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INFINITE DIMENSIONAL SECOND ORDER ORDINARY
DIFFERENTIAL EQUATIONS VIA T 2M

M. AGHASI, C.T.J. DODSON, G.N. GALANIS, AND A. SURI

Abstract. The vector bundle structure obtained on the second order
(acceleration) tangent bundle T 2M of a smooth manifold M by means of
a linear connection on the base provides an alternative way for the study
of second order ordinary differential equations on manifolds of finite and
infinite dimension. Second order vector fields and their integral curves
could provide a new way of representing and solving a wide class of
evolutionary equations for states on Fréchet manifolds of sections that
arise naturally as inequivalent configurations of a physical field. The
technique is illustrated by examples in the framework of Banach and
Fréchet spaces, and on Lie groups, in particular discussing the case of
autoparallel curves, which include geodesics if the connection is induced
by a Riemannian structure.

Introduction

Second order ordinary differential equations on manifolds have received
renewed geometric attention in recent years from interactions with jet fields,
linear and non-linear connections, Lagrangians and Finsler structures (cf.,
for instance, [2], [3], [5], [25]). Applications in physical field theory have
a central role in the theory of time-dependent Lagrangian particle systems
(see [23], [24]). Sufficient methods for the study of equations of such type
have so far been developed only for those known as sprays, which correspond
to linear connections.

We propose an alternative way of studying second order ordinary differen-
tial equations on a smooth manifold M . This approach uses the second order
tangent bundle T 2M of M , consisting of all equivalence classes of curves in
M that agree up to their acceleration. Then T 2M can be endowed with a
vector bundle structure in the presence of a linear connection on M (see [6],
[7]). This vector bundle structure is strongly dependent on the choice of the
linear connection on the base manifold and thereby differs from the classical
fibre bundle of 2-jets; the local sections of T 2M can be used to describe in
detail second order ordinary differential equations on M .

Our methodology is suitable for Banach modelled manifolds, and serves
also as a basis for the study of second order ordinary differential equations on
a wide class of Fréchet manifolds. Fréchet spaces of sections arise naturally
as configurations of a physical field and evolution equations naturally involve
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second order operators. The moduli space of inequivalent configurations of a
physical field is the quotient of the infinite-dimensional configuration space
X by the appropriate symmetry gauge group. Typically, X is modelled on
a Frechét space of smooth sections of a vector bundle over a closed manifold
and is a Hilbert Lie group. Inverse limit Hilbert manifolds and inverse limit
Hilbert groups, introduced by Omori [21, 22], provide an appropriate setting
for the study of the Yang-Mills and Seiberg-Witten field equations.

Let M be a finite-dimensional path-connected Riemannian manifold. The
free loop space of all smooth maps from the circle group S1 to M is a
Fréchet manifold ΛM, cf. Manoharan [18, 19]. A string structure is defined
as a lifting of the structure group to an S1-central extension of the loop
group. Suppose that G̃→ P̃ → X is a lifting of a principal Fréchet bundle
G → P → X over a Fréchet manifold X and further that S1 → G̃ → G is
an S1-central extension of G. Manoharan showed that every connection on
the principal bundle G → P → X together with a G̃-invariant connection
on S1 → P̃ → P defines a connection on G̃→ P̃ → X.

The Fréchet problem is complicated by lack of a general solvability theory
for ordinary differential equations on the models; that inhibits the establish-
ment of existence and uniqueness of solutions from initial conditions, anal-
ogous to the cases of finite dimensional and Banach spaces. Neeb [20] dis-
cusses this in his Monastir Lecture Notes on infinite-dimensional Lie groups.
However, if one restricts to the category of Fréchet manifolds that can be
viewed as projective limits of Banach manifolds, then the difficulty is eased.
This approach proves to be compatible with the taking of projective limits,
so leading to a new way of studying and solving second order differential
equations on Fréchet manifolds.

Our approach is illustrated by some examples in the last section of the pa-
per. We show that second order vector fields may be used for the description
of a class of autoparallel curves on infinite dimensional manifolds, including
geodesics in the Riemannian case. Additionally, we illustrate the case of a
Banach or Fréchet space endowed with the canonical flat connection and
that of a smooth Lie group with the flat or direct connection.

1. Second Order Vector Fields

In this section we define and study the basic notion for the description
of second order differential equations on a smooth manifold M of finite or
infinite dimension: That of second order vector fields.

The second order tangent bundle of M, T 2M, is the set of all classes
[(c, x)]2 of smooth curves c : (−ε, ε) → M , ε > 0, with respect to the
equivalence:

c1 ≈x c2 ⇔ c1(0) = c2(0), c
′
1(0) = c′2(0) and c′′1(0) = c′′2(0).

In contrast to the case of TM, T 2M fails to be vector bundle over M
as a result of the incompatibilities between the nonlinearity of acceleration
and the structure of a vector bundle. However, the presence of a linear
connection

∇ : T (TM) −→ TM
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on the base manifold M , circumvents this difficulty, endowing T 2M with a
natural vector bundle structure.

To be more precise, let E be the (finite dimensional or Banach) space
model of M , {(Uα, φα)}α∈I an atlas, {(π−1

M (Uα), τα)}α∈I the associated atlas
of the tangent bundle TM of M and {(π−1

TM (π−1
M (Uα)), τ̃α)}α∈I the analogous

trivialization of T (TM). Then, adopting the formalism of Vilms [28], the
local expressions

∇α := τα ◦ ∇ ◦ (τ̃α)−1 : φα(Uα)× E× E× E −→ φα(Uα)× E,

of ∇ have the form

∇α(y, u, v, w) = (y, w + Γα(y)(u, v)), a ∈ I.

Here {Γα}α∈I is the family of Christoffel symbols of ∇:

Γα : φα(Uα) −→ L2
s(E× E,E); α ∈ I,

L2
s(E× E,E) denoting the space of bilinear symmetric mappings from E× E

to E. Based on the above we have defined in [6] a vector bundle structure on
T 2M over M with fiber type E×E. The corresponding local trivializations
have the form:

Φα : (π2
M )−1(Uα) −→ Uα × E× E

: [(c, x)]2 7→
(
x, (φα ◦ c)′(0), (φα ◦ c)′′(0)

+Γα(φα(x))((φα ◦ c)′(0), (φα ◦ c)′(0))
)

if π2
M stands for the projection π2

M ([(c, x)]2) = x.
It is obvious that there is a strong dependence of the vector bundle struc-

ture defined on T 2M on the choice of the linear connection ∇ of M . How-
ever, these structures are classified via the notion of conjugate connections.
More precisely, the vector bundle structures induced on T 2M by two linear
connections ∇, ∇′ of M are isomorphic if the connections are conjugate by
means of a diffeomorphism of M (i.e. the connections commute with the
first and second differential of the diffeomorphism, see [7] for details).

Taking into account this characterization, we may proceed with the defi-
nition of the notion of second order vector fields.

Definition 1.1. A section ξ : M → T 2M of the second order vector bundle
T 2M , i.e. a smooth map satisfying

π2
M ◦ ξ = idM ,

where idM denotes the identity map of M , is called a second order vector
field on the base manifold M .

Of course, this property is sensitive also to the choice of the initial con-
nection ∇, and a change of choice causes corresponding changes in the set
of second order vector fields.

The second order vector fields may be viewed also as derivations in the
following way: We consider the set of real numbers R as a 1-dimensional
smooth manifold endowed with the identity global chart and the canonical
flat connection with Christoffel symbols:

Γ : R −→ L(R,L(R,R))
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which are vanishing everywhere Γ(y) = 0, y ∈ R. Then, the corresponding
second order tangent bundle T 2R becomes a vector bundle with global vector
chart

Ψ : T 2R −→ R3 : [(c, x)]2 7→
(
x, c′(0), c′′(0)

)
.

Based on this construction we may let each second order vector field on M
act as a derivation on the set of smooth functions C∞(M,R) as follows:

ξ : C∞(M,R) −→ C∞(M,R2) : f 7→ ξ(f),

where
ξ(f)(x) = T 2

xf(ξ(x)).

Here T 2
xf denotes the second order differential of f on the fiber over x:

T 2
xf : T 2

xM −→ T 2
f(x)R ≡ R2 :

: [(c, x)]2 7→ [(f ◦ c, f(x))]2 ≡
(
(f ◦ c)′(0), (f ◦ c)′′(0)

)
.

The above functor is well-defined and independent of the choice of the curve
c as one may easily check. However, although the previous definition is a
natural extension of the classical (first-order) case, the existence of a corre-
sponding Lie bracket operator seems to be unreachable due to the fact that
the result of this derivation does not remain in the same space.

2. Ordinary Differential Equations of Second Order on a
Banach manifold

Having established in the previous section all the necessary background,
we proceed here to the study of second order ordinary differential equations
on a smooth manifold M modelled on a Banach space E.

Let ξ be a second order vector field on M .

Definition 2.1. An integral curve of ξ is a smooth map θ : J →M , defined
on an open interval J of R, if it satisfies the condition

(1) T 2
t θ(∂t) = ξ(θ(t)),

where ∂t is the second order tangent vector of T 2
t R induced by a curve

c : R→ R with c′(0) = 1, c′′(0) = 1.

Note that if we restrict ourselves to the case where the base manifold M
is a Banach space E with differential structure induced by the global chart
(E, idE), then the first part of the above condition reduces to the second
derivative of θ:

T 2
t θ(∂t) = θ′′(t) = D2θ(t)(1, 1).

In other words, our definition gives a natural generalization of the notion
of second derivative on a manifold M . On the other hand, it offers the
opportunity to approach ordinary differential equations of order two on M .
Namely, the next result holds.

Theorem 2.2. Let ξ be a second order vector field on M . Then, the exis-
tence of an integral curve θ of ξ is equivalent to the solution of a system of
second order differential equations on E.
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Proof. Keeping the formalism of Section 1, we consider {(Uα, φα)}α∈I a
smooth atlas of M and {(Uα,Φα)}α∈I the corresponding local trivialization
of T 2M . Then, the local expression of the second derivative T 2

t θ(∂t) takes
the form

Φα(T 2
t θ(∂t)) = Φα([(θ ◦ c, θ(t))]2)

=
(
θ(t), (φα ◦ θ ◦ c)′(0), (φα ◦ θ ◦ c)′(0)′′(0) +

Γa((φα ◦ θ)(t))((φα ◦ θ ◦ c)′(0), (φα ◦ θ ◦ c)′(0))
)

However,

(φα ◦ θ ◦ c)′(0) = D(φα ◦ θ)(c(0))(c′(0)) = Tt(φα ◦ θ)(1) = (φα ◦ θ)′(t),
(φα ◦ θ ◦ c)′′(0) = D2(φα ◦ θ)(c(0))(c′(0), c′(0)) +D(φα ◦ θ)(c(0))(c′′(0))

= D2(φα ◦ θ)(t)(1, 1) +D(φα ◦ θ)(t)(1)
= (φα ◦ θ)′′(t) + (φα ◦ θ)′(t)

As a result,

Φα(T 2
t θ(∂t)) =

(
θ(t), (φα ◦ θ)′(t), (φα ◦ θ)′′(t) + (φα ◦ θ)′(t) +

Γa((φα ◦ θ)(t))((φα ◦ θ)′(t), (φα ◦ θ)′(t))
)

and the local expression of equation (1) takes the form

(2) (φα ◦ θ)′(t) = Φ(2)
α (ξ(θ(t))),

(φα ◦ θ)′′(t) + (φα ◦ θ)′(t) + Γa((φα ◦ θ)(t))((φα ◦ θ)′(t), (φα ◦ θ)′(t))
= Φ(3)

α (ξ(θ(t))), a ∈ I,(3)

where Φ(2)
α ,Φ(3)

α stand for the projection of Φα to the second and third factor
respectively. �

We have proved in this way that integral curves of second order vector
fields generalize the notion of second order ordinary differential equations
on manifolds.

However, it is important to notice here that equations (2), (3) do not
possess always common solutions, as we show below in the Lie group example
of Section 5.5. Therefore, we do not have a general Cauchy type theorem
although each equation independently admits a local solution for any initial
condition, since the differentiability of all the involved functions guarantees
the satisfaction of the necessary Lipschitz conditions.

Nevertheless, it is clear from the proof of Theorem 2.2 that the second
order differential equations described by our approach depend not only on
the choice of the second order vector field but also on the host geometric
background of the manifold, as expressed by the chosen linear connection.

3. The Case of a Lie Group

In this Section we consider the case where M is not an arbitrary Banach
modelled manifold but a Lie group M = (G, γ). We may generalize in this
framework the classical notion of left invariant vector fields:
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Theorem 3.1. Let v be any vector of the second order tangent space of G
over the unitary element. Then, a corresponding left invariant second order
vector field ξ of G may be constructed.

Proof. Keeping the formalism of the previous sections, let c : J ⊂ R→ G be
the curve that realizes v as a second order vector over the unitary element
e: v = [(c, e)]2. Then, the desired second order vector field may be defined
following the classical pattern:

ξ2 : G→ T 2G : x 7→ T 2
e Lx(v),

where Lx denotes the left translation of G through x ∈ G. Obviously ξ2 is
a section of the natural second order projection of G.

The necessary differentiability may be checked through the local charts
{(Uα, φα)}α∈I of G and {(Uα,Φα)}α∈I of T 2G, as defined in Section 1. In-
deed, the local expression F of ξ2 takes the form:

F (h) = (Φα ◦ ξ2 ◦ φ−1
α )(h) = Φα([(Lx ◦ c, x)]2) =

= (h, (φα ◦ Lx ◦ c)′(0), (φα ◦ Lx ◦ c)′′(0) +
Γα(h)((φα ◦ Lx ◦ c)′(0), (φα ◦ Lx ◦ c)′(0)),

if φα(x) = h. The second variable of the above mapping is the local ex-
pression of the classical (first order) left invariant vector field of G that
corresponds to the tangent vector realized by the curve c. Using the Leib-
nitz rule, one may check that

(φα ◦ Lx ◦ c)′′(0) = f ′′(h, 0) · ((0, 1), (0, 1)),

where f = φα ◦ γ ◦ (φ−1
α ◦ c) and γ : G × G → G the multiplication of the

Lie group. Therefore, F is a differentiable function of h, a fact that proves
the local differentiability of ξ2.

Finally, it is easy to check that ξ2 commutes with the left translations of
G and their second differentials, i.e. T 2Lx ◦ ξ = ξ ◦Lx, x ∈ G, thus the term
left invariant vector field of second order for ξ2 is fully justified. �

A question that naturally rises now is whether these left invariant vector
fields of second order admit integral curves, like in the case of TM. This
is not always true, since, as explained above, the corresponding differential
system cannot always be solved. However, the monoparameteric subgroups
of G are always such integral curves:

Proposition 3.2. Every monoparametric subgroup β : R→ G is an integral
curve of the second order left invariant vector field ξ2 of G that corresponds

to
··
β(0).

Proof. If we denote by c the curve c(t) = t + t2

2 , t ∈ R, that realizes the
basic second order vector field ∂0 and by µt the additive translation of R by
t (µt(s) = t+ s), then

ξ2(β(t)) = T 2
e Lβ(t)(T

2
0 β(∂0)) = T 2

0 (Lβ(t) ◦ β)(∂0) = T 2
0 (β ◦ µt)(∂0) =

= T 2
t β([µt ◦ c, t]2) = T 2

t β(∂t)

which proves that β is indeed an integral curve of ξ2. We have proved in
this way, that this type of classical (first order) integral curve of G is an
integral curve of order two as well. �
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4. Generalization to Fréchet manifolds

In this section we extend our methodology to the framework of Fréchet
modelled manifolds. The general case of a second (or even first) order dif-
ferential equation on such manifolds cannot be confronted successfully using
the classical pattern of Banach modelled manifolds. For, on the model spaces
an ordinary differential equation may admit no, one or multiple solutions
for the same initial condition.

These analytical problems with several applications in theoretical physics
(see, e.g. [1], [21, 22], [26]) led a number of authors to propose different
methods for the study of certain types of differential equations in Fréchet
spaces (see [4], [9], [14], [15]).

In a series of previous papers of the third author ([10], [11], [12]) a new
way leading to the solution of a wide class of such types of equations is
proposed. This stems from the fact that every Fréchet space is isomorphic
to a projective limit of Banach spaces, and the taking of projective limits
is compatible with differentiation. These techniques can also be combined
with our approach to second order differential equations described above, to
provide a way out of the analytic difficulties.

More precisely, let M be a smooth manifold modelled on the Fréchet space
F. Since always F can be realized as a projective limit of Banach spaces
F ' lim←−{E

i; ρji}i,j∈N, we assume that the manifold itself is obtained as the
limit of a projective system of Banach modelled manifolds {M i;ϕji}i,j∈N
and that is covered by a system of ‘projective limit’ charts:

For each x = (xi) ∈ M there exists a projective system of local charts
{(U iα, φiα)}i∈N such that xi ∈ U iα and the corresponding limit lim←−U

i
α is open

in M .
Let ∇ be a linear connection on M realized also as a projective limit

of connections on the factors M i. This is equivalent to the fact that the
corresponding Christoffel symbols commute with the connecting morphisms
of the tangent bundles of M which have the form:

gjik : T kM j → T kM i: [f, x]jk 7−→ [φji ◦ f, φji(x)]ik,

where k = 1, 2 denotes the order of the tangent bundle.
Under these conditions, M can be endowed with a Fréchet manifold struc-

ture modelled on F via the charts {(lim←−U
i
α, lim←−φ

i
α)}a∈I . For the differen-

tiability of mappings in this framework we adopt the definition of Leslie
([16, 17]).

In consequence, the tangent bundles TM and T 2M of M are endowed
also with Fréchet manifold structures of the same type modelled on F2, F4

respectively. The corresponding local structures are defined by the differen-
tials {lim←−(Tφiα)}a∈I for the first order tangent bundle and by the projective
limits of the trivializations

Φi
α : (π2

M i)−1(U iα) −→ U iα × Ei × Ei

: [(c, x)]2 7−→
(
x, (φiα ◦ c)′(0), (φiα ◦ c)′′(0)

+Γiα(φiα(x))((φiα ◦ c)′(0), (φiα ◦ c)′(0))
)
,

for T 2M .



8 M. AGHASI, C.T.J. DODSON, G.N. GALANIS, AND A. SURI

Based on the above constructions, we may prove the following main result.

Theorem 4.1. Every second order vector field ξ on M obtained as pro-
jective limit of second order vector fields {ξi on M i}i∈N admits locally a
unique integral curve θ satisfying an initial condition of the form θ(0) =
x and Ttθ(∂t) = y, x ∈ M, y ∈ Tθ(t)M , provided that the components ξi

admit also integral curves of second order.

Proof. Since each ξi is a second order vector field on the Banach modelled
manifold M i, the assumption of existence of an integral curve θi is equivalent
to the system of differential equations:

(ϕiαoθ
i)′(t) = Φ2,i

α (ξi(θi(t))),

(ϕiαoθ
i)′′(t) + (ϕiαoθ

i)′(t) + Γiα(ϕiαoθ
i)(t)[(ϕiαoθ

i)′(t), (ϕiαoθ
i)′(t)]

= Φ3,i
α (ξi(θi(t))),

under the initial conditions θi(0) = xi := ϕi(x), and Ttθ
i(∂t) = yi :=

Tθ(t)ϕ
i(y), if ϕi : M = lim←−M

i →M i, i ∈ N, are the canonical projections of
the projective limit.

We claim that θ := lim←− θ
i exists and fulfils the conditions of the theorem.

Indeed, we initially observe that for each pair of indices j ≥ i, ϕji ◦θj is also
an integral curve of ξi since:

(ϕiα ◦ (ϕji ◦ θj))′(t) = (ρji ◦ ϕjα ◦ θj)′(t) = ρji((ϕjα ◦ θj)′(t)) =

= ρji(Φ2,j
α (ξj(θj(t)))) = Φ2,i

α (gji2 (ξj(θj(t))))

= Φ2,i
α (ξi(ϕjioθj(t))) ;

and

(ϕiα ◦ (ϕji ◦ θj))′′(t) + (ϕiα ◦ (ϕji ◦ θj))′(t)
+Γiα(ϕiα ◦ (ϕjioθj)(t))[(ϕiα ◦ (ϕjioθj))′(t), (ϕiα ◦ (ϕjioθj))′(t))]

= (ρji ◦ ϕjα ◦ θj)′′(t) + (ρji ◦ ϕjα ◦ θj)′(t)+
+Γiα((ρji ◦ ϕjα ◦ θj)(t))[(ρji ◦ ϕjα ◦ θj)′(t), (ρji ◦ ϕjα ◦ θj)′(t))]

= ρji((ϕjα ◦ θj)′′(t) + (ϕjα ◦ θj)′(t)+
+Γjα((ϕjα ◦ θj)(t))[(ϕjα ◦ θj)′(t), (ϕjα ◦ θj)′(t)])

= ρji(Φ3,j
α (ξj(θj(t)))) = Φ3,i

α (gji2 (ξj(θj(t))))

= Φ3,i
α (ξi(ϕjioθj(t))) .

Next we have θi(0) = xi and Ttθ
i(∂t) = yi, give (ϕji ◦ θj)(0) = xi and

Tθj(t)ϕ
jioθj(∂t) = yi. As a result, ϕji ◦ θj and θi will coincide as integral

curves of the same second order vector fields over the same initial conditions.
Therefore, θ = lim←− θ

i exists and is smooth as a projective limit of smooth
functions (see [13]).

Moreover,

(ϕα ◦ θ)′(t) = ((ϕiα ◦ θi)′(t))i∈N = (Φ2,i
α (ξi(θi(t)))i∈N = Φ2

α(ξ(θ(t)))
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and

(ϕα ◦ θ)′′(t) + (ϕα ◦ θ)′(t) + Γα((ϕα ◦ θ)(t))[(ϕα ◦ θ)′(t), (ϕα ◦ θ)′(t)]
= ((ϕiα ◦ θi)′′(t) + (ϕiα ◦ θi)′(t) + Γiα((ϕiα ◦ θi)(t))[(ϕiα ◦ θi)′(t), (ϕiα ◦ θi)′(t)])i∈N

= (Φ3,i
α (ξi(θi(t))))i∈N = Φ3

α(ξ(θ(t)))

We have proved in this way that θ is the desired integral curve of the
second order vector field ξ. The uniqueness of it under the given initial
conditions is obtained following similar reasoning and by checking that each
projection of θ via the canonical mappings ϕi : M → M i is the unique
integral curve of ξi satisfying θi(0) = xi and Ttθ

i(∂1
t ) = yi. �

5. Applications - Examples.

5.1. Autoparallel curves and Riemannian geodesics. Our approach to
second order differential equations on manifolds with connection gives also
a very simple way to describe the important class of autoparallel curves,
which include in particular the geodesics in a Riemannian manifold. To be
more precise let (M,∇) be an infinite dimensional manifold endowed with
a smooth atlas {(Uα, φα)}α∈I and a linear connection ∇ with Christoffel
symbols

{Γα : φα(Uα) −→ L2
s(E× E; E)}α∈I .

Keeping the formalism of Sections 1, 2, let ξ be a second order vector field
on M induced by a constant curve:

ξ(x) = [(cx, x)]2,

where cx(t) = x, t ∈ [0, 1]. Then, the local expression of ξ takes the form:

Φα([(cx, x)]2) =
(
x, (φα ◦ cx)′(0), (φα ◦ cx)′′(0)

+Γα(φα(x))[(φα ◦ cx)′(0), (φα ◦ cx)′(0)]
)

= (x, 0, 0).

As a result, equations (2),(3) that provide the corresponding integral curves
θ of ξ through x (see Theorem 2.2) will reduce to

(φα ◦ θ)′(t) = 0, a ∈ I,

which ensures that θ is an autoparallel curve of M . We have proved in this
way that the integral curves of second order vector fields induced by constant
functions are autoparallel curves.

This result holds also for every second order vector field ξ that locally
fulfils

Φ2
α ◦ ξ = Φ3

α ◦ ξ, a ∈ I.
In this case, equation (3) reduces to

(φα ◦ θ)′′(t) + Γa((φα ◦ θ)(t))((φα ◦ θ)′(t), (φα ◦ θ)′(t)) = 0, a ∈ I.

This is exactly the classical local condition that an arbitrary geodesic of M
has to satisfy in the case that M is a Riemannian manifold with Levi-Civita
connection ∇.
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5.2. Second order differential equations and autoparallel curves. In
the non-Riemannian case we do not have geodesics, but with a connection
we still have autoparallel curves. Via the linear connection ∇, T 2M becomes
a vector bundle isomorphic to TM × TM under the isomorphism,

h : T 2M −→ TM × TM : [f, x]2 7−→ ([f, x], [∇TfTf, x]).

As shown in [8], we can define the covariant derivative

∇̃ : C∞(TM)× C∞(T 2M) −→ C∞(T 2M)
(s, η) 7−→ h−1(∇sh1(η)⊕∇sh2(η)),

where h = h1 ⊕ h2.
Now we are ready to characterize the differential equations associated

with an autoparallel curve γ : J −→M.

∇̃TγT 2γ = 0 ⇐⇒ ∇Tγh1(T 2γ) = 0 , ∇Tγh2(T 2γ) = 0.

(i) ∇Tγh1(T 2γ) = ∇TγTγ and according to [28], ∇TγTγ = ∇T (Tγ). Hence
∇Tγh1(T 2γ) = 0 iff for each α ∈ I:

τ−1
α ◦ ∇α ◦ τ̃α(T (Tγ(∂1

t )) = τ−1
α ((φα ◦ γ)(t), (φα ◦ γ)′′(t)

+ Γα((φα ◦ γ)(t))[(φα ◦ γ)′(t), (φα ◦ γ)′(t)])
= 0.

That is ∇Tγh1(T 2γ) = 0 iff for every α ∈ I,

(φα ◦ γ)′′(t) + Γα((φα ◦ γ)(t))[(φα ◦ γ)′(t), (φα ◦ γ)′(t)] = 0.

(ii) ∇Tγh2(T 2γ) = ∇Th2(T 2γ) ◦ Tγ = 0 iff for every α ∈ I:

τ−1
α ◦ ∇α ◦ τ̃α(Tη2 ◦ Tγ(∂1

t )) = 0,

which after some tedious calculations results to

∇̃TγT 2γ = 0⇐⇒ (φα◦γ)′′(t)+Γα((φα◦γ)(t))[(φα◦γ)′(t), (φα◦γ)′(t)], α ∈ I.
We have previously characterised the isomorphism classes of the vector

bundle structures on T 2M, via a conjugacy condition through diffeomor-
phisms (see also [7]). In this respect, for two g-conjugate connections ∇ and
∇′, g : M →M denoting a smooth map, we may state:

Corollary 5.1. If γ is an autoparallel curve in (M,∇) then g ◦ γ is au-
toparallel in (M,∇′).

Proof. It suffices to prove that ∇̃′Tg◦γT 2g ◦ γ = 0, or equivalently for every
β ∈ I,

(φβ ◦ g ◦ γ)′′(t) + Γ′β((φβ ◦ g ◦ γ)(t))[(φβ ◦ g ◦ γ)′(t), (φβ ◦ g ◦ γ)′(t)] = 0.

Let G = φβ ◦ g ◦ φ−1
α then,

(φβ ◦ g ◦ γ)′′(t) + Γβ((φβ ◦ g ◦ γ)(t))[(φβ ◦ g ◦ γ)′(t), (φβ ◦ g ◦ γ)′(t)]
= (G ◦ φα ◦ γ)′′(t) +DG((φα ◦ γ)(t))(Γa((φa ◦ γ)(t))[(φa ◦ γ)′(t), (φa ◦ γ)′(t)]−

D(DG)((φα ◦ γ)(t))[(φa ◦ γ)′(t), (φa ◦ γ)′(t)]
= 0

�
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In the sequel we give three more examples of applications that clarify
further our method.

5.3. Second order differential equations on the model space. If we
consider the manifold M = E endowed with the differential structure in-
duced by the global chart (E, idE), and consider the canonical flat connec-
tion with trivial Christoffel symbols Γ(x)(u) = 0, for each (x, u) ∈ E× E,
then the second order tangent bundle T 2E becomes a vector bundle with
(total) vector chart

Φ : T 2E→ E× E× E : [(c, x)]2 7−→
(
x, c′(0), c′′(0)

)
.

This is the case either for a Banach or a Fréchet model space. In this way, if
ξ is a second order vector field on E and θ : R→ E a corresponding integral
curve, equations (2.2-2.3) of Theorem 2.2 reduce to

θ′(t) = Φ2
α(ξ(θ(t))),

θ′′(t) + θ′(t) = Φ3
α(ξ(θ(t))),

which is an ordinary differential equation system of second order on E. Inde-
pendently the two differential equations can be solved uniquely under given
initial conditions in the case of Banach spaces as well as in the Fréchet
framework if we assume that the vector field ξ is a projective limit (cf. [12]).
However, the coincidence of these solutions is not always achieved.

We observe that the above results ensure that the integral curves of a
second order vector field induced by a constant function will themselves be
constants.

5.4. Second order differential equations on Lie groups. Let G be a
Lie group modelled on E endowed with the so-called direct connection ∇G,
that is the unique connection which is (µ, idG)-conjugate with the canonical
flat connection of the trivial bundle (G× G, pr1, G), where

µ : G× G '→ TG : (g, h) 7→ TeLg(h)

denotes the left parallelization of G and G the Lie algebra of G. If ba(x) gives
the local expression of the isomorphism TeLx : TeG→ TxG with respect to
the chart (Ua, φa), then the Christoffel symbols of ∇G take the form

ΓGa (x)(k, h) = −Dba(x)(k, b−1
a (x)(h)); x ∈ φa(Ua), k, h ∈ E,

(for a complete presentation of the notion of direct connection and the rel-
evant proofs we refer to [27]). As a result, equations (2.2-2.3) of Theorem
2.2 take, in this case, the form

(φα ◦ θ)′(t) = Φ2
α(ξ(θ(t))),

(φα ◦ θ)′′(t) + (φα ◦ θ)′(t) −
Db(x)((φα ◦ θ)′(t), b−1(x)((φα ◦ θ)′(t))) = Φ3

α(ξ(θ(t))),

which is the local form of a second order system on G.
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5.5. A special case of a Lie group. Let us consider the Lie groupG = R−
{0} endowed with the multiplication from the field R. It is well known that
the first order monoparametric curves here lead to the classical exponential
mapping of real numbers. Let us try to find out what is happening with
the second order tangent structure induced by a flat connection. In this
framework, a second order vector v = [(c, 1)]2 ∈ T 2

1G corresponds bijectively
to the pair (c′(0), c′′(0)) = (a, b) ∈ R2. If we denote by ξ2 the corresponding
second order left invariant vector field, then

ξ2(x) = T 2
1Lx(v) = [(Lx ◦ c, x)]2 ≡ ((Lx ◦ c)′(0), (Lx ◦ c)′′(0)) = (x · a, x · b).

If β : R → G is an integral curve of ξ2, then it should satisfy the relation
ξ2(β(t)) = T 2

t β(∂t). However, since the basic second order vector field ∂t

of R is realized by the real curve γ(s) = t + s + s2

2 , s ∈ R, this would be
equivalent to

(β(t)·a, β(t)·b) = [(β◦γ, β(t)))]2 ≡ ((β◦γ)′(0), (β◦γ)′′(0)) = (β′(t), β′′(t)+β′(t)).

As a result, equations (2),(3) of Section 2 reduce here to

β′(t) = a · β(t),
β′′(t) + β′(t) = b · β(t).

This system cannot be solved in general. More precisely, the solution is the
classical exponential mapping β(t) = eat, t ∈ R, only in the case where a2 +
a = b. In other words, from all the points of the 2-dimensional (x, y)−plane
coordinatising the second order vector space T 2

1G, only the points of the
curve y = x2 + x define left invariant second order vector fields that admit
integral curves.
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