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DETECTING AND SOLVING

HYPERBOLIC QUADRATIC EIGENVALUE PROBLEMS∗

CHUN-HUA GUO† , NICHOLAS J. HIGHAM‡ , AND FRANÇOISE TISSEUR‡

Abstract. Hyperbolic quadratic matrix polynomials Q(λ) = λ2A + λB + C are an important
class of Hermitian matrix polynomials with real eigenvalues, among which the overdamped quadratics
are those with nonpositive eigenvalues. Neither the definition of overdamped nor any of the standard
characterizations provides an efficient way to test if a given Q has this property. We show that
a quadratically convergent matrix iteration based on cyclic reduction, previously studied by Guo
and Lancaster, provides necessary and sufficient conditions for Q to be overdamped. For weakly
overdamped Q the iteration is shown to be generically linearly convergent with constant at worst
1/2, which implies that the convergence of the iteration is reasonably fast in almost all cases of
practical interest. We show that the matrix iteration can be implemented in such a way that when
overdamping is detected a scalar µ < 0 is provided that lies in the gap between the n largest and
n smallest eigenvalues of the n × n quadratic eigenvalue problem (QEP) Q(λ)x = 0. Once such a
µ is known, the QEP can be solved by linearizing to a definite pencil that can be reduced using
already available Cholesky factorizations to a standard Hermitian eigenproblem. By incorporating
an initial preprocessing stage that shifts a hyperbolic Q so that it is overdamped, we obtain an
efficient algorithm that identifies and solves a hyperbolic or overdamped QEP maintaining symmetry
throughout and guaranteeing real computed eigenvalues.

Key words. quadratic eigenvalue problem, hyperbolic, overdamped, weakly overdamped,
quadratic matrix polynomial, quadratic matrix equation, solvent, cyclic reduction, doubling algo-
rithm
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1. Introduction. The quadratic eigenvalue problem (QEP) is to find scalars λ
and nonzero vectors x and y satisfying Q(λ)x = 0 and y∗Q(λ) = 0, where

Q(λ) = λ2A + λB + C, A,B,C ∈ C
n×n(1.1)

is a quadratic matrix polynomial. The vectors x and y are right and left eigenvectors
corresponding to the eigenvalue λ. The many applications of the QEP, as well as its
theory and algorithms for solving it, are surveyed by Tisseur and Meerbergen [25].

Our interest in this work is in Hermitian quadratic matrix polynomials—those
with Hermitian A, B, and C—and more specifically those that are hyperbolic. Hyper-
bolic quadratics, and the subclass of overdamped quadratics, are defined as follows.
For Hermitian X and Y we write X > Y (X ≥ Y ) if X − Y is positive definite
(positive semidefinite).

Definition 1.1. Q(λ) is hyperbolic if A, B, and C are Hermitian, A > 0, and

(x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all nonzero x ∈ C
n.(1.2)
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Definition 1.2. Q(λ) is overdamped if it is hyperbolic with B > 0 and C ≥ 0.
Overdamped quadratics arise in overdamped systems in structural mechanics [20,

Sec. 7.6].
Any eigenpair of Q satisfies x∗Q(λ)x = 0 and hence

λ =
−x∗Bx ±

√
(x∗Bx)2 − 4(x∗Ax)(x∗Cx)

2x∗Ax
.(1.3)

Therefore the eigenvalues of a hyperbolic Q are real and those of an overdamped Q
are real and nonpositive. Both classes of quadratics have other important spectral
properties, which we summarize in section 2.

We have two aims. The first is to devise an efficient and reliable numerical test
for hyperbolicity or overdamping of a given Hermitian quadratic. The second aim is
to build upon an affirmative test result an efficient algorithm for solving the QEP that
exploits hyperbolicity, and in particular that guarantees real computed eigenvalues in
floating point arithmetic.

Part of the motivation for testing overdamping concerns the stability of gyro-
scopic systems. It is known that a gyroscopic system G(λ) = λ2Ag + λBg + Cg

with Ag, Cg > 0 and Bg Hermitian indefinite and nonsingular is stable whenever the
quadratic Qg(λ) = λ2Ag + λ|Bg| + Cg is overdamped [7]. Here |Bg| is the Hermitian
positive definite square root of B2

g (i.e., the Hermitian polar factor of the Hermitian
matrix Bg) [10].

Checking the hyperbolicity condition (1.2) is a nontrivial task and plausible suffi-
cient conditions for hyperbolicity may be incorrect. For example, it is claimed in [19]
that when A = I, B > 0, and C ≥ 0, Q is hyperbolic if B > 2C1/2. That this claim
is false has been shown by Barkwell and Lancaster [1].

Guo and Lancaster [7] propose testing overdamping by using a matrix iteration
based on cyclic reduction to compute two solvents (solutions) of the quadratic matrix
equation

Q(X) = AX2 + BX + C = 0(1.4)

and then computing an extremal eigenvalue of each solvent. A definiteness test on Q
evaluated at the average of the two extremal eigenvalues finally determines whether
Q is overdamped. We show that the same iteration can be used to test overdamping
in a much more efficient way that does not necessarily require the iteration to be run
to convergence, even for a positive test result. Our test is based on a more complete
understanding of the behavior of the matrix iteration, developed in section 3.

In section 4 we extend the convergence analysis to weakly overdamped quadratics,
for which the strict inequality in (1.2) is replaced by a weak inequality (≥). The key
idea is to use an interpretation of the matrix iteration as a doubling algorithm. We
show that for weakly overdamped Q with equality in (1.2) for some nonzero x, the
iteration is linearly convergent with constant at worst 1/2 in the generic case. A
reasonable speed of convergence can therefore be expected in almost all practically
important cases.

In section 5 we turn to algorithmic matters. We first show how a hyperbolic Q can
be shifted to make it overdamped. Then we specify our test for overdamping, which
requires only the building blocks of Cholesky factorization, matrix multiplication,
and solution of triangular systems. We then show how after a successful test the
eigensystem of an overdamped Q can be efficiently computed in a way that exploits
the symmetry and definiteness and guarantees real computed eigenvalues.
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Veselić [26] and Higham, Tisseur, and Van Dooren [17] have previously shown that
every hyperbolic quadratic can be reformulated as a definite pencil L(λ) = λX +Y of
twice the dimension, and this connection is explored in detail and in more generality
by Higham, Mackey and Tisseur [14]. However, the algorithm developed here is the
first practical procedure for arranging that X or Y is a definite matrix and hence
allowing symmetry and definiteness to be fully exploited.

Section 6 concludes the paper with a numerical experiment that provides further
insight into the theory and algorithms.

2. Preliminaries. We first recall the definition of a definite pencil.
Definition 2.1. A Hermitian pencil L(λ) = λX +Y is definite (or equivalently,

the matrices X,Y form a definite pair) if (z∗Xz)2 + (z∗Yz)2 > 0 for all nonzero

z ∈ C
n.

Definite pairs have the desirable properties that they are simultaneously diag-
onalizable under congruence and, in the associated eigenproblem L(λ)x = 0, the
eigenvalues are real and semisimple1.

The next result gives three conditions each equivalent to the condition (1.2) in
the definition of hyperbolic quadratic.

Theorem 2.2. Let the n×n quadratic Q(λ) = λ2A + λB + C be Hermitian with

A > 0 and let

γ = min
‖x‖2=1

[(x∗Bx)2 − 4(x∗Ax)(x∗Cx)].(2.1)

The following statements are equivalent.

(a) Q is hyperbolic.

(b) γ > 0.
(c) x∗Q(λ)x = 0 has two distinct real zeros for all nonzero x ∈ C

n.

(d) Q(µ) < 0 for some µ ∈ R.

Proof. (a) ⇔ (b) ⇔ (c) is immediate. (c) ⇔ (d) follows from Markus [23,
Lem. 31.15].

Hyperbolic quadratics have many interesting properties [23, Sec. 31].
Theorem 2.3. Let the n × n quadratic Q(λ) = λ2A + λB + C be hyperbolic.

(a) The 2n eigenvalues of Q(λ) are all real and semisimple.

(b) There is a gap between the n largest and n smallest eigenvalues, that is, the

eigenvalues can be ordered λ1 ≥ · · · ≥ λn > λn+1 ≥ · · · ≥ λ2n.

(c) Q(µ) < 0 for all µ ∈ (λn+1, λn) and Q(µ) > 0 for all µ ∈ (−∞, λ2n)∪(λ1,∞).
(d) There are n linearly independent eigenvectors associated with the n largest

eigenvalues and likewise for the n smallest eigenvalues.

(e) The quadratic matrix equation Q(X) = 0 in (1.4) has a solvent S(1) with

eigenvalues λ1, . . . , λn and a solvent S(2) with eigenvalues λn+1, . . . , λ2n. Moreover,

Q(λ) =
(
λI − S(2)∗

)
A(λI − S(1)) =

(
λI − S(1)∗

)
A(λI − S(2)).

The n largest eigenvalues of a hyperbolic quadratic are called the primary eigen-
values and the n smallest eigenvalues are the secondary eigenvalues. The solvents
S(1) and S(2) having as their eigenvalues the primary eigenvalues and the secondary
eigenvalues, respectively, are referred to as the primary and secondary solvents.

1An eigenvalue of a matrix polynomial P (λ) =
P

ℓ

k=0
λkPk is semisimple if it appears only in

1 × 1 Jordan blocks in a Jordan triple for P [5].
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Hyperbolicity can also be defined for matrix polynomials P of arbitrary degree [23,
Sec. 31]. The notion has recently been extended in [14] by replacing the assumption
of a positive definite leading coefficient matrix with P (ω) > 0 for some ω ∈ R∪ {∞}.

The next result gives some characterizations of an overdamped quadratic. First,
we need a simple lemma.

Lemma 2.4. Let Q(λ) = λ2A + λB + C be Hermitian and let µ > 0. Then

Q(−µ) < 0 if and only if B > µA + µ−1C.

Proof. Immediate from Q(−µ) = µ2A − µB + C < 0 ⇔ µA − B + µ−1C < 0.

Theorem 2.5. Let Q(λ) = λ2A + λB + C be Hermitian with A > 0. Then the

following statements are equivalent.

(a) Q(λ) is overdamped.

(b) Q(λ) is hyperbolic and all its eigenvalues are real and nonpositive.

(c) B > 0, C ≥ 0, and B > µA + µ−1C for some µ > 0.
Proof. (a) ⇔ (b) is proved in [7, Thm. 5]. (b) ⇒ (c): by Theorem 2.3 (c), Q(µ̃) < 0

for some µ̃ < 0; (c) follows on invoking Lemma 2.4. (c) ⇒ (a): B > µA + µ−1C
with µ > 0 implies Q(−µ) < 0 by Lemma 2.4, which implies Q is hyperbolic by
Theorem 2.2 (d) and hence overdamped since B > 0 and C ≥ 0.

It follows from (b) in Theorem 2.5 that if we know an upper bound, say θ, on the
largest eigenvalue λ1 of a hyperbolic quadratic Q then, with λ = µ + θ, the quadratic
Qθ defined by

Q(λ) = Q(µ + θ) = µ2A + µ(B + 2θA) + C + θB + θ2A(2.2)

= µ2Aθ + µBθ + Cθ

=: Qθ(µ)

is overdamped. Thus any hyperbolic quadratic can be transformed into an over-
damped quadratic by an appropriate shifting of the eigenvalues. Hence for the pur-
poses of testing hyperbolicity and overdamping it suffices to consider overdamping.
We make this restriction in the next two sections and consider in section 5 how to
implement the shifting in practice.

3. An iteration for testing overdamping. Suppose we have a Hermitian
quadratic Q(λ) = λ2A+λB+C, where we assume throughout this section that A > 0,
B > 0, and C ≥ 0. The challenge is how to test the hyperbolicity (or equivalently,
overdamping) condition (1.2) or, equivalently, condition (c) in Theorem 2.5.

The primary and secondary solvents S(1) and S(2) of an overdamped quadratic
can be found efficiently by applying an iteration based on cyclic reduction [2], [7].
The iteration is

S0 = B, A0 = A, B0 = B, C0 = C,

Sk+1 = Sk − AkB−1
k Ck,

Ak+1 = AkB−1
k Ak,(3.1)

Bk+1 = Bk − AkB−1
k Ck − CkB−1

k Ak,

Ck+1 = CkB−1
k Ck.

The next theorem summarizes properties of the iteration proved in [7, Lem. 6,
Thm. 7 and proof].
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Theorem 3.1. Let Q(λ) = λ2A + λB + C be an n × n overdamped quadratic

with eigenvalues λ1 ≥ · · · ≥ λn > λn+1 ≥ · · · ≥ λ2n. Consider iteration (3.1) and any

matrix norm ‖ · ‖.
(a) The iterates satisfy Ak > 0, Ck ≥ 0, Bk > 0 for all k ≥ 0.
(b) ‖Ak‖‖Ck‖ converges quadratically to zero with

lim sup
k→∞

2k
√
‖Ak‖‖Ck‖ ≤

λn

λn+1
< 1.

(c) Sk converges quadratically to a nonsingular matrix Ŝ with

lim sup
k→∞

2k

√
‖Sk − Ŝ‖ ≤

λn

λn+1
< 1.(3.2)

(d) The primary and secondary solvents of Q(X), S(1) and S(2) respectively, are

given by

S(1) = −Ŝ−1C, S(2) = −A−1Ŝ∗.(3.3)

The next lemma reveals a crucial property of iteration (3.1) for overdamped
quadratics. The “only if” part of the result is [7, Lem. 6].

Lemma 3.2. Let µ > 0 and assume Ak > 0 and Ck ≥ 0. In (3.1), Bk > µ2k

Ak +

µ−2k

Ck if and only if Ak+1 > 0, Ck+1 ≥ 0, and Bk+1 > µ2k+1

Ak+1 + µ−2k+1

Ck+1.

Proof. “⇒”: we have

Bk+1 = Bk − AkB−1
k Ck − CkB−1

k Ak

= Bk −
(
µ2k

Ak + µ−2k

Ck

)
B−1

k

(
µ2k

Ak + µ−2k

Ck

)

+ µ2k+1

AkB−1
k Ak + µ−2k+1

CkB−1
k Ck

> µ2k+1

AkB−1
k Ak + µ−2k+1

CkB−1
k Ck,

where we have used the fact that X − Y X−1Y > Y − Y Y −1Y = 0 when X > Y > 0.
Clearly, Ak+1 > 0 and Ck+1 ≥ 0 since B−1

k > 0.
“⇐”: as in the first part we have

Bk+1 = Bk − FkB−1
k Fk + Fk+1,(3.4)

where Fk = µ2k

Ak + µ−2k

Ck. Now if Bk+1 > µ2k+1

Ak+1 + µ−2k+1

Ck+1 = Fk+1 then
(3.4) gives Bk −FkB−1

k Fk > 0. Note that Bk −FkB−1
k Fk is the Schur complement of

Bk > 0 in

T =

[
Bk Fk

Fk Bk

]
.

So we have T > 0 and it follows that Bk − Fk > 0 (for example, by looking at the

(1,1) block of the congruence
[

I
0
−I
I

]
T

[
I

−I
0
I

]
). Therefore Bk > Fk = µ2k

Ak +µ−2k

Ck.

In view of Theorem 2.5 (c), Lemma 3.2 implies that Q is overdamped if and only

if any one of the quadratics

Qk(λ) = λ2Ak + λBk + Ck(3.5)
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generated during the iteration is overdamped, assuming that Ak > 0 and Ck ≥ 0 for
all k. Note that the latter assumption holds if Bk > 0 for all k.

Corollary 3.3. Let Q be a Hermitian quadratic with A,B > 0 and C ≥ 0. For

iteration (3.1) and any fixed m ≥ 0, if Bk > 0 for k = 1:m − 1 and

Bm > µ2m

Am + µ−2m

Cm(3.6)

for some µ > 0, then B > µA + µ−1C and Q is overdamped.

Intuitively, we can think of the scalars µ2m

and µ−2m

in (3.6) as trying to balance

Am and Cm. This suggests that (3.6) could be replaced by Bm > Ãm + C̃m if the

iteration is scaled so that Ãm and C̃m are balanced. Normwise balancing is included
in the following scaled version of (3.1), introduced in [7]; it generates iterates Ãk, Bk

(unchanged from (3.1)), and C̃k according to

α0 =
√
‖C‖/‖A‖,

Ã0 = α0A, B0 = B, C̃0 = α−1
0 C,

Ak+1 = ÃkB−1
k Ãk,

Bk+1 = Bk − ÃkB−1
k C̃k − C̃kB−1

k Ãk,(3.7)

Ck+1 = C̃kB−1
k C̃k,

αk+1 =
√
‖Ck+1‖/‖Ak+1‖,

Ãk+1 = αk+1Ak+1, C̃k+1 = α−1
k+1Ck+1.

Here we have assumed that C 6= 0 (the overdamping condition holds for the trivial
case C = 0 by (1.2)); thus αk > 0 for each k ≥ 0. The scaling procedure ensures that

‖Ãk‖ = ‖C̃k‖ and ‖Ãk‖‖C̃k‖ = ‖Ak‖‖Ck‖.
The next result describes the behavior of the scaled iteration.
Theorem 3.4. A Hermitian quadratic Q with A,B > 0 and 0 6= C ≥ 0 is

overdamped if and only if in (3.7)

Bk > 0 for all k, lim
k→∞

Ãk = 0, lim
k→∞

C̃k = 0, lim
k→∞

Bk > 0,(3.8)

and in this case

lim sup
k→∞

2k

√
‖Ãk‖ = lim sup

k→∞

2k

√
‖C̃k‖ ≤

(
λn

λn+1

)1/2

,(3.9)

lim sup
k→∞

2k

√
‖Bk − B̂‖ ≤

λn

λn+1
(3.10)

with B̂ = A(S(1) − S(2)).

Proof. Assume that the conditions in (3.8) hold. Then Bm > Ãm + C̃m for some

m ≥ 0. It is easy to see that the iterates Ãk and C̃k defined in (3.7) are related to Ak

and Ck in (3.1) by

Ãk = α2k

0 α2k−1

1 . . . α2
k−1αkAk, C̃k = α−2k

0 α−2k−1

1 . . . α−2
k−1α

−1
k Ck, k ≥ 0.

So Bm > Ãm + C̃m implies Bm > µ2m

Am + µ−2m

Cm with µ = α0α
2−1

1 α2−2

2 . . . α2−m

m ,
which implies Q is overdamped by Corollary 3.3.
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Now assume the QEP is overdamped. Then, from Theorem 3.1 (a), Bk > 0 for

each k ≥ 0, while, since ‖Ãk‖ = ‖C̃k‖ = (‖Ak‖‖Ck‖)
1/2, Theorem 3.1 (b) implies

lim Ãk = lim C̃k = 0 and that (3.9) holds. To show the convergence of Bk, we note
that from (3.1), Bk+1 = Bk − (Sk − Sk−1) − (Sk − Sk−1)

∗, which implies

Bk = B0 − (S0 − Sk) − (S0 − Sk)∗ = −B + Sk + S∗
k .

In view of (3.2), (3.3) and Bk > 0, (3.10) holds with B̂ = −B + Ŝ + Ŝ∗ = A(S(1) −
S(2)) ≥ 0. Since the sequence {‖B−1

k ‖} is known to be bounded (see the proof of [7,

Thm. 7]), we have B̂ > 0.

The next result confirms that µ can be removed from (3.6) for the scaled iteration.
It follows readily from Theorem 3.4 and its proof.

Corollary 3.5. A Hermitian quadratic Q with A,B > 0 and 0 6= C ≥ 0 is

overdamped if and only if for some m ≥ 0, Bk > 0 for k = 1:m − 1 in (3.7) and

Bm > Ãm + C̃m.

The corollary is important for two reasons. First, it provides a basis for an elegant,
practical test for overdamping, as definiteness of a matrix is easily tested numerically.
Second, in the case of an affirmative test result a µ with Q(−µ) < 0 can be identified,
and such a µ is very useful when we go on to solve the QEP, as we will show in
section 5.

From a numerical point of view it is preferable to work with the original data
as much as possible. The following variant of Corollary 3.5 tests the overdamping
condition using the original quadratic Q and will be the basis of the algorithm in
section 5. It follows readily from Corollary 3.3 and Theorem 3.4 and its proof.

Corollary 3.6. A Hermitian quadratic Q with A,B > 0 and 0 6= C ≥ 0 is

overdamped if and only if for some m ≥ 0, Bk > 0 for k = 1:m − 1 in (3.7) and

Q(−µm) < 0, where µm = α0α
2−1

1 α2−2

2 . . . α2−m

m > 0 and the αk are defined in (3.7).
Usually, only a few iterations of the cyclic reduction algorithm (3.7) will be nec-

essary. To illustrate, we consider a quadratic Q(λ) of dimension n = 100 defined
by

A = I, B = β




20 −10

−10 30
. . .

. . .
. . .

. . .
. . . 30 −10

−10 20




, C =




15 −5

−5 15
. . .

. . .
. . . −5
−5 15


 ,(3.11)

where β > 0 is a real parameter. This example, which comes from a damped mass-
spring system, is used in [11] with β = 1. We use the 1-norm in (3.7). Tables 3.1
and 3.2 report the number of iterations required to demonstrate that Q is over-
damped, through verification of the conditions in Corollary 3.6, or that it is not
overdamped, through generation of a non-positive definite iterate Bm. Note that
when Q is “strongly” overdamped and when Q is far from being overdamped, the
overdamping condition is shown to hold or not after just a few iterations.

4. Convergence analysis for weakly overdamped quadratics. For the ex-
ample at the end of section 3 and some β0 ∈ (0.5196152422, 0.5196152423), the in-
equality (1.2) holds as a weak inequality with equality attained for some nonzero x.
We have seen that the overdamping test requires a very small number of iterations
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Table 3.1
Number of iterations m to verify that the quadratic defined by (3.11) is overdamped.

β 1 0.62 0.61 0.53 0.52 0.5197 0.519616 0.51961525 0.5196152423
m 0 0 1 1 2 3 5 8 12

Table 3.2
Number of iterations m to verify that the quadratic defined by (3.11) is not overdamped.

β 0.36 0.47 0.50 0.51 0.5196 0.519615 0.51961524 0.5196152422
m 1 2 3 4 8 11 15 17

when β is not close to β0. When β ≈ β0, the number of iterations increases, but is still
under 20 in our experiments. The purpose of this section is to explain this behavior
by showing that the convergence of iteration (3.1) is reasonably fast even when the
QEP is weakly overdamped in the sense defined as follows.

Definition 4.1. Q(λ) is weakly hyperbolic if A, B, and C are Hermitian, A > 0,
and

γ = min
‖x‖2=1

[(x∗Bx)2 − 4(x∗Ax)(x∗Cx)] ≥ 0.(4.1)

Definition 4.2. Q(λ) is weakly overdamped if it is weakly hyperbolic with B > 0
and C ≥ 0.

The eigenvalues of a weakly hyperbolic Q are real and those of a weakly over-
damped Q are real and nonpositive. The following result collects further properties
of a weakly overdamped quadratic [23, §31].

Theorem 4.3. Let Q(λ) = λ2A+λB+C be a weakly overdamped n×n quadratic.

(a) If γ = 0 in (4.1) then Q(λ) has 2n real eigenvalues that can be ordered λ1 ≥
· · · ≥ λn = λn+1 ≥ · · · ≥ λ2n. The partial multiplicities2 of λn are at most 2, and the

eigenvalues other than λn are semisimple.

(b) Q(λn) ≤ 0.
(c) The quadratic matrix equation Q(X) = 0 in (1.4) has a solvent S(1) with

eigenvalues λ1, . . . , λn and a solvent S(2) with eigenvalues λn+1, . . . , λ2n.

In the overdamped case considered in the previous section, convergence results
for the iteration (3.1) are established using matrix identities obtained from the cyclic
reduction method. Those identities do not contain enough information about (3.1) to
allow a proof of convergence for weakly overdamped quadratics with γ = 0, for which
λn+1 = λn. We now study this critical case and thereby obtain a better understanding
of the convergence of the iteration for overdamped QEPs with λn ≈ λn+1. The next
lemma shows that (3.1) remains well defined in the critical case, which is the setting
for the rest of this section.

Lemma 4.4. For a weakly overdamped quadratic Q(λ) = λ2A + λB + C with

γ = 0 in (4.1), there is a positive real number µ such that for the iteration (3.1),

Ak > 0, Ck ≥ 0, Bk ≥ µ2k

Ak + µ−2k

Ck(4.2)

for all k ≥ 0.
Proof. We have λn ≤ λ1 ≤ 0. If λn = 0 then, from Theorem 4.3, C = Q(λn) ≤ 0.

Since C ≥ 0 we must have C = 0. However, γ > 0 for the trivial case C = 0.

2The partial multiplicities of an eigenvalue of Q are the sizes of the Jordan blocks in which it
appears in a Jordan triple for Q [5].
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Therefore, λn < 0 since γ = 0. It then follows from Q(λn) ≤ 0 that B ≥ µA + µ−1C
for µ = −λn > 0. The inequalities in (4.2) are then proved inductively using the
technique from the proof of the first part of Lemma 3.2.

Lin and Xu [22] recently showed that Meini’s iterations based on cyclic reduction
for the matrix equation X + A∗X−1A = Q [24] can also be derived from a structure-
preserving doubling algorithm. Following their approach we show that the iteration
(3.1) is related to a doubling algorithm and we use this observation to study the
convergence of (3.1) for weakly overdamped quadratics. The rate of convergence will
be shown to be at least linear with constant 1/2 in the generic case, which is the
case where λn = λn+1 is a multiple eigenvalue with partial multiplicities all equal to
2 (that is, λn occurs only in 2 × 2 Jordan blocks). This rate and constant are to be
expected in view of the results of Guo in [6].

Lemma 4.5. Let X =

[
A 0
H −I

]
and Y =

[
G I
C 0

]
be block 2 × 2 matrices with

n×n blocks. When H + G is nonsingular there exist 2n× 2n matrices X̃ and Ỹ such

that (a) X̃Y = Ỹ X and (b) X̃X, Ỹ Y have the same zero and identity blocks as X
and Y , respectively.

Proof. Applying block row permutations and block Gaussian elimination to

[
X
Y

]

yields P

[
X
Y

]
=

[
U
0

]
, where U =

[
G I

G + H 0

]
and

P =

[
P11 P12

P21 P22

]
=




0 0 I 0
0 I I 0
I −A(G + H)−1 −A(G + H)−1 0
0 C(G + H)−1 C(G + H)−1 −I


 .

Since [P21 P22 ]

[
X
Y

]
= 0, the required equality Ỹ X = X̃Y is satisfied with X̃ :=

−P22 and Ỹ := P21. Furthermore,

X̃X =

[
A(G + H)−1A 0

H − C(G + H)−1A −I

]
, Ỹ Y =

[
G − A(G + H)−1C I

C(G + H)−1C 0

]
.

Lemma 4.5 and its proof suggest the following recurrence

Xk+1 = X̃kXk, Yk+1 = ỸkYk, k ≥ 0,(4.3)

with

Xk =

[
Ak 0
Hk −I

]
, Yk =

[
Gk I
Ck 0

]
(4.4)

and

X̃k =

[
Ak(Gk + Hk)−1 0
−Ck(Gk + Hk)−1 I

]
, Ỹk =

[
I −Ak(Gk + Hk)−1

0 Ck(Gk + Hk)−1

]
,

which leads to

Ak+1 = Ak(Gk + Hk)−1Ak,

Gk+1 = Gk − Ak(Gk + Hk)−1Ck,(4.5)

Hk+1 = Hk − Ck(Gk + Hk)−1Ak,

Ck+1 = Ck(Gk + Hk)−1Ck.
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With

A0 = A, C0 = C, G0 = 0, H0 = B(4.6)

the iteration (3.1) is recovered from (4.5) by letting Bk = Gk + Hk and Sk = H∗
k . By

Lemma 4.4, Bk > 0 for all k ≥ 0. Therefore with the starting matrices (4.6), iteration
(4.5) is well defined. Note that Xk in (4.4) is nonsingular for all k ≥ 0 and, from (4.3)

and the property that X̃kYk = ỸkXk,

X−1
k+1Yk+1 = (X̃kXk)−1ỸkYk = X−1

k X̃−1
k ỸkYk = X−1

k YkX−1
k Yk = (X−1

k Yk)2.(4.7)

It follows from (4.7) that for all k ≥ 0,

X−1
k Yk =

(
X−1

0 Y0

)2k

.(4.8)

The identity (4.8) is what we need to prove the convergence of (4.5) with (4.6) and
hence the convergence of (3.1).

The next result describes the convergence behavior in the generic case.
Theorem 4.6. Let Q(λ) be weakly overdamped with eigenvalues λ1 ≥ · · · ≥ λn =

λn+1 ≥ · · · ≥ λ2n and assume that the partial multiplicities of λn are all equal to 2.
Let S(1) and S(2) be the primary and secondary solvents of Q(X) = 0, respectively,

and assume that λn is a semisimple eigenvalue of S(1) and S(2). Then the iterates

Gk, Hk, Ak, and Ck defined by (4.5) and (4.6) satisfy

lim sup
k→∞

k

√
‖Gk − AS(1)‖ ≤

1

2
, lim sup

k→∞

k

√
‖Hk + AS(2)‖ ≤

1

2
,

lim sup
k→∞

k

√
‖Ak‖‖Ck‖ ≤

1

4
.

Proof. We start by making the change of variables (or scaling) λ = µθ, where

θ = |λn| > 0 (see the proof of Lemma 4.4) so that µn = µn+1 = −1 and define Q̂(µ) =

µ2Â + µB̂ + Ĉ with (Â, B̂, Ĉ) = (θA,B, θ−1C). For this triple denote the iterates of

(4.5) by Âk, Ĝk, Ĥk, Ĉk. It is easy to see that for all k ≥ 0, Ĝk = Gk, Ĥk = Hk,

Âk = θ2k

Ak, and Ĉk = θ−2k

Ck, so that ‖Ak‖‖Ck‖ = ‖Âk‖‖Ĉk‖. The primary and

secondary solvents of ÂS2 + B̂S + Ĉ = 0 are Ŝ(1) = θ−1S(1) and Ŝ(2) = θ−1S(2),
respectively. Note that ÂŜ(i) = AS(i), i = 1, 2. To avoid notational clutter, we omit
the hats on matrices in the rest of the proof.

We now consider the iterations for the block 2 × 2 matrices Xk and Yk in (4.4).
With A0 = A, C0 = C, G0 = 0, and H0 = B, the pencil

µX0 + Y0 = µ

[
A 0
B −In

]
+

[
0 In

C 0

]
(4.9)

is a linearization of Q(µ) [5]. Hence −X−1
0 Y0 and Q(µ) have the same eigenvalues, with

the same partial multiplicities. Suppose there are r 2 × 2 Jordan blocks associated
with eigenvalues equal to µn = −1, where r ≥ 1 by assumption. Rearranging the
Jordan canonical form of X−1

0 Y0 appropriately yields

V −1(X−1
0 Y0)V =

[
D2 ⊕ Ir 0 ⊕ Ir

0 D1 ⊕ Ir

]
=: DV ,(4.10)

W−1(X−1
0 Y0)W =

[
D2 ⊕ Ir 0
0 ⊕ Ir D1 ⊕ Ir

]
=: DW ,(4.11)
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where V and W are nonsingular, D1 and D2 are (n − r) × (n − r) diagonal matrices
containing the (semisimple) eigenvalues less than 1 and greater than 1 in modulus,
respectively, and M ⊕ N denotes

[
M
0

0
N

]
. Now partition V and W as block 2 × 2

matrices with n × n blocks:

V =

[
V1 V3

V2 V4

]
, W =

[
W1 W3

W2 W4

]
,

and note that from (4.10)–(4.11),

X−1
0 Y0

[
V1

V2

]
=

[
V1

V2

]
(D2 ⊕ Ir), X−1

0 Y0

[
W3

W4

]
=

[
W3

W4

]
(D1 ⊕ Ir).(4.12)

By Theorem 4.3 and our assumption on S(1) and S(2) there exist nonsingular U1 and
U2 such that

−S(1) = U1(D1 ⊕ Ir)U
−1
1 , −S(2) = U2(D2 ⊕ Ir)U

−1
2 .(4.13)

Since S(i), i = 1, 2, is a solution of Q(X) = 0, from (4.9) we obtain

X−1
0 Y0

[
In

−AS(i)

]
=

[
In

−AS(i)

]
(−S(i)), i = 1, 2.

On comparing with the invariant subspaces in (4.12) and using (4.13) we deduce that

[
V1

V2

]
=

[
U2

−AS(2)U2

]
Z1,

[
W3

W4

]
=

[
U1

−AS(1)U1

]
Z2,

with Z1 and Z2 nonsingular, where we have also used the fact that there are exactly
r eigenvectors of X−1

0 Y0 corresponding to the eigenvalue 1. Hence V1 and W3 are
nonsingular and

−AS(2) = V2V
−1
1 , −AS(1) = W4W

−1
3 .(4.14)

By (4.8)–(4.11) we have V −1(X−1
k Yk)V = D2k

V and W−1(X−1
k Yk)W = D2k

W , so that

YkV = XkV D2k

V , YkW = XkWD2k

W .(4.15)

On equating blocks using (4.4) this yields

GkV1 + V2 = AkV1(D
2k

2 ⊕ Ir),(4.16)

GkV3 + V4 = AkV1(0 ⊕ 2kIr) + AkV3(D
2k

1 ⊕ Ir),(4.17)

CkV1 = (HkV1 − V2)(D
2k

2 ⊕ Ir),(4.18)

CkV3 = (HkV1 − V2)(0 ⊕ 2kIr) + (HkV3 − V4)(D
2k

1 ⊕ Ir)(4.19)

and

GkW1 + W2 = AkW1(D
2k

2 ⊕ Ir) + AkW3(0 ⊕ 2kIr),(4.20)

GkW3 + W4 = AkW3(D
2k

1 ⊕ Ir),(4.21)

CkW1 = (HkW1 − W2)(D
2k

2 ⊕ Ir) + (HkW3 − W4)(0 ⊕ 2kIr),(4.22)

CkW3 = (HkW3 − W4)(D
2k

1 ⊕ Ir).(4.23)
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By (4.22) and (4.23) we have

Ck(W3−W1(0⊕2−kIr)) = (HkW3−W4)(D
2k

1 ⊕0)−(HkW1−W2)(0⊕2−kIr).(4.24)

By (4.18) we have

Hk = V2V
−1
1 + CkV1(D

−2k

2 ⊕ Ir)V
−1
1 .(4.25)

Inserting (4.25) in (4.24), we obtain

Ck

(
W3 − W1(0 ⊕ 2−kIr) − V1(D

−2k

2 ⊕ Ir)V
−1
1

(
W3(D

2k

1 ⊕ 0) − W1(0 ⊕ 2−kIr)
))

= (V2V
−1
1 W3 − W4)(D

2k

1 ⊕ 0) − (V2V
−1
1 W1 − W2)(0 ⊕ 2−kIr),

from which it follows, since D1 and D2 are diagonal with diagonal elements of mag-
nitude less than 1 and greater than 1, respectively, that

Ck = O(2−k).(4.26)

It then follows from (4.25) and (4.14) that

Hk + AS(2) = Hk − V2V
−1
1 = O(2−k).(4.27)

By (4.20) and (4.21),

GkW3 +W4− (GkW1 +W2)(0⊕2−kIr) = Ak(W3(D
2k

1 ⊕0)−W1(0⊕2−kIr)).(4.28)

By (4.16),

Ak = (GkV1 + V2)(D
−2k

2 ⊕ Ir)V
−1
1 .(4.29)

Inserting (4.29) in (4.28) we obtain

GkW3 + W4 − (GkW1 + W2)(0 ⊕ 2−kIr) = (GkV1 + V2)Wk

with Wk = O(2−k). Thus

−Gk

(
W3 − W1(0 ⊕ 2−kIr) − V1Wk

)
= W4 − W2(0 ⊕ 2−kIr) − V2Wk.

It follows from (4.14) that

Gk − AS(1) = Gk + W4W
−1
3 = O(2−k).(4.30)

Postmultiplying (4.16) by D−2k

2 ⊕ 0 gives

(GkV1 + V2)(D
−2k

2 ⊕ 0) = AkV1(Ir ⊕ 0),(4.31)

while postmultiplying (4.17) by 0 ⊕ 2−kIr gives

(GkV3 + V4)(0 ⊕ 2−kIr) = AkV1(0 ⊕ Ir) + AkV3(0 ⊕ 2−kIr).(4.32)

Adding (4.31) and (4.32) we get

Ak(V1 + V3(0 ⊕ 2−kIr)) = (GkV1 + V2)(D
−2k

2 ⊕ 0) + (GkV3 + V4)(0 ⊕ 2−kIr).
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It follows that

Ak = O(2−k),(4.33)

since {Gk} has been shown to be bounded. Equations (4.26), (4.27), (4.30), and (4.33)
yield the required convergence results.

For Sk and Bk in iteration (3.1) we obtain the following convergence result.
Corollary 4.7. Under the conditions of Theorem 4.6, the iterates Sk and Bk

in (3.1) satisfy

lim sup
k→∞

k

√
‖Sk − Ŝ‖ ≤

1

2
, lim sup

k→∞

k

√
‖Bk − B̂‖ ≤

1

2
,

where Ŝ = −S(2)∗A is nonsingular and B̂ = A(S(1) − S(2)) ≥ 0 is singular.

Proof. The convergence results follow from Theorem 4.6 by noting Bk = Hk +Gk

and Sk = H∗
k . By (4.27) and (4.30), B̂ = A(S(1)−S(2)). We have B̂ ≥ 0 since Bk > 0

for each k, by Lemma 4.4. We now show that B̂ is singular. Using (4.9) it is easy to
check that

(−X−1
0 Y0)

[
I I

−AS(1) −AS(2)

]
=

[
I I

−AS(1) −AS(2)

]
(S(1) ⊕ S(2)),(4.34)

and S(1) ⊕S(2) is diagonalizable. Now −X−1
0 Y0 is not diagonalizable, by assumption,

since it has at least one eigenvalue of partial multiplicity 2. Thus (4.34) can only

hold if
[

I
−AS(1)

I
−AS(2)

]
is singular. Thus the Schur complement B̂ = A(S(1) −S(2)) is

singular.

In the generic case for a weakly overdamped Q with γ = 0, in which all the
partial multiplicities of λn are 2, Q is in some sense irreducible or coupled. The next
example shows that this condition is necessary for the conclusions in Theorem 4.6
and Corollary 4.7 (and at the same time answers an open question from [7, Sec. 4]).
Consider

Q(λ) = λ2A + λB + C = λ2

[
1 0
0 1

]
+ λ

[
3 0
0 1

]
+

[
2 0
0 0

]
.

It is easy to see that γ = 0, so Q(λ) is weakly overdamped with eigenvalues {0,−1,−1,−2}
with λ2 = λ3 = −1 semisimple. In (3.1) and (4.5), (4.6),

lim
k→∞

Ak =

[
0 0
0 1

]
, lim

k→∞
Bk = I2, lim

k→∞
Ck =

[
1 0
0 0

]
,

lim
k→∞

Gk =

[
−1 0
0 0

]
, lim

k→∞
Hk =

[
2 0
0 1

]
.

Neither Ak nor Ck converges to zero. We also note that the convergence is quadratic
for Bk, Gk, Hk. Moreover, Bk converges to a nonsingular matrix. This does not
come as a surprise, since Q(λ) can be decomposed into the direct sum of two scalar
quadratics,

Q1(λ) = λ2 + 3λ + 2, Q2(λ) = λ2 + λ.

It is readily seen that Q1 is overdamped with eigenvalues −1,−2 and that Q2 is
overdamped with eigenvalues 0,−1. Thus, the convergence of Bk to a positive definite
matrix is guaranteed by Theorem 3.4 applied to each component of the direct sum.
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5. Algorithm for the detection and numerical solution. Let Q(λ) = λ2A+
λB + C be Hermitian with A > 0. We develop in this section an efficient algorithm
that checks if Q is hyperbolic and, if it is, computes some or all of the eigenvalues
and associated eigenvectors, exploiting the symmetry and hyperbolicity and thereby
preserving the spectral properties.

Our algorithm consists of three steps:
1. Preprocessing : this step forms Qθ(λ) ≡ Q(λ + θ) = λ2Aθ + λBθ + Cθ with

θ such that Bθ > 0 and Cθ ≥ 0, or concludes that Q is not hyperbolic and
terminates the algorithm.

2. Overdamping test : this step checks the overdamping condition for Qθ. If Qθ

is overdamped, a µ ∈ R such that Qθ(µ) = Q(µ + θ) < 0 is also computed;
otherwise the algorithm terminates.

3. Solution: the quadratic Qθ is converted into a definite pencil λX + Y ∈
C

2n×2n with X > 0 or Y > 0. The eigenvalues and eigenvectors of Q(λ) are
then obtained from the eigendecomposition of a 2n × 2n Hermitian matrix
obtained by transforming λX + Y and exploiting the definiteness of X or Y
and the block structure of X and Y .

We now detail each of these three steps and compare the cost and stability of
our solution process with that of three alternative ways of solving the QEP: the QZ
algorithm applied to a linearization of Q(λ), the J-orthogonal Jacobi algorithm [26]
also applied to a linearization of Q(λ), and the method of computing the eigenpairs
of the primary and secondary solvents obtained via the cyclic reduction method [7].

At different stages our algorithm needs to test the (semi)definiteness of a ma-
trix. This is done by attempting a Cholesky factorization, with complete pivoting
in the case of semidefinitiness: completion of the factorization means the matrix is
(semi)definite. This is a numerically stable test, as shown in [8].

5.1. Preprocessing step. The preprocessing step aims to eliminate by simple
tests quadratics that are not hyperbolic and to produce, if possible, a shifted quadratic
Qθ(λ) = Q(λ + θ) (with θ = 0 is possible) for which the necessary condition

B > 0, C ≥ 0(5.1)

for overdamping is satisfied.
If B is singular then by (1.2) Q cannot be hyperbolic. Assume now that B is

nonsingular but not positive definite or C is not positive semidefinite. Since A > 0
then for θ > 0 large enough, the matrices

Bθ = B + 2θA, Cθ = C + θB + θ2A

defining the shifted quadratic Qθ(λ) = Q(λ+ θ) with Aθ = A (see (2.2)) satisfy (5.1).
To avoid numerical instability in the formation of Bθ and Cθ (due to the possibly
large variation in ‖A‖, ‖B‖, and ‖C‖) we would ideally like to choose θ close to

θopt = inf{θ ∈ R : B + 2θA > 0, C + θB + θ2A ≥ 0}.

Rather than solving this optimization problem we choose θ to be an upper bound
on the modulus of λ1, the right-most eigenvalue of Q. With such a shift, all the
eigenvalues of Qθ lie in the left half plane. When Q is hyperbolic, Qθ is also hyperbolic
with real and nonpositive eigenvalues. Thus Bθ > 0 and Cθ ≥ 0 by Theorem 2.5.
Therefore if Bθ 6> 0 or Cθ 6≥ 0 we can conclude that Q is not hyperbolic. If Bθ > 0
and Cθ ≥ 0 we proceed to step 2.
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Table 5.1
Operation count for the preprocessing step. Matrices are assumed real and of dimension n.

Operations Cost (flops)

Cholesky factorization of B and C to check definiteness. 2n3/3 or less
Computation of θ when B and/or C not positive definite:

Cholesky factorization of A. n3/3
‖A−1‖ (1-norm estimation [9, Sec. 15.3], typically 4 solves). 4n2

Form Bθ = B + 2θA, Cθ = C + θB + θ2A. 6n2

Cholesky factorizations of Bθ and Cθ. 2n3/3 or less

Total 5n3/3 or less

To construct the shift θ we use the following strategy. Let

a = ‖A‖, b = ‖B‖, c = ‖C‖,

where ‖ · ‖ is any consistent matrix norm. Then from [16, Lem. 3.1 and Lem. 4.1], for
every eigenvalue λ of Q we have

|λ| ≤
1

2
‖A−1‖

(
b +

√
b2 + 4c/‖A−1‖

)
=: σ1,(5.2)

|λ| ≤
(
1 + ‖A−1‖

)
max(c1/2, b) =: σ2.(5.3)

We take the 1-norm and set σ = min(σ1, σ2). Since σ must greatly overestimate
|λ1| when |λn| ≫ |λ1| we carry on one step further and form the shifted quadratic
Q−σ/2(λ) = Q(λ − σ/2) for which (5.2)–(5.3) give two new bounds τ1 and τ2 (and

A is unchanged so ‖A−1‖ can be re-used). We then take θ = min(σ, τ − 1
2σ), where

τ = min(τ1, τ2).
As shown by Theorem 3.4, the speed of convergence of iteration (3.7) for over-

damped Q depends on the ratio λn/λn+1. An unnecessarily large shift of the spectrum
to the left can make this ratio very close to 1, potentially causing slow convergence
of the iteration. However, we showed in section 4 that for the generic case of weakly
overdamped Q with λn = λn+1 the convergence is at least linear with constant 1/2,
so convergence of the iteration cannot be unduly delayed by a conservative choice of
shift.

Table 5.1 details the computations and their cost. (Costs of all the operations
used here are summarized in [10, App. C].) Preprocessing requires at most 5

3n3 flops.

5.2. Overdamping test. The following algorithm is based on Corollary 3.6. It
runs the scaled iteration (3.7) until either a non-positive definite Bk or a negative
definite Q(µk) is detected, signalling that Q is not overdamped or is overdamped, re-
spectively. The algorithm terminates on one of these conditions or because of possible
non-convergence of the iteration for a non-overdamped Q. It is intended to be applied
to Qθ from the preprocessing step.

Algorithm 5.1 (overdamping test). This algorithm tests whether a quadratic

Q(λ) = λ2A + λB + C with A,B > 0 and 0 6= C ≥ 0 is overdamped and, if it is,

computes µ < 0 such that Q(µ) < 0. Input parameters are the maximum number of

iterations kmax and a convergence tolerance ǫ > 0.
1 Set A0 = A, B0 = B, C0 = C.

2 Set α0 = ‖C0‖1/‖A0‖1, µ0 = −α
1/2
0 , k = 0.

3 if Q(µ0) < 0, Q(λ) is (hyperbolic and hence) overdamped, µ = µ0, quit, end
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4 while k < kmax

5 Bk+1 = Bk − AkB−1
k Ck − CkB−1

k Ak

6 if ‖Bk+1 − Bk‖1/‖Bk+1‖1 ≤ ǫ, goto line 15, end
7 if Bk+1 6> 0, Q is not overdamped, quit, end
8 Ak+1 = αkAkB−1

k Ak

9 Ck+1 = α−1
k CkB−1

k Ck

10 αk+1 = ‖Ck+1‖1/‖Ak+1‖1

11 µk+1 = µkα
1/2k+2

k+1

12 if Q(µk+1) < 0, Q is overdamped, µ = µk+1, quit, end
13 k = k + 1
14 end
15 Q is not overdamped. % See the discussion below.
Note that the crucial definiteness test on line 12 of Algorithm 5.1 is carried out

on Q and not on Qk in (3.5). Hence a positive test can be interpreted irrespective
of rounding errors in the iteration: the only errors are in forming Q(µk+1) and in
computing its Cholesky factor. For a non-overdamped Q, it is possible that Bk > 0
for all k (see the example at the end of section 4). However, if convergence of the
Bk is detected on line 6 then Q is declared not overdamped because by this point an
overdamped Q would have been detected, while if kmax is large enough (say kmax = 20)
and this iteration limit is reached then Q can reasonably be declared not overdamped
in view of the fast (quadratic) convergence of (3.7) for an overdamped Q.

The implementation details of Algorithm 5.1 and the cost per iteration are de-
scribed in Table 5.2. The total cost for m iterations is 1

3n3 flops for m = 0 and roughly
20
3 mn3 flops for m ≥ 1.

Guo and Lancaster’s test for overdamping is based on iteration (3.1), scaled as

in (3.7). For the computation of Ŝ, 19
3 ℓn3 flops are required where ℓ is the number of

iterations for convergence of (3.1). An extra 5n3 flops is needed to form the two sol-
vents S(1) and S(2) (which are nonsymmetric in general) via (3.3). Then the smallest
eigenvalue λn of S(1) and the largest eigenvalue λn+1 of S(2) need to be computed
and the definiteness of Q((λn + λn+1)/2) tested. The total cost is ( 19

3 ℓ + 16
3 )n3 flops

plus the cost of finding λn and λn+1. Since m ≤ ℓ, Algorithm 5.1 is clearly the more
efficient, possibly significantly so.

Another way to test overdamping is to apply the J-orthogonal Jacobi algorithm
of Veselić [26] to a particular symmetric linearization of Q(λ), since the algorithm
breaks down when applied to an indefinite pair. Note that this algorithm uses hyper-
bolic transformations and so is potentially unstable. The algorithm must be run to
completion to check whether the problem is overdamped, and upon completion it has
computed the eigenvalues. It requires an initial 11

3 n3 flops followed by 12sn3 flops,
where s is the number of sweeps performed.

5.3. Solving hyperbolic QEPs via definite linearizations. Recall that the
scalar µ computed by Algorithm 5.1 applied to Qθ is such that Q(µ+θ) = Qθ(µ) < 0.
Hence with ω = µ + θ we have

Q̃(t) = Q(t + ω) = t2A + t(B + 2ωA) + C + ωB + ω2A

= t2Ã + tB̃ + C̃,

with C̃ = Q(ω) < 0 and Ã = A > 0. The pencils

L1(λ) = λ

[
Ã 0
0 −C̃

]
+

[
B̃ C̃
C̃ 0

]
, L2(λ) = λ

[
0 Ã
Ã B̃

]
+

[
−Ã 0
0 C̃

]
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Table 5.2
Operation count per complete iteration of Algorithm 5.1. Matrices are assumed real and of

dimension n.

Operations Cost (flops)

Cholesky factorization of Bk = L
k
LT

k

available from previous step

Form Vk = L−1

k
Ak n3

Form Wk = L−1

k
Ck n3

Compute A
k
B−1

k
Ck = V T

k
Wk 2n3

Cholesky of Bk+1 n3/3

Compute A
k
B−1

k
Ak = V T

k
Vk n3

Compute C
k
B−1

k
Ck = W T

k
Wk n3

Cholesky of −Q(µk+1) n3/3

Total 20n3/3

Table 5.3
Operation count for the eigenvalue computation, with reference to (5.4)

Operations Cost (flops)

Cholesky factorizations of A = L
A

LT

A

and −C = L
C

LT

C
already available.

Form R = −(L−1

A
LC)T . n3/3

Form G = L−1

A
BL−T

A
. 3n3/2

Tridiagonalization of
ˆ −G

−RT

R

0

˜

. < 4(2n)3/3

Eigenvalues via (e.g.) QR iteration. O(n2)

Total ≈ 13n3

are both Hermitian definite linearizations of Q̃ with positive definite leading coef-
ficient of L1 and negative definite trailing coefficient of L2. They share the same
eigenvalues as Q̃ and the eigenvectors of Q̃ are easy to recover from those of L1 or
L2. The sensitivity and stability of these linearizations have recently been studied
in [12], [13], [15]. It is shown therein that the scaling of Fan, Lin and Van Dooren

[4] should be applied to Q̃ before linearizing. The choice between L1 and L2 should
be guided by the fact that in terms of conditioning and backward error they favour
large and small eigenvalues, respectively. However, if C̃ or Ã is well conditioned and
‖B̃‖/(‖Ã‖‖C̃‖)1/2 is not much bigger than 1 then L1 or L2, respectively, can safely
be used to stably obtain all the eigenpairs. For more details on conditioning and
backward error for L1 and L2 see [12], [13], [15].

Using Cholesky factorizations Ã = LALT
A and −C̃ = LCLT

C , the definite general-
ized eigenvalue problem L1(λ)z = 0 or L2(λ)z = 0 is transformed to a Hermitian (or
real symmetric) standard eigenvalue problem [3]. For example, L1(λ) reduces to

λI +

[
L−1

A B̃L−T
A −L−1

A LC

−LT
CL−T

A 0

]
.(5.4)

As Table 5.3 explains, this phase requires about 13n3 flops if the eigenvalues are
computed with the bisection algorithm, giving a grand total of (20

3 m + 13)n3 flops.
Guo and Lancaster’s solution algorithm has a total cost of (19

3 ℓ + 25)n3 flops,

assuming the eigenvalues of S(1) and S(2) (which are the eigenvalues of Q) are com-
puted by the QR algorithm. In practice this is significantly more than the cost of our
algorithm given that m ≤ ℓ is usually small.
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The most common way of solving the QEP is to apply the QZ algorithm or a
Krylov method to a linearization L of Q. The QZ algorithm applied to the 2n × 2n
L costs 240n3 flops for the computation of the eigenvalues.

Our algorithm has two important advantages over that of Guo and Lancaster
and QZ applied to a linearization, besides its more favorable operation count. First,
it work entirely with symmetric matrices, which reduces the storage requirement.
Second, it guarantees to produce real eigenvalues in floating point arithmetic; the
other two approaches cannot do so because they invoke the QZ algorithm and the
nonsymmetric QR algorithm.

6. Numerical experiment. We describe an experiment that illustrates the be-
havior of our algorithm for testing overdamping. More extensive testing of this algo-
rithm, and of the preprocessing and solve procedures described in section 5, will be
presented in a future publication. Our experiments were performed in MATLAB 7.4
(R2007a), for which the unit roundoff is u = 2−53 ≈ 1.1 × 10−16. We took kmax = 30
and ǫ = u in Algorithm 5.1.

We first describe a useful technique for generating symmetric quadratic matrix
polynomials with prescribed eigenvalues and eigenvectors and positive definite coeffi-
cient matrices.

Let (λk, vk), k = 1: 2n be a set of given real eigenpairs such that with

Λ = diag(λ1, . . . , λ2n) =: Λ1 ⊕ Λ2, Λ1,Λ2 ∈ R
n×n,

V := [ v1, . . . , v2n ] =: [V1 V2 ] , V1, V2 ∈ R
n×n,

V1 and V2 are nonsingular and

V1V
T
1 = V2V

T
2 , V1Λ1V

T
1 − V2Λ2V

T
2 =: Γ is nonsingular.(6.1)

Then the symmetric quadratic polynomial defined by the matrices

A = Γ−1, B = −A(V1Λ
2
1V

T
1 − V2Λ

2
2V

T
2 )A,(6.2a)

C = −A(V1Λ
3
1V

T
1 − V2Λ

3
2V

T
2 )A + BΓB,(6.2b)

has eigenpairs (λk, vk), k = 1: 2n (see [21] for example). We now show how to generate
a potentially overdamped quadratic.

Lemma 6.1. Assume that 0 > λ1 ≥ · · · ≥ λn > λn+1 ≥ · · · ≥ λ2n. Then Γ is

nonsingular and the matrices generated by (6.2) satisfy A > 0, B > 0, and C > 0.
Proof. It follows from Weyl’s theorem [18, p. 181] that Γ > 0 and hence that

A > 0. All matrices V2 that satisfy the first constraint in (6.1) can be written V1U
for some orthogonal U . Hence we can write

B = −AV1(Λ
2
1 − UΛ2

2U
T )V T

1 A ≡ −AV1(H
2
1 − H2

2 )V T
1 A,

where H1 = Λ1 and H2 = UΛ2U
T , and again Weyl’s theorem guarantees that B > 0.

It is known that (V,Λ, PV T ) where P = diag(In,−In) forms a self adjoint triple
for Q(λ) [5, Sec. 10.2]. Since Q has no zero eigenvalues, C is nonsingular and a formula
for its inverse is easily obtained from the resolvent form of Q(λ): for λ 6= λi,

Q(λ)−1 = V (λI2n − Λ)−1PV T .

Setting λ = 0 in the above expression gives

C−1 = −V Λ−1PV T = −V1(H
−1
1 − H−1

2 )V T
1
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Table 6.1
Minimum, average, and maximum number of iterations performed by Algorithm 5.1 and per-

centage of overdamped problems, for each n and matrix type.

n type 1 type 2 type 3

5 0.0, 2.4, 6.0 100% 0.0, 0.8, 3.0 100% 0.0, 2.4, 5.0 25%
10 0.0, 3.6, 10.0 100% 0.0, 0.5, 3.0 100% 2.0, 2.7, 4.0 5%
50 0.0, 4.2, 11.0 100% 0.0, 2.1, 4.0 100% 2.0, 2.1, 3.0 0%
100 3.0, 6.2, 10.0 100% 0.0, 2.6, 4.0 100% 2.0, 2.0, 2.0 0%
250 2.0, 6.0, 11.0 100% 2.0, 3.0, 4.0 100% 2.0, 2.0, 2.0 0%
500 3.0, 7.5, 11.0 100% 2.0, 3.0, 4.0 100% 2.0, 2.0, 2.0 0%

and once again Weyl’s theorem guarantees that C−1, and therefore also C, is positive
definite.

We use the following eigenvalue distributions:
type 1: λk, k = 1: 2n, is uniformly distributed in [−100,−1].
type 2: λk is uniformly distributed in [−100,−6] for k = n + 1: 2n and [−5,−1] for

k = 1:n.
type 3: λk is uniformly distributed in [−100, 20]. B and C are then shifted as in

(2.2) with θ = 1.1λ1 to ensure that the eigenvalues are all negative.
We took V1 = U1 and V2 = V1U2, where U1 and U2 are random orthogonal matrices
from the Haar distribution [9, Sec. 28.3]. For types 1 and 2, A, B, and C are all positive
definite by construction; for type 3 nothing can be said about the definiteness of A, B,
and C. Table 6.1 shows the minimum, average, and maximum number of iterations
for Algorithm 5.1 over 20 quadratics for each of several values of n, along with the
percentage of Q found to be overdamped for each n and matrix type. In all cases
where Q was deemed overdamped, the computed µ was verified to lie in (λn+1, λn).

We make several observations.
• For all three eigenvalue distributions, Algorithm 5.1 is quick to terminate,

especially for types 2 and 3, with only very occasional need for more than 10
iterations. The gap between λn and λn+1 is larger for type 2 than type 1,
which explains the greater number of iterations for type 1.

• With V1 orthogonal the coefficients matrices A, B, and C are well condi-
tioned, with 2-norm condition numbers of order 102. If instead we take V1 a
random matrix with 2-norm condition number 104 (computed in MATLAB
as gallery(’randsvd’,n,1e4,...), the condition numbers of A, B, and
C are of order 108 and the number of iterations of the algorithm increases,
though only slightly: the maximum number of iterations over all tests is 13
and the largest average over all n rises to 7.8, 3.1 and 3.2 for types 1, 2, and
3, respectively.

• After detecting overdamping an average of 6–9 more iterations are needed for
convergence of the block cyclic iteration. Recall that the algorithm of Guo and
Lancaster [7] needs to iterate to convergence in order to show overdamping.
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