacobi preconditioner are computed via UMFPACK Version 4.3 [2, 3, 4, 5].

Then we give the results:

• the number of iterations to converge (# iters),

• the time to solution (TWall),

• the total time for all the checkpoints (Ttotchkpt),

• the time lost in the rollback (Trollback: for the chkpt F method, there
is no rollback, so none; for the chkpt R method, there is a rollback; for
the lossy approach if this time is positive, the method with failure per-
forms more iterations than without and this quantifies the time spent in

13

those iterations, if this time is negative, the lossy approach improves the
convergence),

• the time for the recovery (Trecov: it is the maximum time among all the
processors of the difference between the time when the code enters the
recovery routine and the time when the code exits it),

• the time for Phase I of the recovery (TI: this is the time that it takes for
the system and the FT-MPI library to provide a new MPI environment,
we typically measure it on one of the non faulty processors),

• the time for Phase II of the recovery (TII,A,b: the time to do the I/O to
recover A and b; and if needed TII,P : the time to compute the precondi-
tioner, we measure them on the restarted processor),

• and finally the time for Phase III of the recovery (TIII: the time to recover
a value on the restarted processor for x, it is measured on the restarted
processor).

All those times are given in seconds.
For all the experiments, we should have the following identities (in theory):

TWall = TWall(lossy) + Ttotchkpt + Trollback + Trecov,

Trecov = TI + TII,A,b + TII,P + TIII.

Although the checkpointing time for the strategy chkpt R is not significant,
it becomes more significant for chkpt F. For example, for the Arnoldi method
and cage12 (see Table 4), the checkpointing time represents up to 8.7% of the
method.

For a given number of processors, we observe that the time for Phase I
(recovery of a correct MPI environment) is constant. It is in fact proportional
to the number of processors used: 0.60s for eight processors, 1.10s for 16 and
2.00s for 32. The use of ftell and fseek in the I/O have eliminated the I/O
problem. At this point, recovery of the static data (Phase II) is of the same
order of magnitude as Phase I and Phase III. Phase III consists of recovering
the dynamic data. It is either the time to do a single checkpoint (chkpt R),
several checkpoints (chkpt F) or to solve the local problem (lossy).

In case of a failure, TI and TII should be the same whether we use a check-
point mechanism or the lossy variant. The time to recover from a failure only
differs from TIII . Our results report times for TI and TII that reflect slight but
acceptable differences among the experiments.

Note that if the preconditioner used is Block Jacobi (Table 2) then, for the
lossy algorithm, the burden of the computation of the factorization of the local
matrix is migrated in Phase II (TII,P).

Even though, those problems are small, it is important to note that both
fault-tolerant techniques (checkpoint and lossy) have reached their initial goal.
The number of extra iterations (resp. extra time for solution) for these variants
with a fault is significantly smaller than the total number of iterations (resp.

14

total time for solution). Therefore our fault-tolerant techniques are much better
than restarting from scratch.

Since we lose part of the convergence theory of the initial method, the main
concern with the lossy algorithm is losing the convergence. As claimed in Sec-
tion 3, we note that, for GMRES(30), the best number of iterations is given for
the failed lossy algorithm, not the algorithm without failure (four cases on five).
So indeed, the lossy recovery improves the convergence. For Arnoldi, the lossy
recovery performs more iterations than the original algorithm, but this remains
reasonable.

We see from the tables that the lossy and the checkpoint methods compare
fairly in terms of time and, even when one is better than the other, the results
are pretty close.

The main cost of the lossy algorithm during the recovery is to perform the
LU factorization of the local submatrix. However, in the case of Block Jacobi
preconditioned GMRES, this LU factorization is needed anyhow. Moreover, in
the case of the Block Jacobi preconditioner, the local diagonal blocks are well-
conditioned. This two points make the lossy algorithm very attractive in the
Block Jacobi preconditioner case.

5 Conclusions

The lossy technique (at least in the form presented in this paper) is intended
to work on matrices where a Block Jacobi preconditioner is appropriate. In
this paper, only matrices that satisfy this property are presented and, from our
experience and with no improvements of the technique, it does not generalize
to other matrices. The lossy algorithm has its risks. Despite the theoretical
background given in Equation (6) and (7), the success of the lossy algorithm
is hard to predict (in particular the speed of convergence after the recovery).
The robust solution is at this point checkpointing. From a performance point
of view, the checkpointing algorithm performs well and, for the size of prob-
lem we consider (less than 32 processors), by carefully adapting the checkpoint
algorithm to the iterative method, the overhead remains acceptable.

A major advantage of the lossy algorithm resides in the fact that it enables
fault tolerance with no overhead when there is no failure. We think that, at
this early stage of the implementation of the fault tolerance in end-user codes,
it is a convincing argument. As a consequence, this method can be plugged as
an external library for any existing software without modifications to the code.
Another advantage of the lossy algorithm is that, for sparse matrices, Phase III
of the recovery only involves a few number of processors.

In this paper, we have only focused on the one failure at a time problem
(either for the checkpoint or for the lossy approach). However, our codes are able
to deal with any number failures provided they occur separately, Generalizing
to deal with multiple failures at the same time is theoretically not an issue.

15

GMRES(30) with Block Jacobi preconditioner
matrix n nnz tol # procs nf nnzf

fidap035 19, 716 218, 308 10−6 8 2, 465 26, 848
recovery iterf # iters TWall Ttotchkpt Trollback Trecov TI TII,A,b TII,P TIII

lossy no 353 7.38 none
chkpt R no 353 7.40 0.02

lossy 150 348 7.95 none −1.04 0.72 0.60 0.04 0.04 0.01
chkpt R 150 353 7.96 0.02 0.00 0.71 0.60 0.04 0.04 0.00

matrix n nnz tol # procs nf nnzf

af23560 23, 560 484, 256 10−6 8 2, 945 59, 841
recovery iterf # iters TWall Ttotchkpt Trollback Trecov TI TII,A,b TII,P TIII

lossy no 52 3.23 none
chkpt R no 52 3.23 0.00

lossy 30 51 4.30 none −0.06 1.08 0.62 0.09 0.32 0.02
chkpt R 30 52 4.29 0.00 0.00 1.06 0.63 0.09 0.32 0.00

matrix n nnz tol # procs nf nnzf

stomach 213, 360 3, 021, 648 10−10 16 13, 335 185, 541
recovery iterf # iters TWall Ttotchkpt Trollback Trecov TI TII,A,b TII,P TIII

lossy no 18 7.98 none
chkpt F no 18 8.43 0.52
chkpt R no 18 8.15 0.00

lossy 10 18 14.11 none 0.00 5.50 1.05 0.33 3.61 0.35
chkpt F 10 18 13.65 0.52 none 5.19 1.10 0.33 3.61 0.13
chkpt R 10 28 16.00 0.00 2.29 5.15 1.11 0.33 3.61 0.01

Table 2: Comparison of the checkpoint fault-tolerant algorithm and the lossy
fault-tolerant algorithm. Times are given in seconds

16

GMRES(30) (no preconditioner)
matrix n nnz tol # procs nf nnzf

stomach 213, 360 3, 021, 648 10−10 16 13, 335 185, 541
recovery iterf # iters TWall Ttotchkpt Trollback Trecov TI TII,A,b TIII

lossy no 385 38.89 none
chkpt R no 385 41.04 1.92

lossy 100 372 42.38 none −1.56 5.38 1.03 0.33 3.91
chkpt R 100 395 45.49 1.92 2.40 1.68 1.02 0.32 0.20

lossy 200 374 42.44 none −1.32 5.46 1.02 0.33 3.83
chkpt R 200 395 47.34 1.92 3.60 1.83 1.02 0.33 0.20

matrix n nnz tol # procs nf nnzf

cage14 1, 505, 785 27, 130, 349 10−6 32 47, 056 414, 240
recovery iterf # iters TWall Ttotchkpt Trollback Trecov TI TII,A,b TIII

lossy no 13 15.47 none
chkpt F no 13 16.88 1.50
chkpt R no 13 15.49 0.02

lossy 10 14 21.36 none 1.19 6.35 2.20 1.56 1.64
chkpt F 10 13 22.92 1.50 none 5.51 2.20 1.73 1.39
chkpt R 10 23 28.80 0.02 7.12 4.80 2.20 1.50 0.24

Table 3: Comparison of the checkpoint fault-tolerant algorithm and the lossy
fault-tolerant algorithm. Times are given in seconds

17

Arnoldi Method
matrix n nnz tol ne bs # procs nf nnzf

fidap035 19, 716 218, 308 10−6 3 3 8 2, 465 26, 848
recovery iterf # iters TWall Ttotchkpt Trecov TI TII,A,b TIII

lossy no 69 2.32 none
chkpt F no 69 2.51 0.19

lossy 35 83 3.02 none 0.88 0.60 0.03 0.20
chkpt F 35 69 3.69 0.19 0.88 0.61 0.04 0.23

matrix n nnz tol ne bs # procs nf nnzf

torso1 116, 158 8, 516, 500 10−6 4 4 16 7, 260 425, 766
recovery iterf # iters TWall Ttotchkpt Trecov TI TII,A,b TIII

lossy no 60 16.35 none
chkpt F no 60 17.28 0.92

lossy 35 77 23.92 none 3.46 1.08 0.58 1.30
chkpt F 35 60 21.28 0.92 2.90 1.08 0.56 0.33

matrix n nnz tol ne bs # procs nf nnzf

cage12 130, 228 2, 032, 536 10−2 5 5 8 16, 279 162, 766
recovery iterf # iters TWall Ttotchkpt Trecov TI TII,A,b TIII

lossy no 120 24.28 none
chkpt F no 120 24.33 0.10

lossy 65 146 36.02 none 11.55 0.60 0.22 10.43
chkpt F 65 120 26.31 0.10 1.44 0.90 0.22 0.31

matrix n nnz tol ne bs # procs nf nnzf

cage13 445, 315 7, 479, 343 10−6 1 1 32 13, 917 112, 831
recovery iterf # iters TWall Ttotchkpt Trecov TI TII TIII

lossy no 63 44.11 none
chkpt F no 63 47.97 3.86

lossy 30 73 54.89 none 2.72 2.25 0.19 0.48
chkpt F 30 63 50.15 3.86 2.84 2.06 0.18 0.38

Table 4: Comparison of the checkpoint fault-tolerant algorithm and the lossy
fault-tolerant algorithm. Times are given in seconds

18

For the lossy approach, in the case where we are not using a Block Jacobi
preconditioner (or for multiple failures at a time), the local solve is performed
via UMFPACK Version 4.3 [2, 3, 4, 5]. This is a sparse direct solver. Another
idea is certainly to perform the local solve via an iterative method. When
multiple failures occur simultaneously, this alternative is interesting. Also note
that using an iterative method enables us to adjust its stopping criterion since
it makes sense to solve the local system only at the level where the failure has
occurred.

We have observed that performing a Block Jacobi step between two GMRES
cycles often improves the speed of convergence (in our case always).

Acknowledgments

The authors would like to thank the referees for providing them with pertinent
comments.

References

[1] Tim A. Davis. University of Florida Sparse Matrix Collection.
http://www.cise.ufl.edu/research/sparse/matrices, NA Digest, vol. 92, no.
42, October 16, 1994, NA Digest, vol. 96, no. 28, July 23, 1996, and NA
Digest, vol. 97, no. 23, June 7, 1997.

[2] Timothy A. Davis. Algorithm 832: UMFPACK, an unsymmetric-pattern
multifrontal method. ACM Transactions on Mathematical Software,
30(2):196–199, June 2004.

[3] Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-
pattern multifrontal method. ACM Transactions on Mathematical Soft-
ware, 30(2):165–195, June 2004.

[4] Timothy A. Davis and Iain S. Duff. An unsymmetric-pattern multifrontal
method for sparse LU factorization. SIAM Journal on Matrix Analysis and
Applications, 18(1):140–158, January 1997.

[5] Timothy A. Davis and Iain S. Duff. A combined unifrontal/multifrontal
method for unsymmetric sparse matrices. ACM Transactions on Mathe-
matical Software, 25(1):1–19, March 1999.

[6] Christian Engelmann and G. Al Geist. Super-scalable algorithms for com-
puting on 100,000 processors. In Lecture Notes in Computer Science:
Proceedings of International Conference on Computational Science (ICCS)
2005, Part I, volume 3514, pages 313–320, Atlanta, GA, USA, May 22-25,
2005.

19

http://www.cise.ufl.edu/research/sparse/matrices

[7] Graham E. Fagg, Edgar Gabriel, George Bosilca, Thara Angskun, Zizhong
Chen, Jelena Pjesivac-Grbovic, Kevin London, and Jack J. Dongarra. Ex-
tending the MPI specification for process fault tolerance on high perfor-
mance computing systems. In Proceedings of the International Supercom-
puter Conference, June 2004.

[8] Edgar Gabriel, Graham E. Fagg, Antonin Bukovsky, Thara Angskun, and
Jack J. Dongarra. A fault-tolerant communication library for grid environ-
ments. In Proceedings of the 17th Annual ACM International Conference
on Supercomputing (ICS’03), International Workshop on Grid Computing,
2003.

[9] William D. Gropp and Ewing Lusk. Fault tolerance in MPI pro-
grams. International Journal of High Performance Computer Applications,
18(3):363–372, 2004.

[10] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, USA, second
edition, 2002.

[11] Patricia Hough and Victoria Howle. Frontiers of Parallel Processing for
Scientific Computing, chapter Chapter 11: Fault Tolerance in Large-Scale
Scientific Computing, pages 233–247. SIAM Software, Environments and
Tools. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2006.

[12] James S. Plank, Youngbae Kim, and Jack Dongarra. Fault tolerant ma-
trix operations for networks of workstations using diskless checkpointing.
Journal of Parallel and Distributed Computing, 43:125–138, 1997.

[13] Youcef Saad and Martin H. Schultz. GMRES: a generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems. SIAM Journal on
Scientific and Statistical Computing, 7(3):856–869, July 1986.

[14] Yousef Saad. Arnoldi Method. In Zhaojun Bai, James Demmel, Jack
Dongarra, Axel Ruhe, and Henk van der Vorst, editors, Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, pages 161–
166. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[15] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003.

[16] Henk A. van der Vorst. Iterative Krylov Methods for Large Linear Systems.
Cambridge University Press, 2003.

20

