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In this thesis we investigate the application of non-commutative algebraic struc-

tures and nonlinear recursions in cryptography. To begin with, we demonstrate that

the public key cryptosystem based on the word problem on the Grigorchuk groups,

as proposed by M. Garzon and Y. Zalcstein [8], is insecure. We do this by exploiting

information contained in the public key in order to construct a key which behaves

like the private key and allows successful decryption of ciphertexts.

Further on, we present a new block cipher with key-dependent S-boxes, based on

the Grigorchuk groups. To the best of our knowledge, it is the first time groups are

used in a block cipher, whereas they have been extensively used in public key cryp-

tosystems. The study of the cipher’s properties is, at this stage, purely theoretical.

Finally, we investigate the notion of nonlinear complexity, or maximal order com-

plexity as it was first defined in 1989 [15], for sequences. Our main purpose is to

begin classification of periodic binary sequences into nonlinear complexity classes.

Previous work on the subject also includes approximation of the size of each class,

found in [7]. Once the classification is completed, we can use it to show how to

perform checks for short cycles in large nonlinear feedback shift registers using our

proposed algorithm.
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Chapter 1

Introduction

In 1980, Rostislav Grigorchuk discovered the first Grigorchuk group G in [9], as a

negative answer to Burnside’s problem: ’Let Γ be a finitely-generated group such

that each of its elements has finite order; is Γ necessarily a finite group?’. Later

on, in 1985, he generalised his group construction in [10], this time as a negative

solution to Milnor’s question: ’Is the growth function of every finitely generated

group equivalent either to a power function nd or to the exponential function 2n?’.

The first application of the Grigorchuk groups in cryptography was done by Gar-

zon and Zalcstein in 1991 [8]. They proposed a public key cryptosystem based on the

word problem on the Grigorchuk groups. This cryptosystem was similar to a cryp-

tosystem proposed in 1984 by Wagner and Magyarik [32]. The latter one however,

was based on finitely presented groups, whereas the Grigorchuk groups considered

by Garzon and Zalcstein are not finitely presented.

In their discussion of security issues of their cryptosystem, amongst other things,

Garzon and Zalcstein claimed that the public key does not contain enough informa-

tion to uniquely determine the private key.

Cryptanalysis of this cryptosystem was first attempted by Hofheinz and Stein-

wandt in [31]. In their paper, they tried to exploit the public key to derive a secret

key equivalent to the original one by an exhaustive search of all possibilities.

In Chapter 3, we prove that the words used as public key, in combination with
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Algorithm 2 presented in Section 3.1, give enough information to allow construction

of a key which behaves like the private key and is capable of successfully decrypting

ciphertexts. This part of the thesis appears in the proceedings of the Institute of

Mathematics and its Applications Ninth International Conference on Cryptography

and Coding [24].

The above mentioned cryptosystem is an example of group theory’s extensive

provision of tools for use in public key cryptography. Other examples include de-

cision problems in Braid groups [1, 16]. In general, algebraic objects are used as

cryptographic primitives quite often, with a recent successful example being the

block cipher Rijndael [4], selected as the Advanced Encryption Standard (AES).

Like many other cryptosystems, including the pioneer Diffie-Hellman Key Exchange

Protocol [6], it uses computations in finite fields for its internal operations.

To the extend of our knowledge, groups have not so far been used in the con-

struction of block ciphers. In this thesis we take advantage of this gap, and try

to investigate theoretically the feasibility of such an application of groups. To this

end, we present a new block cipher based on the Grigorchuk groups in Chapter 4.

Our choice of these particular groups was influenced by the way they are defined

(as groups of transformations of the binary tree), which makes them suitable for

handling blocks of plaintext and ciphertext. Moreover, they can have a streamlined

implementation using automata.

One of the characteristics of our proposed cipher is that it has key-dependent S-

boxes. This feature makes differential [3], linear [20] and similar kinds of cryptanal-

ysis very difficult to mount. Other ciphers following the key-dependent S-box phi-

losophy include Khufu [22], Blowfish [27] and Twofish [28]. The alternative method

of resistance against these cryptanalytic attacks is through careful design of the

S-boxes, achieved, for instance, by the Wide Trail Design Strategy of Rijndael [4].

The counterpart to block ciphers are stream ciphers. The classical complexity

measure assessing the cryptographic strength of binary sequences used in stream ci-

phers is the linear complexity. It can be calculated using the well known Berlekamp-

Massey algorithm [19] and is used in statistical tests for the randomness of sequences.
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In Chapter 5 we investigate the generalised notion of nonlinear complexity (or

maximum order complexity as first introduced in [15]) which can be calculated using,

for example, the directed acyclic word graph [15]. In particular, we try to classify

periodic binary sequences of given period into nonlinear complexity classes.

In [7] an approximate number of sequences in each class was calculated and used

in finding the approximate probability distribution of nonlinear complexity. Our

results, though incomplete, give the exact number for the cases considered. The

cases not yet dealt with are left for future work, with the idea and method of

approach having been established.

A complete classification will be useful in the implementation of an algorithm

checking for short cycles in large nonlinear feedback shift registers (NLFSRs). Feed-

back shift registers are the main components of stream ciphers, with more emphasis

given on linear ones, for which the cycle structure is known. Our results constitute

a new contribution to the theory of NLFSRs. In [17] it is claimed that for a given

large NLFSR it is hard to check whether short cycles have been embedded by the

given method: brute force is inefficient due to largeness, and so are the two algo-

rithms which are given for such a check, based on algebraic approach. Our proposed

algorithm checks for short cycles, regardless of whether they are embedded or not.

Another use for this classification (once complete) can be found in the construc-

tion of statistical tests for the randomness of sequences, as shown for example in

[7], thus further upgrading the level of interest of nonlinear complexity from just

theoretical to also practical. For instance, we could say that a sequence is con-

sidered random if it belongs to a large nonlinear complexity class. The results of

Chapter 5 have been accepted for publication in the proceedings of the International

Conference on Sequences and Their Applications 2006 [25].

All the background material necessary for understanding the problems considered

in this thesis are provided in Chapter 2. They include a survey of the Grigorchuk

groups and some information on introductory cryptography. Finally, in Chapter 6

we give our overall conclusions on the results of this thesis and discuss open problems

left for future work.
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Chapter 2

Introductory Material

2.1 The Grigorchuk Groups

In this section we will give a brief overview of the Grigorchuck groups and their

main properties. We start with the first Grigorchuck group and then proceed to the

generalised Grigorchuck groups.

2.1.1 The First Grigorchuk Group

The first Grigorchuk group G was discovered in 1980 by and named after the great

mathematician Rostislav Grigorchuk [9]. Although in the original paper G was

defined as a group of transformations of the interval [0,1], it is more efficient to

consider transformations of the infinite binary tree.

Denote by T the set of one way infinite paths from the root ∅ of the complete

infinite binary tree. Each j ∈ T can be regarded as an infinite binary sequence (ji)i≥1

of vertices. We refer to these as left turns (denoted by 0) and right turns (denoted

by 1), according to orientation from the parent. The empty sequence denotes the

root vertex ∅. For an illustration of this see Figure 2.1.

The group G is a group of permutations of T generated by four bijections a, b, c

and d which act as follows on a given path j = (j1, j2, j3, . . . , jk, . . .) ∈ T :
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∅

0

00

000

0000

...

0001

001

0010 0011

01

010

0100 0101

011

0110 0111

1

10

100

1000 1001

101

1010 1011

11

110

1100 1101

111

1110 1111

Figure 2.1: The first four levels of the infinite binary tree

a(j1, j2, j3, . . .) = (j1, j2, j3, . . .), where 0 = 1 and 1 = 0. In other words, a

swaps the two halves of the tree. Generators b, c and d are defined recursively and

simultaneously: 



b(0, j2, j3, . . .) = (0, j2, j3, . . .)

b(1, j2, j3, . . .) = (1, c(j2, j3, . . .))

c(0, j2, j3, . . .) = (0, j2, j3, . . .)

c(1, j2, j3, . . .) = (1, d(j2, j3, . . .))

d(0, j2, j3, . . .) = (0, j2, j3, . . .)

d(1, j2, j3, . . .) = (1, b(j2, j3, . . .))

Example 2.1.1 b(1, 1, 1, 0, 1, . . .) = (1, c(1, 1, 0, 1, . . .)) = (1, 1, d(1, 0, 1, . . .))

= (1, 1, 1, b(0, 1, . . .)) = (1, 1, 1, 0, 0, . . .) .

Since the first left turns in the path j are not complemented by any of the

generators b, c and d, a second application of the same generator will return the

path to its original shape. This is also trivial for a. Hence all four generators are

involutions:

a2 = b2 = c2 = d2 = 1 . (2.1)

14



We also have that

bc = cb = d, bd = db = c and cd = dc = b . (2.2)

Therefore, anyone of the generators b, c and d can be dropped from the generating

set 〈a, b, c, d〉.

The group G can be represented by a finite state automaton. An automaton can

be thought of as a machine, which being in a state g and receiving as input a letter

x, goes into state h and outputs a letter y, both depending on letter x.

Finite automata can be represented by Moore diagrams. Figure 2.2 shows a

representation of the Grigorchuk group G using such a Moore diagram.

?>=<89:;b

(0,0)

��

(1,1)

��>
>>

>>
>>

>>
?>=<89:;d

(0,0)

��

(1,1)
oo

?>=<89:;c
(0,0)

����
��

��
��

�

(1,1)

??���������

?>=<89:;a
(0,1)

(1,0)
// ?>=<89:;1

(0,0)

YY

(1,1)
qq

Figure 2.2: The Moore diagram representing G

The five states of the automaton, represented by the nodes of the diagram, consist

of the four generators of G plus the identity element. From each state there are two

outgoing arrows, each together with a pair (x, y), leading to another state. In each

pair (x, y) x denotes input and y denotes output. Starting from the generator of

G we want to apply to a path j ∈ T , we follow the arrow in the direction of the

appropriate input (the first digit of j) to lead us to the next state, while at the same

time receiving the corresponding output. Carrying on in this way for every new

state and corresponding input until we reach the identity element, the output will

yield a new path j′ ∈ T . This denotes the action of the generator of G we started

with on the path j ∈ T .

Example 2.1.2 To determine the action of generator b on path j = (1, 1, 1, 0, 1, . . .),

15



the automaton goes through the following states and corresponding input/output

pairs:

?>=<89:;b
(1,1)

//?>=<89:;c
(1,1)

// ?>=<89:;d
(1,1)

//?>=<89:;b
(0,0)

// ?>=<89:;a
(1,0)

// ?>=<89:;1

The result is the output path j′ = (1, 1, 1, 0, 0, . . .).

Further information on automata can be found in [5] and [12].

2.1.2 Generalised Grigorchuk Groups

Grigorchuk generalised his group construction in 1984 [10], as follows: Given an

infinite ternary sequence ω, the group Gω is a group of permutations of T generated

by four bijections a, bω, cω and dω. The action of a on a path j ∈ T consists of

complementing the first turn as before (that is making 0 into 1 and vice versa).

However, the actions of bω, cω and dω depend on the sequence ω as follows:

We form three sequences U, V and W by substituting each digit of ω with a

vector as shown below, depending on whether it is 0, 1 or 2:

0 :





S

S

I

1 :





S

I

S

2 :





I

S

S

Here I= “Identity” and S=“Swap”; the latter means making 0 into 1 and vice

versa.

We thus obtain three sequences:

U = u1 u2 . . . un . . .

V = v1 v2 . . . vn . . .

W = w1w2 . . . wn . . .

The bijection bω (respectively cω, dω) leaves invariant all turns j1, . . . , ji includ-

ing the first left turn ji of j and complements ji+1 if ui (respectively vi, wi) is S.

Otherwise it leaves j invariant.
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Example 2.1.3 If ω = 012012012 . . . then

U = S S I S S I S S I . . .

V = S I S S I S S I S . . .

W = I S S I S S I S S . . .

and bω(1, 1, 1, 0, 1, . . .) = (1, 1, 1, 0, 0, . . .) since u4 = S.

Using this construction, the first Grigorchuk group is generated by the periodic

sequence 012012012 . . . .

All four generators are once again involutions, and equations (2.1) and (2.2)

become

a2 = b2
ω = c2

ω = d2
ω = 1 , (2.3)

and

bωcω = cωbω = dω, bωdω = dωbω = cω and cωdω = dωcω = bω . (2.4)

Therefore, any one of the generators bω, cω and dω can be dropped from the gener-

ating set 〈a, bω, cω, dω〉.

It can be checked that the action of the four generators is nonlinear. That is to say

that if ∗(j) = j′ and ∗(t) = t′ then ∗(j + t) 6= j′ + t′, where ∗ ∈ {a, bω, cω, dω} and

j, j′, t, t′ ∈ T . Here, the addition of two paths j = (j0j1j2 . . .) and t = (t0t1t2 . . .) ∈ T

is realised as follows: j + t = (j0 + t0 mod 2, j1 + t1 mod 2, j2 + t2 mod 2, . . .) ∈ T .

If we restrict ourselves on the nth level of the infinite binary tree, the generators

bω, cω and dω now act on binary sequences of finite length n. Therefore, only the

first n− 1 digits of the sequence ω are needed to determine their action: if the first

left turn is the nth turn of the now finite path, the path is left invariant.

Example 2.1.4 If ω = 012012012 . . . then on the fifth level, bω(1, 1, 1, 0, 1) =

(1, 1, 1, 0, 0) and on the fourth level, bω(1, 1, 1, 0) = (1, 1, 1, 0).

Notice that every Grigorchuk group Gω is a canonical homomorphic image of the

basis group Γ, generated by four elements a, bω, cω and dω satisfying only relations

17



(2.3) and (2.4). When a sequence ω is specified, it introduces extra relations between

generators a, bω, cω and dω and maps Γ onto the Grigorchuk group Gω.

The Grigorchuk groups are infinite, residually finite (that is, given g 6= 1 in

Gω, ∃N / Gω such that g 6∈ N and |Gω/N | < ∞ ) and

(1) If all 3 symbols 0,1 and 2 repeat infinitely often in ω then Gω is a 2-group,

that is for g ∈ Gω, ∃N ≥ 0 such that g2N

= 1 (Theorem 2.1(1) in [10]).

(2) If at least two of 0,1 and 2 repeat infinitely often in ω then Gω is not finitely

presentable; that is, one needs infinitely many independent relators to define Gω

(Theorem 6.2 in [10]). For definition of relators see Subsection 2.1.3.

In the cases when ω is periodic, Gω can be defined by a finite state automaton

in a similar way as shown in Subsection 2.1.1 for G, which allows for an especially

streamlined implementation.

2.1.3 Word Problem

A word in Gω is any product of the four generators a, bω, cω and dω and represents

an element of Gω. Let F be such a word and let ∂(F ) denote the length of the

word F, that is the the number of generators in the product. Similarly, let ∂k(F )

(respectively ∂p,q(F ) etc) denote the number of occurrences of symbol k (respectively

both symbols p and q etc) in the word F (k, p and q ∈ {a, bω, cω, dω}). Due to

equations (2.3) and (2.4), each word can be uniquely reduced to ∗′ or the form

∗′a ∗ a . . . a ∗ a∗′ , (2.5)

where ∗ ∈ {bω, cω, dω} and ∗′ ∈ {1Gω
, bω, cω, dω}. We call words of this form

reduced. In fact, reduced words are elements of the basis group Γ.

The inverse F−1 of a word F is obtained by reversing the order of appearance of

the letters in F .

By word problem we mean finding whether a given word F in Gω is equal to 1

or not. The word problem is solvable when the sequence ω is recursive [10, Sect. 5]

and we shall shortly give a description of the algorithm used to solve it.
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Words equal to 1 are called relators. By definition, relators act trivially on any

path j ∈ T . Recalling the action of generator a on such a path j, we can deduce

that all relators must have an even number of occurrences of the generator a.

Let σ denote the left shift operator defined on a sequence ω = ω1ω2ω3ω4 . . . by

σ(ω) = ω2ω3ω4 . . . . We define the sequence of groups Gn, n = 1, 2, . . . by Gn =

Gσn−1(ω) and denote by a, bn, cn and dn the respective generators. In particular

G1 = Gω.

For each n, consider the subgroup Hn of Gn consisting of all elements repre-

sentable by a word with an even number of factors a. Then |Gn : Hn| = 2 and Hn is

generated by bn, cn, dn, abna, acna and adna. Every element of Hn leaves set-wise

invariant the left and right halves of the tree.

Restricting the action of Hn from the whole of the tree to the two halves induces

two homomorphisms, φ
(n)
0 and φ

(n)
1 of Hn. These act on the elements of Hn according

to Table 2.1 and play a key role in the word problem solving algorithm.

Table 2.1: The actions of φ
(n)
0 and φ

(n)
1 . Here ũn (respectively ṽn, w̃n) denotes a if

the nth digit of the sequence U (respectively V, W ) is S, and 1 otherwise

bn cn dn abna acna adna

φ
(n)
0 ũn ṽn w̃n bn+1 cn+1 dn+1

φ
(n)
1 bn+1 cn+1 dn+1 ũn ṽn w̃n

Therefore we have φ
(n)
0

∼= Gn+1 and φ
(n)
1

∼= Gn+1 so that

|Gω| = |G1| = 2|H1| ≥ 2|G2| = 22|H2| ≥ . . . .

Consequently, |Gω| = ∞.

Using the theory discussed above, we are now in a position to describe the Word

Problem Solving Algorithm (Algorithm 1).

While running the algorithm, a finite tree will be created having the word F as

root and depth at most dlog2 ∂(F )e (see Theorem 3.1.2, Chapter 3). Each round of

the algorithm corresponds to a different level of the tree. Left branching occurs after
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Algorithm 1 Word Problem Solving Algorithm (W.P.S.A.).

Given a word F and a sequence ω, in order to decide whether F is equal to 1 in Gω

we do the following:

1st Round

1: Find ∂a(F ). If it is odd then F 6= 1Gω
and the algorithm terminates.

2: Reduce F to obtain F 1
r (the index denotes the current round). If it is equal to

1Gω
then so is word F and the algorithm terminates. Note that ∂a(F

1
r ) will

also be even.

3: Apply φ
(1)
0 and φ

(1)
1 to F 1

r to obtain two words F 2
0 and F 2

1 of length at most⌈
∂(F 1

r )
2

⌉
(see Theorem 3.1.1, Chapter 3).

4: Proceed to next round.

ith Round

Each word from the previous round which is not equal to 1 yields, in its third

step, two new words. Therefore, at most 2i words are obtained to be used in

this round. However, the total length of these words is bounded by the length

of the word they originated from, which is less than the length of the input word

F .

1: Find ∂a (F i
0) , . . . , ∂a (F i

k), k ≤ 2i. If any one of them is odd then F 6= 1Gω
and

the algorithm terminates.

2: Reduce F i
0, . . . , F

i
k, where k ≤ 2i, to obtain F i

r0
, . . . , F i

rk
. For each one of them

which is equal to ∗′ ∈ {1, bω, cω, dω} , an end node has been reached. If an

end node has been reached for all k words, then the algorithm terminates.

F = 1Gω
if and only if all the end nodes are equal to 1. Otherwise, F 6= 1Gω

.

3: Apply φ
(i)
0 and φ

(i)
1 to any of F i

r0
, . . . , F i

rk
for which an end node has not been

reached yet, to obtain at most 2i+1 words F i+1
0 , . . . , F i+1

2k . These will have lengths

at most

⌈
∂(F i

r0)
2

⌉
, . . . ,

⌈
∂(F i

rk
)

2

⌉
respectively.

4: Proceed to the next round.

Since the lengths of the words obtained are decreasing, the algorithm will eventually

terminate.
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(acωabω)8

(c2ac2a)4

1 1

(ab2ab2)
4

(b3ab3a)2

1 1

(ab3ab3)
2

1 1

Figure 2.3: The finite tree obtained after applying the W.P.S.A. on the word

(acωabω)8 = 1Gω
, ω = 012012 . . .

application of φ
(i)
0 and right branching after application of φ

(i)
1 on words on the ith

level, with the resulting words as vertices. The word F will be equal to 1Gω
if and

only if all the end nodes of the tree are equal to 1. See Figure 2.3 for an illustration.

A feasible implementation of this algorithm constructs the finite tree depth-wise

instead of level-wise, a branch at a time. In this way only k ≤ dlog2 ∂(F )e words

need to be stored instead of 2k. The time complexity of the algorithm is O(n log n)

in terms of the length n = ∂(F ) of the input word F .

Further information on the material in this subsection can be found in [9], [10]

and [14].

2.2 Some Terminology in Cryptography

The word cryptography comes from the Greek words krypto (κρύπτω) which means

hide, and grapho (γράφω) which means write. Formally [21], it is the study of

mathematical techniques related to aspects of information security. Informally it

can be referred to as the art and science of keeping messages secure.

In this section we will briefly describe only those topics within this vast subject

area that will be useful for the exposition and understanding of our results in the

following chapters. Further on introductory cryptography can be found in [18, 21, 26]

and on feedback shift registers in [13].

A message, in our case a binary string, is called plaintext and after encryption,

that is after it has been transformed into a form bearing no resemblance to its

original, it becomes ciphertext. Decryption is the process of obtaining the original
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plaintext from ciphertext. Encryption and decryption are dependent on a key, also a

binary string. We will denote by M the set of plaintexts, by C the set of ciphertexts

and by K and K′ the set of encryption and decryption keys respectively.

An encryption algorithm is a function

E : K ×M → C

used for encryption. Similarly, a decryption algorithm is a function

D : K′ × C → M

used for decryption.

A cryptosystem consists of the set of plaintexts M, the set of ciphertexts C, the

sets of encryption and decryption keys K and K′, an encryption algorithm E and a

decryption algorithm D.

We denote the encryption of plaintext m ∈ M under an encryption key ke ∈ K

by

E(ke, m) = c ,

where ciphertext c ∈ C. Analogously, we denote the decryption of ciphertext c ∈ C

under the decryption key kd ∈ K′ by

D(kd, c) = m ,

where plaintext m ∈ M.

For a cryptosystem to make practical sense, it is a requirement that for each

plaintext m ∈ M and encryption key ke ∈ K there exists a decryption key kd ∈ K′

such that

D(kd, E(ke, m)) = m . (2.6)

An asymmetric key or public key cryptosystem is a cryptosystem whose encryp-

tion and decryption algorithms use different keys. In other words, in (2.6) we have

that ke 6= kd. The encryption key ke is made public so that anyone can encrypt
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messages whereas the corresponding decryption key kd is kept private. For the cryp-

tosystem to be secure, it must be computationally infeasible to deduce the decryption

(or private) key kd from the encryption (or public) key ke.

Symmetric key or private key cryptosystems use the same keys for encryption

and decryption. In particular, in (2.6) we have that ke = kd. Such cryptosystems

are divided into two main categories, namely block ciphers and stream ciphers.

2.2.1 Block Ciphers

A block cipher is a cryptosystem in which every message is broken in strings (called

blocks) of fixed length N before encryption and decryption. In case the last block

of the message is of smaller length, it is completed with, for example, appending

zeroes. These blocks constitute M and C. The key is also a string of some fixed

length K. Common values for K are 64, 128, 192 and 256, and for N 64 and 128.

The majority of modern block ciphers operate by iterating their internal functions

a number of times, each iteration being called a round. A block cipher’s structure

contains the following components:

Key schedule. Its purpose is to spread the effect of the user defined key in all

rounds by generating from it the round keys, that is a different key to be used

in each round.

The substitution layer. It is responsible for applying a nonlinear substitution,

often called an S-box, to the text block. The gain is a nonlinear and hard

to analyse connection between plaintext and ciphertext. This idea originates

from and describes the concept of confusion as explained by Shannon in [29].

The permutation layer. It mixes the text block contents together using a func-

tion, usually linear. The idea behind this layer is that a change in a single digit

of a text block will cause, after application of this layer, a change in almost

all the digits of the block and implements the concept of diffusion proposed

by Shannon [29].
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The key mixing layer. It is addition (modular or XORing) of the key to the text

blocks. This layer serves the key dependency of the ciphertext.

The binary operation XOR (eXclusive OR), usually denoted by ⊕ is defined as

follows:

0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1 and 1 ⊕ 1 = 0 .

2.2.2 Stream Ciphers

In contrast to block ciphers, modern stream ciphers encrypt single bits of plain-

text under a time-varying key, known as keystream. Crucial role in the design

of keystream generators for stream ciphers is played by feedback shift registers

(FSRs). A length-n feedback shift register consists of n stages numbered left to

right from 0 to n − 1. The contents of each stage are called states and consist of

a single bit each. The output of the register is calculated as follows: First we set

stnew = f(st0, st1, . . . , stn−1), where function f : {0, 1}n → {0, 1} and stl is state l

of the FSR, 0 ≤ l ≤ n − 1. Such a function is called boolean. After this, st0 is sent

as the first output bit and stage 0 becomes empty. Then, for 1 ≤ l ≤ n − 1, state

stl is moved to stage l − 1. Finally, stnew is entered in stage n − 1 to be the new

state stn−1. See Figure 2.4 for an illustration.

f(st0, st1, st2, . . . , stn−1) //
feedback

// //

��

Output st0

66mmmmmmmmmmmmmmm
oo st1

OO

oo st2

hhQQQQQQQQQQQQQQQ
oo . . .oo stn−1

kkWWWWWWWWWWWWWWWWWWWWWWWWWWW
oo

Figure 2.4: A feedback shift register

An FSR with feedback function f(sj−1, sj−2, . . . , sj−L) is said to be non-singular

if and only if each and every of its possible output sequences is periodic. This

happens if and only if f is of the form f = sj−1⊕g(sj−2, . . . , sj−L) for some boolean

function g.
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Depending on whether the function f is linear or nonlinear, we have linear or

nonlinear feedback shift registers (LFSRs and NLFSRs respectively). The majority

of stream ciphers use LFSRs since they are the most studied and exhibit nice and

mathematically controllable properties. NLFSRs however, although more difficult

to analyse, generate more complicated keystreams, a property advantageous for

cryptographic purposes.

2.2.3 Cryptanalysis

Cryptanalysis is the study of mathematical techniques for attempting to defeat

cryptographic techniques. In other words, it is the science of breaking the ciphertext,

that is recovering from it the plaintext or the encryption/decryption key, without

access to the key. Below we list the different categories of cryptanalytic attacks on

cryptosystems.

Ciphertext only. This is an attack in which the attacker has knowledge of some

ciphertexts only, without any further information.

Known plaintext. With this attack, the attacker has access to plaintext/ciphertext

pairs.

Chosen plaintext. In this kind of attack, the cryptanalyst has access to several

pairs of plaintexts of his choice and their corresponding ciphertext before he

attempts to break the ciphertext.

Adaptive chosen plaintext. This is a similar attack to the chosen plaintext at-

tack where the attacker is allowed to choose the plaintexts after analyzing

previously chosen plaintext/ciphertext pairs.

Chosen ciphertext. This attack is similar to a chosen plaintext attack. This time

though, the attacker chooses the ciphertexts instead of the plaintexts.

Adaptive chosen ciphertext. It is an attack similar to adaptive chosen cipher-

text attack, with plaintexts swapped with ciphertexts.
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Exhaustive Key Search is a ciphertext only attack where the attacker tries to

obtain the plaintext by decrypting the ciphertext with all possible decryption keys.

For this reason, the set of keys K and K′ have to be sufficiently large to avoid such

an attack.

Unlike exhaustive key search, an attack applicable to all cryptosystems, several

cryptanalytic attacks have been designed specifically for use against block ciphers.

These are the following:

Differential Cryptanalysis, Linear Cryptanalysis, Higher Order Differentials, Trun-

cated Differentials, Differential-Linear Attack, Interpolation Attack, Integral Crypt-

analysis, Related Key Attacks, Key Schedule Attacks, The Square Attack, The

Boomerang Attacks, Multiset Attacks, Slide Attacks and Slide with a Twist Attack

and Weak Keys.

2.3 Number Theory

In this section we give some number theoretic results that we are going to use in

Chapter 5. For more information we refer the reader to any text book on number

theory.

Definition 2.3.1 The Möbius function µ(n) is defined for any positive integer n

by:

µ(n) =





1 if n = 1

0 if n has repeated prime facors

(−1)ν if n is square free and has ν different prime factors

.

Definition 2.3.2 An arithmetical function is a function f : N → C.

Theorem 2.3.3 (Möbius Inversion Formula) If F(n) is an arithmetical func-

tion and

G(n) =
∑

d|n

F (d) ,
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then inversely

F (n) =
∑

d|n

µ(d)G
(n

d

)
.

Definition 2.3.4 The Euler’s totient function φ(n) is defined on any positive inte-

ger n as the number of positive integers less than or equal and coprime to (that is

having no common factors with) n.

2.4 The Garzon–Zalcstein Public Key Cryptosys-

tem

In 1991, Garzon and Zalcstein proposed a public key cryptosystem (see Section 2.2

for definition) based on the word problem of the Grigorchuk groups [8]. In this

section we will describe it and discuss some of its security issues.

2.4.1 Description.

The public key cryptosystem proposed in [8] is the following:

Alice chooses an efficient procedure which generates a ternary sequence ω such

that at least two of its digits repeat infinitely often. Recall that in this case Gω is

not finitely presentable (see Subsection 2.1.2). This sequence ω is her private key.

She then publishes a finite subset of relators (that is words equal to 1 in Gω) and

two words w0, w1 representing distinct group elements of Gω. These comprise the

public key.

Bob encrypts a bit i ∈ {0, 1} of his message as a word w∗
i obtained from wi by a

sequence of random additions and/or deletions of relators as found in the public key.

Concatenation of the encrypted bits yields the encrypted message (with a separator

between the encryption of successive bits). He then sends the encrypted message to

Alice.

Alice decrypts the message by checking whether w∗
i is equal to w0 or w1. This

can be done by checking whether, for example, w−1
0 w∗

i = 1Gω
using the W.P.S.A..
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2.4.2 Security Claims

When discussing the security of their cryptosystem, Garzon and Zalcstein [8, Sect. 4]

claim that the public key will not contain enough information to uniquely determine

the private key ω. They also claim that in order to establish in polynomial time

that a guess of a key is correct, it is necessary to follow a chosen plaintext attack.
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Chapter 3

Cryptanalysis of the

Garzon–Zalcstein Public Key

Cryptosystem

This chapter is devoted to the cryptanalysis of the public key cryptosystem pro-

posed by Garzon and Zalcstein and described in Section 2.4. A first attempt of

cryptanalysis based on exhaustive search was made by Hofheinz and Steinwandt in

[31]. Our results however, are based on the properties of the Grigorchuck groups.

We begin with some auxiliary results (Section 3.1) that allow us to present the

cryptanalytic attack in Section 3.2. Section 3.3 illustrates the cryptanalysis by

means of an example before our conclusions in Section 3.4. The results of this

chapter appear in [24].

3.1 Auxiliary Results

The notation used in this section has been carried over from Section 2.1. To avoid

ambiguity, from now on, when we say a word F is given, we refer to it as a word in

the basis group Γ. We begin with a small theorem, whose proof is trivial:

Theorem 3.1.1 Given a sequence ω, let F be a reduced word in Gω with even
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∂a(F ). If ∂a(F ) < ∂b,c,d(F ) (respectively >, =) then, after a successful round of the

W.P.S.A. we get two words of length at most
⌈

∂(F )
2

⌉ (
respectively

⌊
∂(F )

2

⌋
, ∂(F )

2

)
.

Proof. When ∂a(F ) < ∂b,c,d(F ) then the word is of the same form as

∗a ∗ a . . . a ∗ a∗

and of odd length. It can then be broken into a product of quadruples ∗a∗a of total

length ∂(F ) − 1, and a single ∗ at the end. Under the action of φ
(n)
0 and φ

(n)
1 each

quadruple goes into ∗, ∗a or a∗ and the asterisk at the end goes to ∗, a or 1. There

are ∂(F )−1
4

quadruples, and so the maximum possible length of the word obtained is

2 ·
∂(F ) − 1

4
+ 1 =

∂(F ) − 1

2
+ 1 =

∂(F ) + 1

2
=

⌈
∂(F )

2

⌉
.

Now, when ∂a(F ) = ∂b,c,d(F ) then the word is either of the same form as

∗a ∗ a . . . a ∗ a or a ∗ a . . . a ∗ a∗

and of even length. This length must be a multiple of 4 because otherwise ∂a(F ) will

be odd and the W.P.S.A. will fail. Therefore, it can then be broken into a product

of quadruples ∗a ∗ a of total length ∂(F ). Under the action of φ
(n)
0 and φ

(n)
1 each

quadruple goes into ∗, ∗a or a∗. There are ∂(F )
4

quadruples, and so the maximum

possible length of the word obtained is

2 ·
∂(F )

4
=

∂(F )

2
.

Finally, when ∂a(F ) > ∂b,c,d(F ) then the word is of the same form as

a ∗ a . . . a ∗ a ∗ a

and of odd length. It can then be broken into a product of quadruples a ∗ a∗ of

total length ∂(F ) − 3, and a single triple a ∗ a at the end. Under the action of φ
(n)
0

and φ
(n)
1 each quadruple goes into ∗, ∗a or a∗ and the triple at the end goes to ∗, a

or 1. There are ∂(F )−3
4

quadruples and so the maximum possible length of the word

obtained is

2 ·
∂(F ) − 3

4
+ 1 =

∂(F ) − 3

2
+ 1 =

∂(F ) − 1

2
=

⌊
∂(F )

2

⌋
.
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Theorem 3.1.2 Given a sequence ω, for successful application of the W.P.S.A. to

a word F in Gω, at most only the first dlog2 ∂(F )e of its digits are needed. This

number is also the maximum depth of the tree obtained when running the W.P.S.A..

Proof. For the substitution of the symbols ũi , ṽi and w̃i determining the action of

φ
(i)
0 and φ

(i)
1 during the ith round of the W.P.S.A., the ith digit of the ternary sequence

ω is needed. Therefore, for successful application of the W.P.S.A., the maximum

number of digits needed is equal to the maximum number of rounds possible. Denote

this number by n. This maximum is attained if the algorithm terminates because

an end node has been reached for all obtained words on the nth level.

Suppose that n rounds of the W.P.S.A. take place. By Theorem 3.1.1, after the

first round of the W.P.S.A. the maximum length of the words obtained is
⌈

∂(F )
2

⌉
.

Note that these words will have an even number of occurrences of the symbol a,

otherwise the algorithm will terminate before all n rounds take place. After step

2 of the second round of the algorithm, the words will also be in reduced form.

So, again by Theorem 3.1.1, after the second round of the algorithm we will obtain

words of length at most
⌈⌈

∂(F )
2

⌉
· 1

2

⌉
=

⌈
∂(F )
22

⌉
. Continuing this way we see that

after the nth round, the length of any words we obtain will not exceed
⌈

∂(F )
2n

⌉
.

By assumption, after the nth round of the algorithm, end nodes have been reached

for all words on the nth level. Recall that each end node is a word of length 1. Thus,

n is an integer such that
⌈

∂(F )
2n

⌉
= 1 or, equivalently, ∂(F ) < 2n. Taking logarithms

we get log2 ∂(F ) < n which implies n = dlog2 ∂(F )e.

Since each round corresponds to a different level of the tree obtained when running

the algorithm, n is also the maximum depth of the tree.

Denote by Mω
F the exact number of digits of the sequence ω needed to run the

W.P.S.A. on a given word F in Gω. Clearly, Mω
F ≤ dlog2 ∂(F )e.

Corollary 3.1.3 Suppose that a word F is a relator in the group Gω defined by a

sequence ω. Then it is also a relator in all groups defined by sequences that share

the first Mω
F digits with the sequence ω and differ in any of the rest.
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Proof. By definition, only the first Mω
F digits of the sequence ω are needed to verify

that the word F is a relator in Gω.

Denote by ΩF the set of all sequences ω such that a given word F is a relator in

Gω and by MF the number min{Mω
F | ω ∈ ΩF}.

Clearly, by Corollary 3.1.3, ΩF contains sequences that share the first Mω
F digits

with a sequence ω ∈ ΩF and differ in any of the rest.

Remark 3.1.4 ΩF might also contain sequences that are different in at least one

of the first MF digits.

One example is the following:

Example 3.1.5 Let F = (acωabω)8. It can be checked using the W.P.S.A. that F

is a relator for all ternary sequences having 012 and 021 as their first three digits.

Theorem 3.1.6 There exists an algorithm which, given a word F, finds the first

Mω
F digits of all sequences ω ∈ ΩF , if any.

Proof. Let ω∗ be an arbitrary infinite ternary sequence and let F be the given

word. The algorithm is as follows:

Algorithm 2 Given a word F, find the first Mω
F digits ∀ω ∈ ΩF .

1: Set ω1 = 0.

2: In case ω1 = 3, terminate the algorithm. Run the first round of the W.P.S.A.

on F . If it fails its first step or if the word F is equal to 1Gω
(ω = ω1ω∗), then

increase ω1 by one and repeat step. In the latter case print out ω1. Else, set

ω2 = 0 and proceed to step 3.

i : (i ≥ 3). If ωi−1 = 3, delete it, increase ωi−2 by one and return to step i-1. Run

the ith round of the W.P.S.A. on F . If it fails its first step or if the word F is equal

to 1Gω
(ω = ω1 . . . ωi−1ω∗, i − 1 ≤ n), then increase ωi−1 by one and repeat step.

In the latter case, print out ω1 . . . ωi−1. Else, set ωi = 0 and proceed to step i+1.

The algorithm terminates when it eventually returns to step 2 with ω1 = 3.
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Each output of Algorithm 2 is obtained immediately after a successful application

of the W.P.S.A.. Thus only the first Mω
F digits of all sequences ω ∈ ΩF are printed.

Clearly, if no sequences are printed, ΩF is empty.

An upper bound for the number of outputs of the algorithm, though never at-

tained, is 3dlog2 ∂(F )e, which corresponds to all ternary sequences of length dlog2 ∂(F )e.

Note that 3dlog2 ∂(F )e ≤ ∂(F )dlog2 3e = ∂(F )2. Thus, the maximum running time of

the algorithm is bounded by O (∂(F )3 log ∂(F )). It is therefore computationally

feasible to run the algorithm, even for large ∂(F ).

3.2 Cryptanalysis

We begin with an important observation, omitted by Garzon and Zalcstein:

Remark 3.2.1 It was not mentioned in [8] that the public key words w0 and w1

must share the following property, otherwise comparing them with the ciphertext

becomes trivial: If ∂a(w0) is even (or odd) then so should ∂a(w1) be.

The reason for this is that relators have an even number of letters a and so, if for

example ∂a(w0) is even, addition of relators will result to a ciphertext word with an

even number of a’s. If ∂a(w1) is odd then we can immediately tell that w∗
i = w0.

In the sequel we will exploit the information provided by each relational word in

the public key of the cryptosystem. Suppose there are n relators in the public key,

namely r1, . . . , rn. Remark 3.1.4 suggests that each one of these relators could be

a relator in groups defined by other sequences as well, not just by the private key.

What we want to find are sufficiently many digits of a sequence ω such that all of

r1, . . . , rn are indeed relators in Gω, but w0 6= w1 (or equivalently w−1
0 w1 6= 1Gω

).

Then, by Corollary 3.1.3, we can just complete the sequence with random digits to

obtain a key enabling us to decrypt messages.

Using Algorithm 2 on wk = w−1
0 w1, we firstly obtain the first Mω

wk
digits of

every sequence ω ∈ Ωwk
. This will be a list of unacceptable initial segments of

sequences. Note that Ωwk
could be empty in which case the list would be empty as
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well. The sequences in Ωwk
are unacceptable because for them w−1

j w∗
i = 1Gω

, where

i, j ∈ {0, 1}, and hence we cannot distinguish between w0 and w1, as required for

decryption.

We then apply the same algorithm on every ri to obtain the first Mω
ri

digits of all

sequences ω ∈ Ωri
. In this way we get n lists of initial segments of sequences.

After obtaining the n lists, we compare them in order to find all initial segments

which are common. This will be our list of candidates for a key. Notice that this

list cannot be empty since it must contain the initial segment of Alice’s private key.

The number of digits of these common initial segments will be max
{
Mω

r1
, . . . , Mω

rn

}
.

In case we have more than one candidates, we decide the suitability of the first

candidate to be used for decryption by looking at the list of unacceptable initial

segments of sequences. Let p denote the number of digits of the candidate. There

are three possible cases:

Case 1: The unacceptable initial segments list contains at least one member

with more digits than the candidate, with its first p digits being the candidate itself.

If more than one such members exist, we consider the one with the fewest digits.

Suppose this initial segment has k digits, k > p. We can then make the candidate

into a suitable sequence by adding arbitrary digits. However, we must ensure that

the first k − p arbitrary digits we add will not coincide with the last k − p digits of

this particular unacceptable initial segment or any others sharing the first p digits

with it. If this is impossible to perform, the candidate is unsuitable and we should

test the next candidate for suitability.

Case 2: An unacceptable initial segment has k digits, k ≤ p, and these digits

coincide with the first k digits of the candidate. Then, this candidate is unsuitable

and we should test the next candidate for suitability.

Case 3: The unacceptable initial segments list is empty or none of the previous

two cases occur. In this case the candidate is suitable.

As mentioned above, there is at least one suitable candidate, namely the initial

segment of Alice’s original private key. We can make this into an infinite sequence
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by adding random digits.

This is all we need for decryption since, on applying the W.P.S.A. to the word

w−1
j w∗

i where j, i ∈ {0, 1}, the relators would vanish and we would get 1Gω
only if

j = i.

3.3 Example

In this section we give a worked example of our cryptanalysis. For the sake of

brevity, we will omit the subscript ω from the generators b, c and d.

Suppose Alice publishes the following public key:

r1 = (ab)4, r2 = (acab)8, r3 = (bada)8,

w0 = (bacabacacaca)2bacab,

w1 = acacacabacabacacaca.

Note that ∂a(w0) and ∂a(w1) are both even, in accordance to Remark 3.2.1.

Applying the Algorithm 2 on wk = w−1
0 w1 we get the list of unacceptable initial

segments of sequences:

1. 01

2. 1

3. 21

Applying the algorithm on r1, r2 and r3 we obtain 3 lists of initial segments of all

sequences for which r1, r2 and r3 are relators:

r1 2

r2 012 021 101 11 121 202 212 22

r3 00 010 020 102 120 202 212 22

We compare these in order to obtain the candidates list:

1. 202
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2. 212

3. 22

Finally, by comparing the candidates and unacceptable lists, we deduce that by

completing 202 (or 22) arbitrarily (e.g. with zeroes to get 202000 . . .), we will be

able to successfully decrypt all messages sent by Bob.

3.4 Conclusion

The Public Key Cryptosystem proposed in [8] is unsuitable for any practical imple-

mentations due to lack of security. This is because, as demonstrated in Section 3.2,

the public key provides enough information to easily obtain keys behaving like the

private key and which are suitable for successful decryption of ciphertexts.
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Chapter 4

A Block Cipher Based on the

Grigorchuk Groups

In this chapter we present a new block cipher based on the Grigorchuk groups.

Throughout this chapter, we make use of the material discussed in Chapter 2. We

begin by viewing the Grigorchuk groups from a different angle in Section 4.1. In the

same section we will describe a function used in the encryption/decryption process of

our cipher before presenting the cipher itself in Section 4.2. The security issues of the

cipher are discussed theoretically in Section 4.3 and we finish with our conclusions

in Section 4.4.

4.1 Auxiliary Results

4.1.1 Elements of Gω acting as permutations

On the nth level of the infinite binary tree we have 2n nodes which we can label from

1 to 2n. Each of these nodes consists of a binary sequence of length n . By definition

of the generators of Gω, they can act on each one of the nodes and therefore induce

permutations of 2n elements. The permutation group induced by Gω when restricted

on the nth level of the infinite binary tree, is a subgroup of the Symmetric Group

S2n . We shall denote it by Sn
Gω

.
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For example, on the fourth level of the infinite binary tree we have 24 = 16 nodes.

We can label these from 1 to 16:

0000000100100011010001010110011110001001101010111100110111101111

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If we apply the generator a of Gω on each node we will get the following:

1000100110101011110011011110111100000001001000110100010101100111

9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8

Therefore the generator a represents the following permutation of 16 elements:

a =


 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8


 .

In a similar way, the other three generators bω, cω and dω induce permutations

as well, depending on the first three digits of the sequence ω (since the length of

the binary sequence in each node is 4). The first digit ω0 affects the first half of the

permutation, ω1 the third quarter and ω2 the rest.

If the action of a generator under ω0 is S, applying it on the first 8 nodes gives:

0000 0001 0010 0011 0100 0101 0110 0111

1 2 3 4 5 6 7 8

↓

0100 0101 0110 0111 0000 0001 0010 0011

5 6 7 8 1 2 3 4

Similarly, if the action of a generator under ω1 is S then its application on nodes 9

to 12 gives:

1000 1001 1010 1011

9 10 11 12
→

1010 1011 1000 1001

11 12 9 10

Finally, if the action of a generator under ω2 is S then, if we apply it on nodes

13 and 14, we get:
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Table 4.1: The permutations induced by generators bω, cω and dω

ω0 =0 ω1 = 0 ω2 = 0

bω 5 6 781234 1112 9 10 1413 1516

cω 5 6 781234 1112 9 10 1413 1516

dω 1 2 345678 9 101112 1314 1516

ω0 =1 ω1 = 1 ω2 = 1

bω 5 6 781234 1112 9 10 1413 1516

cω 1 2 345678 9 101112 1314 1516

dω 5 6 781234 1112 9 10 1413 1516

ω0 =2 ω1 = 2 ω2 = 2

bω 1 2 345678 9 101112 1314 1516

cω 5 6 781234 1112 9 10 1413 1516

dω 5 6 781234 1112 9 10 1413 1516

1100 1101

13 14
→

1101 1100

14 13

The last 2 nodes remain unaffected.

Table 4.1 summarises all possible permutations induced by the three generators

bω, cω and dω.

Each column has only two different entries, one being the identity permutation

of the corresponding digits. We can therefore have 23 = 8 different permutations

per generator. This also means that S4
Gω

can be easily implemented by keeping in

memory only 3 arrays: one of length 8, one of length 4 and one of length 2.

Example 4.1.1 If ω0 = 1, ω1 = 0 and ω2 = 2 then

cω =


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 11 12 9 10 14 13 15 16


 .

Clearly, any word g ∈ Gω induces a permutation equal to the composition of the

permutations induced by each of its letters. In the sequel, we will denote this as σg.
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Proposition 4.1.2 ([11]) |Sn
Gω

| = 25·2n−3+2, ∀n ≥ 4, where ω = 012012... .

4.1.2 A Recursive Function Based on Permutations

Definition 4.1.3 Given a pair (a, b), we define (a, b) = a.

Definition 4.1.4 Given an element σ ∈ Sn where n ≥ 2, field F and a set V of

n k-dimensional vectors vi, 1 ≤ i ≤ n, with entries in F such that their order of

appearance in V is random but fixed and determined by the subscript i ∈ Zn, we

define function τσ : F k × Zn → F k × Zn recursively as follows:

τσ (vi, i) =





(
vi + vσ(i) , i

)
if i < σ (i)

( vi , i ) if i = σ (i)(
vi + τσ

(
vσ(i), σ (i)

)
, i

)
if i > σ (i)

.

Proposition 4.1.5 Function τσ is invertible with τ−1
σ (τσ (vi, i)) = (vi, i), where

τ−1
σ : F k × Zn → F k × Zn is recursively defined as follows:

τ−1
σ (vi, i) =





(
vi − vσ(i) , i

)
if i < σ (i)

( vi , i ) if i = σ (i)(
vi − τσ

(
vσ(i), σ (i)

)
, i

)
if i > σ (i)

.

Proof. We prove that the function τσ is bijective, and hence invertible.

One-to-one: The function τσ is defined on pairs (vi, i), where vi ∈ F k and

i ∈ Zn denotes the position of appearance of vi in the set V . τσ (vi, i) = (v, i), where

v ∈ F k, and i ∈ Zn again denotes the position of appearance of vi in the set V .

Therefore, if τσ (vi, i) = (v, i) = τσ (vj, j), then we must have i = j and hence the

function is one to one.

Onto: We have seen that the output of the function τσ is a pair (v, i), where

v ∈ F k and i ∈ Zn. Therefore its range is F k × Zn.

We now prove that τ−1
σ is the inverse. For the case i = σ (i) the proof is trivial.

When i < σ (i) we have
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τ−1
σ (τσ (vi, i)) = τ−1

σ

(
vi + vσ(i) , i

)

=
(

vi + vσ(i) − vσ(i) , i
)

= (vi, i) .

When i > σ (i) we have

τ−1
σ (τσ (vi, i)) = τ−1

σ

(
vi + τσ

(
vσ(i), σ (i)

)
, i

)

=
(
vi + τσ

(
vσ(i), σ (i)

)
− τσ

(
vσ(i), σ (i)

)
, i

)

= (vi, i) .

Example 4.1.6 Consider σ =


1 2 3 4 5 6

4 6 2 1 5 3


 together with 6 vectors v1, . . . , v6 ∈

F k. Then,

τ (v1, 1) = (v1 + v4, 1)

τ (v2, 2) = (v2 + v6, 2)

τ (v3, 3) =
(
v3 + τ (v2, 2), 3

)
= (v3 + v2 + v6, 3)

τ (v4, 4) =
(
v4 + τ (v1, 1), 4

)
= (v1 + 2v4, 4)

τ (v5, 5) = (v5, 5)

τ (v6, 6) =
(
v6 + τ (v3, 3), 6

)
= (2v6 + v2 + v3, 6)

The inverse is obtained recursively starting from i = 6 down to i = 1 :

τ−1 (τ (v6, 6)) =
(
2v6 + v2 + v3 − τ (v3, 3), 6

)
= (v6, 6)

τ−1 (τ (v5, 5)) = (v5, 5)

τ−1 (τ (v4, 4)) =
(
v1 + 2v4 − τ (v1, 1), 4

)
= (v4, 4)

τ−1 (τ (v3, 3)) =
(
v3 + v2 + v6 − τ (v2, 2), 3

)
= (v3, 3)

τ−1 (τ (v2, 2)) =
(
v2 + v6 − vσ(2), 2

)
= (v2, 2)

τ−1 (τ (v1, 1)) =
(
v1 + v4 − vσ(1), 1

)
= (v1, 1)

It can be seen from the above that, if we know σ and τ (vi, i) for all 0 ≤ i ≤ n

(since the definition of τ is recursive), we can determine each vi.
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It is also easy to see that in the case where F = F2, the field of two elements, we

have τ = τ−1, since subtraction is equal to addition modulo 2.

4.2 Description of the Block Cipher

In this section we describe our block cipher. The notation used has been carried

over from Section 4.1.

4.2.1 Key Schedule

The key is given as a 128-bits binary sequence k0 which we will use to construct

another fifteen sequences k1 . . . k15, called round keys, of the same length to be

used in the encryption/decryption process. Each sequence ki+1 is dependent on

the sequence ki = bi
0b

i
1 . . . bi

k . . . bi
127, where the exponent denotes the number of the

sequence (that is its order of construction) and the subscript the number of the bit,

0 ≤ i ≤ 14:

First, we set

wr =

15∑

m=0

bi
7m+r+i mod 3, 0 ≤ r ≤ 7 .

We then translate sequence ki into a reduced word gi of length 256 or 257 in the

Grigorchuk group Gω, where ω = ω0ω1 . . . ω7ω∗ with ω∗ an arbitrary infinite ternary

sequence, as follows (0 ≤ l ≤ 127):

• if bi
l = 0 6= bi

(l+1 mod 128) we write ab

• if bi
l = 1 6= bi

(l+1 mod 128) we write ac

• if bi
l = 0 = bi

(l+1 mod 128) we write ad

• if bi
l = 1 = bi

(l+1 mod 128) we write ab the first time, ac the second time and ad

the third time.

• if l = 127 and i = 1 mod 2 we write a.
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Next, we divide sequence ki into 16 8-bit blocks, ki
0 . . . ki

15, where the exponent

denotes the number of the sequence and the subscript the number of the sub-block.

Sequence ki+1 is obtained by applying the permutation induced by σgi
(see subsection

4.1.1) on these blocks.

In this way we obtain k0 . . . k15, g0 . . . g15 and σg0 . . . σg15 . For ease of notation,

in the sequel we will write σi for σgi
.

Remark 4.2.1

- All sequences must be pre-computed before encryption or decryption.

- There are 3128 words of the form a ∗ a . . . a ∗ a∗ and length 256, with ∗ ∈ {b, c, d}.

Since the number of keys is 2128, we have that Keyspace ⊂ Wordspace.

- The choice of ω0 to ω7 is such that they depend on the whole of the round key

and also on its number, thus having more probability for the sequence ω being

significantly different in each round. The fact that only seven digits need to be

defined is explained in Subsection 2.1.

- The translation of ki into gi has been chosen to provide as even a distribution of

b’s, c’s and d’s as possible, and so that we obtain 2128 different words: two

different round keys cannot yield the same words.

- The additional letter a, concatenated at the end of words every other round, has

a purpose connected to the security of the cipher, as explained in Subsection

4.3.2.

4.2.2 Encryption

The plaintext block P is 128-bits, which we split into 16 8-bit sub-blocks p0 to

p15. Encryption consists of 16 rounds, starting from round 0. In each round, four

operations take place. The resultant 128-bit block C after round 15 is the ciphertext.
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Round j , 0 ≤ j ≤ 15.

1. The first operation is the application of g0 to g15, as computed during key

generation, to the 16 sub-blocks, each seen as one of the nodes on the 8th level

of the binary tree. This is done by applying gi to sub-block pi, 0 ≤ i ≤ 15.

This nonlinear operation can be regarded as a key-dependent S-box.

2. We permute the 16 sub-blocks according to σj .

3. We XOR key sub-block ki
j+i mod 16 with sub-block pi, where 0 ≤ i ≤ 15.

4. Starting from i = 0, if σj(i) 6= i, we XOR sub-block pi to sub-block pσj(i).

Remark 4.2.2 The 4th operation is equivalent to setting pi = τσj
(pi, i) , 0 ≤ i ≤ 15

(Section 4.1.2).

4.2.3 Decryption

We divide the 128-bit ciphertext block C into 16 8-bit sub-blocks c0 to c15. Decryp-

tion is the inverse of encryption so it will also require 16 rounds. In each round the

same four operations as in encryption take place, but in reverse order.

Round j , 0 ≤ j ≤ 15.

1. Starting from i = 15, if σ15−j(i) 6= i, we XOR sub-block ci to sub-block cσ15−j (i).

2. We XOR key sub-block ki
15−j+i mod 16 with sub-block ci, where 0 ≤ i ≤ 15.

3. We permute the 16 sub-blocks according to σ−1
15−j .

4. Application of g−1
0 to g−1

15 to the 16 sub-blocks, done by applying g−1
i to sub-

block ci, 0 ≤ i ≤ 15.

Remark 4.2.3 The 1st operation is equivalent to setting ci = τ−1
σj

(ci, i) , 15 ≥ i ≥ 0

(Section 4.1.2).
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By looking at how the key schedule and operations of the cipher are defined, we

can see that the key and block size can be increased at will. The only constraint

is that they must be the same and also a power of two. The reason for this is that

encryption and decryption are associated with the level nodes of the binary tree,

the number of which is also a power of two.

4.3 Security of the Cipher

Since the invention of the first block cipher, cryptanalysts have devised various dif-

ferent methods of attack. The most important and powerful of these are differential

[3] and linear [20] cryptanalysis.

The natural thing to do when designing a block cipher is to make it immune to all

kinds of known cryptanalytic attacks. However, one must be careful that emphasis

on resistance against these attacks does not result in other weaknesses.

Nevertheless, since our purpose is mainly the theoretical survey of the application

of groups into the construction of block ciphers, we will, for the moment, omit the

analysis of our cipher’s resistance against the many existing cryptanalytic attacks.

We will therefore restrict ourselves in looking for flaws in our cipher’s group

theoretic properties. First we show that all round operations are necessary to achieve

security. Then we discuss the key schedule and weak keys and explain the ”merits”

of our cipher against differential cryptanalysis. Similar S-box analysis based attacks

are treated similarly and so for the moment are omitted.

4.3.1 Necessity of the Round Operations

As seen in Section 4.2, each round of encryption consists of four operations. Here,

we will discuss the importance of each.
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Evaluation of 1st operation:

This is the key-dependent S-box, providing confusion (see Subsection 2.2.1) and

resistance to cryptanalytic attacks requiring knowledge of the structure of the S-

boxes.

Evaluation of 2nd operation:

This operation allows the shuffling of the text blocks. It is important due to the

particularity every other word gi has, namely the additional letter a. In effect, this

extra letter results in complementing the first digit of the text block during the first

operation. Therefore the second operation makes sure this happens in all text blocks

and not constantly in the same.

Evaluation of 3rd operation:

This operation is the application of the user defined secret parameter on the text

blocks. It provides protection even when the other operations fail. It makes, for

example, the effect of ”weak” keys negligible, as seen in subsection 4.3.2.

Evaluation of 4th operation:

This is the diffusion layer (see Subsection 2.2.1) of the cipher. Without it, since the

plaintext sub-blocks will not be mixed together, the cipher is vulnerable to a chosen-

plaintext attack (see Subsection 2.2.3). For example, one can choose a plaintext

consisting of 15 identical sub-blocks and 1 that is different. After encryption, the

ciphertext will also contain 15 identical sub-blocks and 1 different, the position of

which will reveal part of the total permutation induced by the cipher. Changing each

time the plaintext position of the sub-block that is different, 24 chosen plaintexts can

yield the total permutation induced by the cipher. Hence, we will know how each

8-bit block in a certain position (out of 16) encrypts under the key. Therefore, with

28 possible 8-bit blocks in each position and 24 different positions, we can create
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a codebook with 212 entries. This will enable us to decode all ciphertext without

knowing the secret key.

4.3.2 Key Schedule & Weak Keys

The only suspicion for what might be termed a ”weak key” arises in the case when

gi is equal to the identity in the corresponding Grigorchuk group, for some i, where

0 ≤ i < 15. Recall that identity elements have an even number of letters a, and by

the key schedule algorithm, i has to be odd.

In such case ki = ki+1 but, due to the round constant in the choice of the digits

of the sequence ω for round i + 1, most probably we will be considering a different

Grigorchuk group. In the unlikely case gi = 1Gω
in the new group as well or if the

sequence ω is the same and we are considering the same Grigorchuk group, we will

have gi+1 = gia = a 6= 1Gω
. As a result, ki+2 will be equal to ki with the two halves

swapped. If these two halves are the same, then we have that ki = ki+2 = 1Gω
.

We now consider the effect such a key will have on encryption. In the first oper-

ation, only the plaintext sub-block pi will remain unchanged. The second operation

will have no effect only in the ith round. However, even when this happens, the

third operation, simple XORing of key sub-blocks, will not cancel out that of the

previous round, due to the round constant in the choice of key sub-blocks to be

XORed. Finally, since the fourth operation depends on the second, it will have no

effect only in the ith round.

After this discussion, it is safe to assume that the effect of weak keys is negligible

with respect to the security of the cipher.

4.3.3 Differential Cryptanalysis

We first describe the basic principles of differential cryptanalysis as was discovered

by Shamir and Biham in 1990 [3] to attack the Data Encryption Standard (DES).

Differential cryptanalysis is a chosen plaintext attack which studies the evolution
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of the difference between two plaintexts through the cipher. Differences are normally

regarded with respect to XOR but can be adjusted to the needs of the cipher under

attack.

The only components of the cipher affecting these differences are the S-boxes.

Each plaintext difference can result in various ciphertext differences depending on

the key used. The probability that a given ciphertext difference occurs given a

plaintext difference can be found by examining the properties of the S-boxes and

computing a table (called difference distribution table) for each one, before starting

the attack.

What the attacker wants to find is such a plaintext/ciphertext difference pair

(called differential) with a high probability for each S-box. The encryption key does

not affect the differences since XORing makes the key-bits used disappear, and so

these tables can be pre-computed. The attacker then multiplies the probabilities of

each differential to obtain the probability of the differential characteristic.

As seen above, the S-boxes of a cipher play a crucial role in differential cryptanal-

ysis. A cryptanalyst needs to know the structure of the S-boxes in order to formulate

the attack. One way to offer protection against differential cryptanalysis is through

careful design of the S-boxes so that there are no differential characteristics with

high probability. A method to achieve this is the Wide Trail Design Strategy, used

in the design of Rijndael [4].

It is also believed that key-dependent S-boxes, that is S-boxes that change ac-

cording to the encryption key, make a cipher immune to differential cryptanalysis.

The cryptanalyst doesn’t know where to start: he cannot even construct difference

distribution tables since he doesn’t know the structure of the S-boxes.

Another cipher, apart from ours, using key-dependent S-boxes is Twofish [28],

one of the five AES finalists. In [23], an attempt to attack Twofish using differential

cryptanalysis was made. The authors question the intuition that key-dependent

S-boxes are more secure than carefully constructed S-boxes. They propose choosing

the S-box to fit the attack, instead of choosing the attack to fit the S-box. They
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have attacked a reduced-round (6-round) Twofish by choosing characteristics that

have a high probability of appearing for a fraction of the keyspace.

The reason their approach was successful is that Twofish uses 16 of the key bits

to construct the S-boxes from a given set of four fixed S-boxes. As a result, there

are only 216 possible S-boxes, that are feasible to analyse off line (that is before

the attack is mount). Our cipher has 16 S-boxes with 2128 possibilities for each,

depending on the key, making off line analysis infeasible.

4.4 Conclusions

In this chapter we have proposed a new block cipher whose internal operations are

taken from group theory. In particular it is based on the Grigorchuk groups. We

have seen that one can easily change the key and block size, as long as they remain

the same and a power of two, and it has key-dependent S-boxes making certain types

of cryptanalysis non applicable.

However, study of reactions against the aggregation of existing cryptanalytic at-

tacks and efficiency of implementation was omitted and left for future work. Focus

was given on theoretically investigating possible weaknesses springing from the un-

derlying group theoretic properties.

In general, a lot more work is needed before this cipher can even be compared to

the state-of-art ciphers in existence.
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Chapter 5

On the Classification of Periodic

Binary Sequences into Nonlinear

Complexity Classes

In this chapter we begin classification of periodic binary sequences into nonlinear

complexity classes and present an algorithm that checks for short cycles in large non-

linear feedback shift registers (NLFSRs, see Section 2.2 in Chapter 2 for definition)

using this classification. The results of this chapter will appear in [25].

We begin in Section 5.1 with the definition of nonlinear complexity (a name

preferred to maximum order complexity as it is more easily seen as the counterpart

to linear complexity). In Section 5.2 we attempt to classify the sequences into

nonlinear complexity classes, before presenting the algorithm checking for short

cycles in Section 5.3. The majority of results in the latter section are due to Johannes

Mykkeltveit, the co-author of [25]. We finish with our conclusions in Section 5.4.

5.1 Preliminaries

In this section we give the definition of nonlinear complexity and a brief discussion

of how to proceed in the next section.

50



Definition 5.1.1 A sequence s is periodic if there exists a positive integer r such

that si+r = si, for i = 0, 1, . . . , and aperiodic otherwise. The smallest such positive

integer r is called the period of s and denoted by p(s).

Definition 5.1.2 The nonlinear complexity C(s) of a periodic sequence s is the

least integer k such that all k-vectors (sq, sq+1, . . . , sq+k−1), q = 0, 1, . . . , p(s)− 1 are

different. Indices are reduced modulo p(s). C(s) is defined to be 1 if p(s) = 1.

Example 5.1.3 Let s = (000101)∞. Then C(s)= 4, since all 4-vectors are different

and the 3-vector (010), 2-vector (00) and 1-vector (0) are repeated.

We will denote by nlin(k, e) the number of binary sequences of nonlinear com-

plexity k and period e.

Definition 5.1.4 A binary necklace of length l is an equivalence class of binary

strings of length l under rotation. It is periodic if the strings it contains are periodic,

and aperiodic otherwise. In the periodic case we have that the period e of the strings

divides l and e/l > 1.

In order to classify the binary sequences of period e into nonlinear complexity

classes we have to consider a representative from each binary aperiodic necklace of

length e. This can be deduced from the fact that all members of a binary necklace

have the same nonlinear complexity [15]. Therefore, throughout this chapter, s will

denote the repeating part of the binary periodic sequence (s0s1s2 . . . se−1)
∞ of period

p(s) = e. Also, all indices will be reduced modulo e.

Proposition 5.1.5 ([15]) For any integer e, we have that nlin(k, e) = 0, where

1 ≤ k < dlog2(e)e .

Proof. Suppose there was a sequence of such complexity. That would mean that all

k − vectors would be different. There are e such k-vectors but only 2k < e distinct

binary k-vectors.
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The total number of binary aperiodic necklaces of length e is well known [2, 30]

to be equal to the number of irreducible binary polynomials of degree e. Hence

e∑

k=dlog2(e)e

nlin(k, e) =
1

e

∑

d|e

µ
(e

d

)
2d , (5.1)

where µ denotes the Möbius function.

Table 5.1 tabulates the first values of nlin(e−γ, e), as found by exhaustive search.

The sum of each row is described by (5.1). Our aim is to find a general formula for

each individual entry of the table.

5.2 Determining nlin(e − γ, e)

As discussed in the previous section, consider s = s0s1s2 . . . se−1. We remind the

reader that throughout the chapter, all subscripts are reduced modulo e. For s to

have complexity C(s) = e − γ, where 0 ≤ γ ≤ e − dlog2(e)e, it would mean, by

definition, that all (e − γ)-vectors (sq, sq+1, . . . , sq−1−γ), where 0 ≤ q ≤ e − 1, are

different, and also that at least one pair of the (e − 1 − γ)-vectors

s0s1 . . . se−2−γ (S0)

s1s2 . . . se−1−γ (S1)
...

...

sisi+1 . . . si−2−γ (Si)
...

...

se−1s0 . . . se−3−γ (Se−1)

is the same (otherwise, if none are equal we would have C(s) ≤ e − 1 − γ, and if a

triplet or more are equal, we would have that at least two of the (e− γ)-vectors are

equal and so C(s) ≥ e + 1 − γ).

Without loss of generality, we consider the e − 1 cases of (S0) being the same as
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Table 5.1: The first values of nlin(e − γ, e)

2 1

3 2 0

4 2 1 0

5 4 2 0 0

6 2 4 3 0 0

7 6 4 4 4 0 0

8 4 6 8 10 2 0 0

9 6 4 14 18 14 0 0 0

10 4 10 12 16 40 17 0 0 0

11 10 8 14 30 46 64 14 0 0 0

12 4 6 16 38 54 104 100 13 0 0 0

13 12 10 18 38 70 134 194 142 12 0 0 0

14 6 16 20 36 74 132 303 366 188 20 0 0 0

15 8 6 26 40 106 170 324 558 644 268 32 0 0 0

16 8 14 20 52 92 176 348 732 1110 1122 390 16 0 0 0

17 16 14 26 54 104 214 410 806 1448 2162 1918 538 0 0 0 0

18 6 16 28 46 94 236 416 816 1803 2966 4105 3297 703 0 0 0 0

19 18 16 30 62 120 246 482 958 1880 3560 5960 7914 5506 842 0 0 0 0

20 8 14 20 68 140 248 494 952 1916 4176 7340 12070 14800 9046 1085 0 0 0 0

21 12 10 42 64 122 242 618 1096 2158 4312 8302 15132 23836 27942 14660 1310 0 0 0

22 10 28 36 68 140 274 550 1094 2188 4330 9583 17380 31069 47571 51611 23160 1465 0 0

23 22 20 38 78 152 310 614 1230 2450 4890 9700 19056 35894 63504 94132 94660 36428 1544 0

24 8 14 36 70 126 306 558 1354 2452 4894 9774 21236 39740 74422 128876 185014 172188 56232 1570

25 20 18 34 70 200 344 680 1364 2720 5404 10816 21560 42510 82526 153554 261740 361356 310652 84640

26 12 34 44 84 172 338 680 1356 2716 5408 10826 21596 47102 88711 171375 315939 528631 701641 555775

27 18 16 54 88 170 338 682 1364 3220 5938 11860 23686 47302 94080 184402 354656 647200 1064850 1358056

e/γ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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(Si), 1 ≤ i ≤ e − 1:

(S0) = (S1) ⇒ s0 = s1, s1 = s2, . . . , se−2−γ = se−1−γ

(S0) = (S2) ⇒ s0 = s2, s1 = s3, . . . , se−2−γ = se−γ

...
...

(S0) = (Si) ⇒ s0 = si, s1 = si+1, . . . , se−2−γ = si−2−γ

...
...

(S0) = (Se−1) ⇒ s0 = se−1, s1 = s0, . . . , se−2−γ = se−3−γ

Now, suppose (S0) = (Si) for some 1 ≤ i ≤ e − 1. To ensure that the (e − γ)-

vectors (s0s1 . . . se−1−γ) and (sisi+1 . . . si−1−γ) are different, we must also have that

se−1−γ 6= si−1−γ.

Similarly, the (e−γ)-vectors (se−1, s0, s1, . . . , se−2−γ) and (si−1, si, si+1, . . . , si−2−γ)

will be be different only if se−1 6= si−1.

When γ = 0, there is only one inequality, namely se−1 6= si−1. However, as

sj = sj+i, where 0 ≤ j ≤ e − 2, and i − 1 < e − 1 we have

si−1 = si+i−1 = s2i−1 = . . . = ski−1 ,

for some k ∈ N. Now, if we let gcd(e, i) = d then, when k = e
d

we have

si−1 = s e
d
i−1 = s i

d
e−1 = se−1 ,

a contradiction. We have thus provided an alternative proof of the following propo-

sition.

Proposition 5.2.1 ([15]) nlin(e, e) = 0 .

In the sequel we will consider fixed i and γ such that 1 ≤ i ≤ e − 1 and

1 ≤ γ ≤ e − dlog2(e)e.

For γ > 1, no relations between se−t and si−t, γ ≥ t ≥ 2, are imposed and thus we

can have all possible combinations of equalities and inequalities. The only constraint

is that we have to have an even number of inequalities, otherwise we would reach

a contradiction, as in the case γ = 0. However, as will be seen in Proposition
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5.2.21, this constraint is a necessary but not sufficient condition to avoid such a

contradiction.

The total number of possibilities for the choice of relations is

b γ−1
2 c∑

k=0


 γ − 1

2k


 = 2γ−2 .

Our approach will be to view the relations between st and si+t, 0 ≤ t ≤ e − 1 in

each recursion as a binary vector v of length e, where a 0 would denote an equality

and a 1 an inequality. It is obvious that these vectors are of even parity (that is

they have an even number of 1’s) and we have

si+t = st ⊕ vt .

We will call such a vector v the relating vector of the recursion Rv(e, i). The set of

all 2γ−2 possible relating vectors for a given e and γ will be denoted by Ve,γ. If v is

of the form

v = 0 . . . 01 0 . . . 0︸ ︷︷ ︸ 1

γ − 1
,

which means we only have equalities, then Rv(e, i) is the same as R(e, i, γ) of Defi-

nition 5.2.2. Note that with this notation the case γ = 1 is now also covered.

Definition 5.2.2 By recursion R(e, i, γ) we mean the following list of relations be-

tween the digits of a sequence s of length e:

sj = si+j , se−1−γ 6= si−1−γ, se−1 6= si−1 ,

where j ∈ {0, . . . , e − 2} \ {e − 1 − γ}.

Definition 5.2.3 Two sequences of length e are cyclically inequivalent if they do

not belong to the same binary necklace.

Definition 5.2.4 S(Rv(e, i)) is the set of cyclically inequivalent sequences which

satisfy recursion Rv(e, i) and |S(Rv(e, i))| denotes its cardinality.
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Definition 5.2.5 S(Rv(e, i), δ) is the set of cyclically inequivalent sequences of non-

linear complexity δ which satisfy recursion Rv(e, i) and |S(Rv(e, i), δ)| denotes its

cardinality.

Example 5.2.6 Consider v = 00000101. We have that Rv(8, 2) = R(8, 2, 2), de-

fined by the following list of relations between the digits of a lenght-8 sequence s:

s0 = s2, s1 = s3, s2 = s4, s3 = s5, s4 = s6, s5 6= s7, s6 = s0 and s7 6= s1 .

Therefore, we have s0 = s2 = s4 = s6 and s1 = s3 = s5 6= s7 , giving 4 possible

sequences:

S(R(8, 2, 2)) = {00000001, 11111110, 01010100, 10101011} .

Their corresponding nonlinear complexities are 7, 7, 6 and 6 and so |S(R(8, 2, 2), 7)| =

|S(R(8, 2, 2), 6)| = 2.

Using the definition above, we can now relate nlin(e−γ, e) and recursions Rv(e, i)

in the following obvious theorem.

Theorem 5.2.7 nlin(e − γ, e) =
∑

v∈Ve,γ

e−1∑

i=0

|S(Rv(e, i), e − γ)| .

Proposition 5.2.8 Let v1, . . . , vγ be the relating vectors of recursions R(e, i, 1),

. . . , R(e, i, γ) respectively. Then, the relating vectors in Ve,γ are obtained from all

possible sums of vγ with an even number of vectors vz, where z ∈ {1 . . . γ − 1}.

Proof. All vectors v1, . . . , vγ have a 1 in the (e − 1)th position, and since there is

an odd number of them in each sum, the resulting vector will also have a 1 in the

(e − 1)th position. Also, the (e − γ − 1)th position will also be a 1 due to vγ . The

remaining positions will depend on which vz, where z ∈ {1 . . . γ−1}, are in the sum:

the (e − z − 1)th positions will be a 1 and the rest will be 0.

Example 5.2.9 For e = 9, γ = 4, there are 24−2 = 4 possible relating vectors:

1. (000010001) obtained from recursion R(9, i, 4)
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2. (000011011) = (000010001)⊕ (000001001)⊕ (000000011) obtained from recur-

sions R(9, i, 4), R(9, i, 3) and R(9, i, 1) respectively.

3. (000011101) = (000010001)⊕ (000001001)⊕ (000000101) obtained from recur-

sions R(9, i, 4), R(9, i, 3) and R(9, i, 2) respectively.

4. (000010111) = (000010001)⊕ (000000101)⊕ (000000011) obtained from recur-

sions R(9, i, 4), R(9, i, 2) and R(9, i, 1) respectively.

Theorem 5.2.10 Consider the recursion Rv(e, i) and suppose that v = v0⊕v1⊕. . .⊕

vl ∈ Ve,γ, where v0 and vk are the relating vectors of the recursions R(e, i, γ0 = γ) and

R(e, i, γk) respectively, 1 ≤ k ≤ l, l is even and γk < γ ∀k. Let s0, sk be sequences

satisfying these recursions respectively. Then the sequence s = s0 ⊕ s1 ⊕ . . . ⊕ sl ∈

S(Rv(e, i)).

Proof. We have that sm = sm
0 . . . sm

e−1, vm = vm
0 . . . vm

e−1 and sm
n+i = sm

n ⊕ vm
n , where

0 ≤ m ≤ l, 0 ≤ n ≤ e − 1. Therefore,

sn+i =

l⊕

m=0

sm
n+i =

l⊕

m=0

(sm
n ⊕ vm

n ) =

l⊕

m=0

sm
n

l⊕

m=0

vm
n = sn ⊕ vn .

Proposition 5.2.8 together with Theorem 5.2.10 above suggests that we only need

to investigate recursions R(e, i, γ) and sums of sequences satisfying them.

5.2.1 The Recursions R(e, i, γ)

In this subsection we study the properties of the recursions R(e, i, γ). In the way

we defined them, we have not imposed any conditions to exclude the case of a third

(e − γ − 1)-vector being equal to the other two. In that case, since we are working

in binary, at least two of the (e − γ)-vectors would be the same and therefore the

nonlinear complexity of the sequence greater than (e− γ). Hence, the following two

results are immediate.

Proposition 5.2.11 S(R(e, i, γ), e − γ) ⊆ S(R(e, i, γ)) .
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Corollary 5.2.12 |S(R(e, i, γ))| =

γ∑

d=1

|S(R(e, i, γ), e − d)| .

Definition 5.2.13 Given m such that 0 ≤ m ≤ e − 1, the recursion Rm(e, i, γ) is

the following list of relations between the digits of a sequence s of length e:

sj = si+j , sm−1−γ 6= si−1−γ+m, sm−1 6= si−1+m ,

where j ∈ {0, . . . , e − 1} \ {m − 1 − γ, m − 1}.

The recursion Rm(e, i, γ) corresponds to the case (Sm) = (Sm+i) (as compared

to (S0) = (Si) for recursion R(e, i, γ)). It has as relating vector the m-digits cyclic

shift of the relating vector for R(e, i, γ).

Proposition 5.2.14 Let sequence s = s0s1 . . . se−2se−1 ∈ S(R(e, i, γ)). Then its

m-digits right cyclic shift s′ = se−mse−m+1 . . . se−m−2se−m−1 ∈ S(Rm(e, i, γ)).

Proof. Obvious.

Example 5.2.15 Consider R3(8, 2, 2). It is defined by the following list of relations

between the digits of a lenght-8 sequence s:

s0 6= s2, s1 = s3, s2 6= s4, s3 = s5, s4 = s6, s5 = s7, s6 = s0 and s7 = s1 .

Therefore, we have s1 = s3 = s5 = s7 and s0 = s4 = s6 6= s2 , giving 4 possible

sequences:

S(R3(8, 2, 2)) = {00100000, 11011111, 10001010, 01110101} .

It can be seen that the members of S(R3(8, 2, 2)) are 3-digits right cyclic shifts of

the members of S(R(8, 2, 2)) found in Example 5.2.6.

It is a consequence of Proposition 5.2.14 that recursions R(e, i, γ) and Rm(e, i, γ),

where 0 ≤ m ≤ e − 1, share the same properties.

Definition 5.2.16 We will call two recursions equivalent (denoted by ∼) if the

sequences they define belong to the same binary necklace.
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Example 5.2.17 We have already seen that S(R(8, 2, 2)) ∼ S(R3(8, 2, 2)) in the

previous examples.

Lemma 5.2.18 R(e, i, γ) ∼ R(e, i, e − γ).

Proof. Let sequence s = s0s1 . . . se−2se−1 ∈ S(R(e, i, γ)). By Proposition 5.2.14, its

γ-digits right cyclic shift s′ = se−γse−γ+1 . . . se−γ−2se−γ−1 ∈ S(Rγ(e, i, γ)), where the

recursion Rγ(e, i, γ) is the following list of relations between the digits of a sequence

s of length e:

sj = si+j, sγ−1−γ = se−1 6= si−1−γ+γ = si−1, sγ−1 6= si−1+γ ,

where j ∈ {0, . . . , e − 1} \ {e − 1, γ − 1}. This is exactly R(e, i, e − γ).

Lemma 5.2.19 R(e, i, γ) ∼ R(e, e − i, γ).

Proof. Let sequence s = s0s1 . . . se−2se−1 ∈ S(R(e, i, γ)). By Proposition 5.2.14,

its (e − i)-digits right cyclic shift s′ = sisi+1 . . . si−2si−1 ∈ S(Re−i(e, i, γ)), where

the recursion Re−i(e, i, γ) is the following list of relations between the digits of a

sequence s of length e:

sj = si+j, si−1−γ+e−i = se−1−γ 6= se−i−1−γ, si−1+e−i = se−1 6= se−i−1 ,

where j ∈ {0, . . . , e − 1} \ {e − 1 − γ, e − 1}. This is exactly R(e, e − i, γ).

Combining the results of the lemmas above we come to the following corollary:

Corollary 5.2.20

R(e, i, γ) = Ri(e, e − i, γ) = Re−γ(e, i, e − γ) = Ri−γ(e, e − i, e − γ) .

By Proposition 5.2.1 and Corollary 5.2.20 we deduce that in the sequel, for each

e we have to look only at the distinct recursions R(e, i, γ) for 1 ≤ i, γ ≤
⌊

e
2

⌋
.

Proposition 5.2.21 below limits them further to those such that gcd(e, i) | γ.

Given a positive integer n, we will denote by Div(n) the set of divisors of n and

by Div∗(n) the set Div(n) \ {n}.
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Proposition 5.2.21 If gcd(e, i) 6∈ Div(γ), then |S(R(e, i, γ))| = 0.

Proof. R(e, i, γ) is given by

sj = si+j , se−1−γ 6= si−1−γ , se−1 6= si−1 ,

where j ∈ {0, . . . , e − 2} \ {e− 1− γ}. Let gcd(e, i) = g. Then, there exist x, y ∈ N

such that i = xg and e = yg.

First we observe that for i 6= γ, by definition of R(e, i, γ) we have

si−γ−1 = si+i−γ−1 = s2i−γ−1 = . . . = sk1i−γ−1 ,

for some k1 ∈ N. In the case i = γ we just have se−1 6= sγ−1 .

Also,

si−1 = si+i−1 = s2i−1 = . . . = sk2i−1 ,

for some k2 ∈ N. Now, when k1 = e
g

we obtain

si−γ−1 = s e
g
i−γ−1 = s i

g
e−γ−1 = se−γ−1

and when k2 = e
g

si−1 = s e
g
i−1 = s i

g
e−1 = se−1 ,

both contradicting the definition of R(e, i, γ).

So, what we need to avoid the contradiction is to find k1, k2 < e
g

such that

k1i − γ − 1 ≡ e − 1 and k2i − 1 ≡ e − γ − 1 .

In that case we would have

si−γ−1 = . . . = se−1 6= si−1 = . . . = se−γ−1 ,

satisfying both inequalities.

Now, if k1i − γ − 1 ≡ e − 1, then we would have

k1i ≡ γ mod e ⇒ k1i = k3e + γ

⇒ k1xg = k3yg + γ

⇒ g(k1x − k3y) = γ ,
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for some k3 ∈ N.

Similarly, if k2i − 1 ≡ e − γ − 1, then

k2i ≡ e − γ mod e ⇒ k2i = k4e − γ

⇒ k2xg = k4yg − γ

⇒ g(k4y − k2x) = γ ,

for some k4 ∈ N.

Since all of g, k1x−k3y and k4y−k2x ∈ N, the only possible way these equalities

can hold is when g is a divisor of γ. Otherwise, for g 6∈ Div(γ), we have that

se−γ−1 = si−γ−1 and se−1 = si−1, contradicting the definition of R(e, i, γ) and as a

result |S(R(e, i, γ)| = 0.

Proposition 5.2.22 Let gcd(e, i) = g. If g ∈ Div(γ), then

|S(R(e, i, γ))| =





2g if e 6= 2γ

2g−1 if e = 2γ
.

Proof. I. Let gcd(e, i) = g. R(e, i, γ) is given by

sj = si+j , se−1−γ 6= si−1−γ , se−1 6= si−1 ,

where j ∈ {0, . . . , e − 2} \ {e − 1 − γ}. This gives

s0 = . . . = ski = . . . = se−i ,

s1 = . . . = ski+1 = . . . = se−i+1 ,
...

...
...

sg−2 = . . . = ski+g−2 = . . . = se−i+g−2 ,

where k ∈ Z∗, and also

si−1 = . . . = se−γ−1 6= si−γ−1 = . . . = se−1 ,

(5.2)

as seen in the proof of Proposition 5.2.21. The above form of representing the

recursion will be called its structure. There are 2 possibilities for each line and so

|S(R(e, i, γ))| = 2g.

II. e = 2γ means that 1 ≤ i ≤ γ. We use the same reasoning as in I. However,

due to Corollary 5.2.20, for each sequence we obtain we will also obtain its γ-digits

cyclic shift. Therefore, |S(R(e, i, γ))| = 2g−1.
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Proposition 5.2.22 tells us that when e = 2γ we have two repeating (e − 1 − γ)-

vectors: (S0) = (Si) and (Sγ) = (Sγ+i). In addition, when g = 1, S(R(e, i, γ))

contains the self-complementary sequences, that is to say sequences whose comple-

ments belong to the same binary necklace. The complement of a sequence s is a

sequence s′ such that s ⊕ s′ = 11 . . . 1.

Example 5.2.23 Consider R(8, 3, 4). We have e = 8 = 2γ and gcd(8, 3) = 1. It

is given by the following list of relations between the digits of a length-8 sequence s:

s0 = s3, s1 = s4, s2 = s5, s3 6= s6, s4 = s7, s5 = s0, s6 = s1 and s7 6= s2 .

Therefore, we have s2 = s5 = s0 = s3 6= s6 = s1 = s4 = s7 , giving 2 possible

sequences, one being the complement of the other: 01001011 and 10110100. How-

ever, the first is a 4-digits right cyclic shift of the second or, in other words, they

are self-complementary. Hence

S(R(8, 3, 4)) = {01001011} .

Conjecture 5.2.24 For all γ, i and i′ such that 0 ≤ γ, i, i′ ≤
⌊

e
2

⌋
, i 6= i′ and for

all m such that 0 ≤ m ≤ e − 1, we have that

S(R(e, i, γ)) ∩ S(Rm(e, i′, γ)) = ∅ .

Theorem 5.2.25 Let gcd(e, i) = g. If g ∈ Div(γ), then

|S(R(e, i, γ), e − γ)| =





∑

d|g

µ(d)2g/d if g = i = γ < e
2

∑

d|g

(
µ(d)2g/d

)
− 2g−1 if g = i = γ = e

2

0 if g < i = γ

2g if g, γ < i and γ < e
2

2g−1 if i 6∈ Div(γ) and γ = e
2

,

where µ denotes the Möbius function.

Remark 5.2.26 The present version of Theorem 5.2.25 does not cover the following

cases, left for future work: g = i < γ, g < i ∈ Div∗(γ) and g < i < γ with

i 6∈ Div∗(γ).
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Proof. I. Let e > 2γ and gcd(e, γ) = γ. By Proposition 5.2.22 R(e, γ, γ) gives

s0 = . . . = sk1γ = . . . = se−γ ,

s1 = . . . = sk1γ+1 = . . . = se−γ+1 ,
...

...
...

sγ−2 = . . . = sk1γ+γ−2 = . . . = se−2 ,

sγ−1 = . . . = se−γ−1 6= se−1 , where k1 ∈ Z∗ .

(5.3)

Now, consider d ∈ Div∗(γ). We have that gcd(e, d) = d and R(e, d, d) is given by

s0 = . . . = sk2d = . . . = se−γ = . . . = se−d ,

s1 = . . . = sk2d+1 = . . . = se−γ+1 = . . . = se−d+1 ,
...

...
...

...

sd−2 = . . . = sk2d+d−2 = . . . = sγ−2 = . . . = se−2 ,

sd−1 = . . . = se−γ−1 = . . . = se−d−1 6= se−1 ,

(5.4)

where k2 ∈ Z
∗ .

We can see that the set {k2d + q} contains the set {k1γ + q + pd}, where

0 ≤ q ≤ d − 1, 0 ≤ p ≤ γ
d
− 1 and k1, k2 ∈ Z∗. Therefore, the sequences sat-

isfying R(e, d, d) also satisfy R(e, γ, γ) (splitting each line of (5.4) in γ
d

parts, we

obtain (5.3)). Since |S(R(e, d, d), e − ε)| = 0 when ε > d and Div∗(d) ⊂ Div∗(γ),

we are only interested in S(R(e, d, d), e − d) for each d ∈ Div∗(γ).

Hence, by Corollary 5.2.12 and Proposition 5.2.22,

|S(R(e, γ, γ), e − γ)| = 2γ −
∑

d∈Div∗(γ)

|S(R(e, d, d), e− d)| . (5.5)

Rearranging gives

2γ =
∑

d∈Div(γ)

|S(R(e, d, d), e− d)| . (5.6)

Now, applying the Möbius Inversion Formula (see Theorem 2.3.3) to (5.6), we obtain

|S(R(e, γ, γ), e − γ)| =
∑

d∈Div(γ)

µ(d)2γ/d , (5.7)

where µ denotes the Möbius function.
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II. Let e = 2γ. We start by following the same arguments as the proof above

and so, by Proposition 5.2.22, we have

|S(R(e, γ, γ), e − γ)| = 2γ−1 −
∑

d∈Div∗(γ)

|S(R(e, d, d), e− d)| . (5.8)

Now, since d < γ = e
2
, we know from (5.7) that

|S(R(e, d, d), e− d)| =
∑

d′∈Div(d)

µ(d′)2d/d′ .

By the Möbius Inversion Formula

∑

d∈Div(γ)

∑

d′∈Div(d)

µ(d′)2d/d′ = 2γ ,

and therefore (5.8) becomes

|S(R(e, γ, γ), e − γ)| = 2γ−1 − 2γ +
∑

d∈Div(γ)

(
µ(d)2γ/d

)

=
∑

d∈Div(γ)

(
µ(d)2γ/d

)
− 2γ−1 .

III. Let gcd(e, γ) = g ∈ Div∗(γ). R(e, γ, γ) gives

s0 = . . . = sk1γ = . . . = se−γ ,

s1 = . . . = sk1γ+1 = . . . = se−γ+1 ,
...

...
...

sg−2 = . . . = sk1γ+g−2 = . . . = se−γ+g−2 ,

sγ−1 = . . . = sk1γ+γ−1 = . . . = se−γ−1 6= se−1 , where k1 ∈ Z∗ .

(5.9)

Since γ > g, we have that γ = gx, for some x > 1. Therefore, sk1γ+q = sk1gx+q =

sk2g+q, where 0 ≤ q ≤ g − 2 and k1, k2 ∈ Z∗. Similarly sk1γ+γ−1 = sk2g+gx−1. Hence,

each line of (5.9) is just a rearrangement of a line obtained by recursion R(e, g, g)

for which |S(R(e, g, g), e− ε)| = 0, when ε > g.

IV. Let gcd(e, i) = g. We have g < i and i > γ. R(e, i, γ) gives (5.2).

None of the combinations yield a different recursion and so by Proposition 5.2.22,

|S(R(e, i, γ), e − γ)| = 2g.
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V. Let gcd(e, i) = g < i. The case we have is γ > i 6∈ Div(γ). R(e, i, γ) gives

(5.2) and by Proposition 5.2.22 we get |S(R(e, i, γ), e − γ)| = 2g−1.

The next theorem follows from Theorems 5.2.7 and 5.2.25.

Theorem 5.2.27 nlin(e − 1, e) = φ(e), where φ(n) is Euler’s totient function.

5.2.2 The Recursions Rv(e, i).

We have already studied recursions Rv(e, i) = R(e, i, γ), that is when the relating

vector v has only two 1′s, in the previous subsection. By Proposition 5.2.8 and

Theorem 5.2.10, studying the rest of the cases is equivalent to investigating the

properties of sums of sequences satisfying recursions R(e, i, γ). Doing this is further

work.

5.3 An Algorithm Checking for Short Cycles in

Large Nonlinear Feedback Shift Registers

In this section we present our proposed algorithm that checks for short cycles in

large NLFSRs. A cycle is the periodic part of a sequence generated by a NLFSR.

Every NLFSR is described by its nonlinear recursion.

Definition 5.3.1 A recursion sn = f(s0, s1, . . . , sn−1) is irreducible if all sequences

it generates have complexity n, and reducible otherwise. We say it is of order n.

Jansen [15] defined the maximum order complexity of s as the length of the

shortest Feedback Shift Register that generates s. We relate to this in the following:

Definition 5.3.2 The minimum recursion MinR(s) for s is the recursion of order

C(s) and with the fewest binary operations that generates s.

Finally, we let τ(e) denote the total number of cycles of period ≤ e.
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5.3.1 Algorithm Check Sh

The algorithm takes the following two items of input data:

1. An array L of all sequences of period ≤ e, e a given parameter:

L = ((0, s0), (1, s0), (0, s0), (01, s0 ⊕ s1), . . . ,(
sq
0s

q
1 . . . sq

C(sq)−1, MinR (sq)
)

, . . . ,(
s

τ(e)
0 s

τ(e)
1 . . . s

τ(e)

C(sτ(e))−1
, MinR

(
sτ(e)

))
) ,

where sa is the complement of sa, that is sa = sa ⊕ 1.

2. The recursion sn = f(s0, s1, · · · , sn−1) to be checked for short cycles.

Each element in L is a pair, the left member being a binary vector of length C(s)

contained in the sequence s, and the right member being the minimum recursion for

s. Obviously such a pair defines s uniquely. For example, the first member in the

list is the all zero sequence, satisfying sm+1 = sm with s0 = 0. The second is the

all one sequence, the third is 0101 . . . , and the fourth 011011 . . . , which satisfies

sm+2 = sm ⊕ sm+1 with s0 = 0 and s1 = 1.

The main function of the algorithm is the following:

Algorithm 3 Check Sh

Set q = 1. While q ≤ τ(e) do

1: Read the qth member of L, L(q) =
(
sq
0s

q
1 . . . sq

C(sq)−1, MinR (sq)
)
.

2: Generate the whole period of the sequence sq
0s

q
1 . . . sq

e(sq)−1 .

3: If sq
n+h = f

(
sq

h, s
q
h+1, . . . , s

q
n+h−1

)
, h = 0, 1, . . . , e (sq)−1, then quit Check Sh

with the result that f(s0, s1, . . . , sn−1) is reducible. It generates the qth member

in L (we assume that n is greater than C(sq) for all (sq) in L) . Otherwise

increase q by one.

End Check Sh with the result that f(s0, s1, . . . , sn−1) does not generate cycles of

period ≤ e.
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5.3.2 Implementing the Algorithm

By definition, the size of L is τ(e). However, when checking recursion

sn = f(s0, s1, · · · , sn−1) for short cycles, we only want to go through those sequences

s in L that have complexity C(s) < n. Therefore the ”effective” size of L is

|L| =

emax∑

e=2

n−1∑

k=dlog2(e)e

nlin(k, e) ,

where emax is the largest period considered in L. Since our purpose is to check for

short cycles, we will be looking at a reasonable, from a computational complexity

aspect, value for emax (≈ 30).

Definition 5.3.3 The repeativity of a cycle s, denoted by R(s), is defined as the

number of (C(s) − 1)-vectors of s which are repeated.

We will denote by D(s) the number of different (C(s)− 1)-vectors occurring in s,

Example 5.3.4 The cycle s = 000101 considered in Example 5.1.3 has nonlinear

complexity C(s) = 4, repeativity R(s) = 2 and D(s) = 1 since the 3-vector 010

appears twice.

Theorem 5.3.5 The probability that recursion sn = f(s) = F (s1, s2, . . . , sn−1)⊕ s0

generates a sequence of period e(s), complexity C(s) and repeativity R(s) is:

P(s) =





2−e(s) if C(s) < n

2R(s)−e(s) if C(s) = n

0 if C(s) > n

.

Proof. There are 22n−1
different F ’s. In the case C(s) < n, s determines

F (s1, s2, . . . , sn−1) for e digits of (s1, s2, . . . , sn−1), leaving 2n−1 − e digits to be

chosen arbitrarily. In other words, the fraction of all possible F ’s which generate s

is 22n−1
−e

22n−1 = 2−e as required.

In the case C(s) = n, R(s) (n − 1)-vectors occur twice in s. Therefore we have

e(s) = D(s) + R(s). This gives

P(s) =
22n−1−D(s)

22n−1 =
22n−1+R(s)−e(s)

22n−1 = 2R(s)−e(s) .
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Finally, f(s) cannot generate a sequence s with C(s) > n.

To optimise the algorithm, we should reorder the sequences in L in a way that

P(s) does not increase. Furthermore, this version of the algorithm is not optimal

if f(s0, s1, · · · , sn−1) has a symmetry. For example, if sn = f(s0, s1, . . . , sn−1) is

mapped onto itself if we replace sq with sq (self-complementary), if we replace sq

with sn−q (reversible) or a combination of both, where 0 ≤ q ≤ n. For example,

s2 = s1 ⊕ s0 is reversible, and s2 = s0 is both self-complementary and reversible.

These symmetries define equivalence classes of sequences. In these cases a more

optimal algorithm would be to include in L one representative for each equivalence

class.

Nevertheless, the biggest difficulty in generating L lies in obtaining MinR(s)

for each sequence s. The corresponding register synthesis with the fewest number

of terms (not fewest binary operations as we want) proposed in [15] is of order

2e2 log2(e), where e is the length of s.

It is a problem for further research to try to reformulate the algorithm in such

a way that we do not need MinR. We may for instance let the algorithm which

generates L be reentrant and let algorithm Check Sh (Algorithm 3) call it each time

it needs new bits of the short sequence it is working on.

5.4 Conclusions

In this chapter we have commenced the classification of periodic binary sequences

into nonlinear complexity classes. Not all cases have been covered but our results

and methodology suggest a way forward. Finally, we have presented an algorithm

that performs checks for short cycles in large Nonlinear Feedback Shift Registers.

Its implementation and efficiency depend on the above mentioned classification.
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Chapter 6

Conclusions and Open Problems

The contributions of this thesis fall into three topics within cryptography, namely the

cryptanalysis of public key cryptosystems , design of block ciphers and investigations

of nonlinear feedback shift register sequences, mainly used in stream ciphers.

6.1 Overview of Chapter 3

In Chapter 3, through successful cryptanalysis, we demonstrated that the public

key cryptosystem proposed in [8] is insecure. We believe that security cannot be

improved by any modifications to the scheme since, as our results have shown,

building a cryptosystem on the word problem of a Grigorchuk group given by a

”secret” sequence is not safe.

6.2 Overview of Chapter 4

In Chapter 4, we made the innovation of designing a block cipher whose internal

functions are based on the Grigorchuk groups. To the best of our knowledge, it is

the first time such an attempt has been made. For this reason, emphasis was given

in exploring the behaviour of the cipher with respect to its internal functions and

the mathematics behind them.
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Therefore, this topic offers rich grounds for further research, focused on the secu-

rity and efficient implementation of the cipher. For example, it can be tested against

the cryptanalytic attacks for block ciphers, listed in Subsection 2.2.3 of Chapter 2.

Furthermore, the potential of a fast implementation using finite state automata

(discussed in Subsection 2.1.1) can also be examined.

6.3 Overview of Chapter 5

In Chapter 5 we begun classification of periodic binary sequences into nonlinear

complexity classes. An obvious direction for further research would be trying to

obtain the missing results.

In particular, Conjecture 5.2.24 awaits a proof and so do the missing cases from

Theorem 5.2.25 as explained in Remark 5.2.26. The latter problem, as shown by

computer simulation in MAGMA, is very closely related to investigating the general

recursions Rv(e, i), also an open problem.

At the end of the chapter, we presented an algorithm that checks for short cycles

in large nonlinear feedback shift registers. The design, however, is mainly theoretical

and further work is needed before an efficient implementation can take place.

To begin with, the classification must be completed so that methods to generate

MinR(s) can be found. Alternatively, we can try to reformulate the algorithm in

such a way that we do not need MinR, as explained in the end of Subsection 5.3.2.

Finally, as also discussed in Subsection 5.3.2, L should be generated so that it

contains only one representative from each equivalence class in the cases when the

recursion under consideration has a symmetry.
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