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COMPLEX COBORDISM CLASSES OF HOMOGENEOUS SPACES

VICTOR M. BUCHSTABER AND SVJETLANA TERZIĆ

ABSTRACT. We consider compact homogeneous spaces G/H of positive Euler characteristic en-
dowed with an invariant almost complex structure J and the canonical action θ of the maximal torus
T k on G/H . We obtain explicit formula for the cobordism class of such manifold through the
weights of the action θ at the identity fixed point eH by an action of the quotient group WG/WH

of the Weyl groups for G and H . In this way we show that the cobordism class for such man-
ifolds can be computed explicitly without information on their cohomology. We also show that
formula for cobordism class provides an explicit way for computing the classical Chern numbers
for (G/H, J). As a consequence we obtain that the Chern numbers for (G/H, J) can be computed
without information on cohomology for G/H . As an application we provide an explicit formula for
cobordism classes and characteristic numbers of the flag manifolds U(n)/Tn, Grassmann manifolds
Gn,k = U(n)/(U(k)× U(n− k)) and some particular interesting examples.

1. INTRODUCTION

In this paper we consider the problem of description of complex cobordism classes of homo-
geneous spaces G/H endowed with an invariant almost complex structure, where G is compact
connected Lie group and H is its closed connected subgroup of maximal rank. These spaces are
classical manifolds and have a very reach geometric structure from the different points of view
and our interest in these manifolds is related to the well known problem in cobordism theory to
find the representatives in cobordism classes that have reach geometric structure. Our interest in
research of the homogeneous spaces G/H with positive Euler characteristic, is also stimulated by
well known relations between the cohomology rings of these spaces and the deep problems in the
theory of representations and combinatorics (see, for example [11]). These problems are formu-
lated in terms of different additive basis in cohomology rings for G/H and multiplicative rules
related to that basis. We hope the research of the cobordisms of the spaces G/H to give the new
relations and bring the new results in that direction.

We use the approach based on the notion of Chern-Dold character originally introduced in [3]
and the notion of universal toric genus introduced in [4] and described in details in [6].The uni-
versal toric genus can be constructed for any even dimensional manifold M2n with a given torus
action and stable complex structure which is equivariant under given torus action. Moreover, if the
set of isolated fixed points for this action is finite that the universal toric genus can be localized,
which means that it can be explicitly written through the weights and the signs at the fixed points
for the representations that gives arise from the given torus action.

The construction of the toric genus is reduced to the computation of Gysin homomorphism of
1 in complex cobordisms for fibration whose fiber is M2n and the base is classifying space of the
torus. The problem of the localization of Gysin homomorphism is very known and it was studied
by many authors, starting with 60-es of the last century. In [4] and [6] is obtained explicit answer

Date: September 3, 2007; MSC 2000: primary 57R77, 22F30; secondary 57R20, 14M15 .
1



for this problem in the terms of the torus action on tangent bundle for M2n. The history of this
problem is presented also in these papers.

If consider homogeneous space G/H with rk G = rk H = k, then we have on it the canonical
action θ of the maximal torus T k for H and G, and any invariant almost complex structure on G/H
is compatible with this action. Besides that, all fixed points for the action θ are isolated, so one can
apply localization formula to compute universal toric genus for this action and any invariant almost
complex structure. Since, in this case, we consider almost complex structures, all fixed points in
the localization formula are going to have sign +1. We prove that the weights for the action θ
at different fixed points can be obtained by an action of the Weyl group WG up to an action of
the Weyl group WH on the weights for θ at identity fixed point. On this way we get an explicit
formula for the cobordism classes of such spaces in terms of the weights at the fixed point eH .
This formula also shows that the cobordism class for G/H related to an invariant almost complex
structure can be computed without information about cohomology for G/H .

We obtain also the explicit formulas, in terms of the weights at identity fixed point, for the
cohomology characteristic numbers for homogeneous spaces of positive Euler characteristic en-
dowed with an invariant almost complex structure. We use further that the cohomology charac-
teristic numbers sω, ω = (i1, . . . , in), and classical Chern numbers cω = ci1

1 · · · cin
n are related

by some standard relations from the theory of symmetric polynomials. This fact together with
the obtained formulas for the characteristic numbers sω(τ(G/H)) proves that the classical Chern
numbers cω(τ(G/H)) for the homogeneous spaces under consideration can be computed without
information on their cohomology. It also gives an explicit way for the computation of the classical
Chern numbers.

We provide an application of our results by obtaining explicit formula for the cobordism class
and top cohomology characteristic number of the flag manifolds U(n)/T n and Grassmann mani-
folds Gn,k = U(n)/(U(k) × U(n − k)) related to the standard complex structures. We want to
emphasize that, our method when applying to the flag manifolds and Grassmann manifolds gives
the description of their cobordism classes and characteristic numbers using the technique of di-
vided difference operators. Our method also makes possible to compare cobordism classes that
correspond to the different invariant almost complex structures on the same homogeneous space.
We illustrate that on the space U(4)/(U(1) × U(1) × U(2)), which is firstly given in [7] as an
example of homogeneous space that admits two different invariant complex structure.

This paper comes out from the first part of our work where we mainly considered invariant
almost complex structures on homogeneous spaces of positive Euler characteristic. It has continu-
ation which is going to deal with the same questions, but related to the stable complex structures
equivariant under given torus action on homogeneous spaces of positive Euler characteristic.

The authors are grateful to A. Baker and A. Gaifullin for useful comments.

2. UNIVERSAL TORIC GENUS

We will recall the results from [4], [5] and [6].

2.1. General setting. In general setting one considers 2n-dimensional manifold M2n with a given
smooth action θ of the torus T k. We say that (M2n, θ, cτ ) is tangentially stable complex if it admits
θ-equivariant stable complex structure cτ . This means that there exist l ∈ N and complex vector
bundle ξ such that

(1) cτ : τ(M2n)⊕ R2(l−n) −→ ξ
2



is real isomorphism and the composition

(2) r(t) : ξ
c−1
τ−→ τ(M2n)⊕ R2(l−n) dθ(t)⊕I−→ τ(M2n)⊕ R2(l−n) cτ−→ ξ

is a complex transformation for any t ∈ T k.
If there exists ξ such that cτ : τ(M2n) −→ ξ is an isomorphism, i. e. l = n, then (M2n, θ, cτ ) is

called almost complex T k-manifold.
Denote by Ω∗

U [[u1, . . . , uk]] an algebra of formal power series over Ω∗
U = U∗(pt). It is well

known [19] that U∗(pt) = Ω∗
U = Z[y1, . . . , yn, . . .], where dim yn = −2n. Moreover, as the

generators for Ω∗
U over the rationales, or in other words for Ω∗

U ⊗ Q, can be taken the family of
cobordism classes [CP n] of the complex projective spaces.

When given a θ-equivariant stable complex structure cτ on M2n, we can always choose θ-
equivariant embedding i : M2n → R2(n+m), where m > n, such that cτ determines, up to natural
equivalence, a θ-equivariant complex structure cν on the normal bundle ν(i) of i. Therefore, one
can define the universal toric genus for (M2n, θ, cτ ) in complex cobordisms, see [4], [6].

We want to note that, in the case when cτ is almost complex structure, an universal toric genus
for (M2n, θ, cτ ) is completely defined in terms of the action θ on tangent bundle τ(M2n).

The universal toric genus for (M2n, θ, cτ ) could be looked at as an element in algebra Ω∗
U [[u1, . . . , uk]].

It is defined with

(3) Φ(M2n, θ, cτ ) = [M2n] +
∑
|ω|>0

[Gω(M2n)]uω ,

where ω = (i1, . . . , ik) and uω = ui1
1 · · ·u

ik
k .

Here by [M2n] is denoted the complex cobordism class of the manifold M2n with stable complex
structure cτ , by Gω(M2n) is denoted the stable complex manifold obtained as the total space of
the fibration Gω → Bω with fiber M . The base Bω =

∏k
j=1 B

ij
j , where B

ij
j is Bott tower, i. e. ij-

fold iterated two-sphere bundle over B0 = pt. The base Bω satisfies [Bω] = 0, |ω| > 0, where

|ω| =
k∑

j=1

ij .

2.2. The action with isolated fixed points. Assume that the action of T k on M2n has isolated
fixed points. We first introduce, following [4], the general notion of the sign at isolated fixed point.
Let p be an isolated fixed point. The representation rp : T k → GL(l, C) associated to (2) produces
the decomposition of the fiber ξp

∼= Cl as ξp
∼= Cl−n ⊕ Cn. In this decomposition rp acts trivially

on Cl−n and without trivial summands on Cn. From the other hand the isomorphism cτ,p from (1)
defines an orientation in the tangent space τp(M). This together leads to the following definition.

Definition 1. The sign(p) at isolated fixed point p is +1 if the map

τp(M
2n)

I⊕0−→ τp(M
2n)⊕ R2(l−n) cτ,p−→ ξp

∼= Cn ⊕ Cl−n π−→ Cn ,

preserves orientation. Otherwise, sign(p) is −1.

Remark 1. Note that for an almost complex T k-manifold M2n, it directly follows from the defini-
tion that sign(p) = +1 for any isolated fixed point.

If an action θ of T k on M2n has only isolated fixed points, then it is proved that toric genus for
M2n can be completely described using just local data at the fixed points, [4], [6].
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Namely, let p again be an isolated fixed point. Then the non trivial summand of rp from (2)
gives rise to the tangential representation of T k in GL(n, C). This representation decomposes into
n non-trivial one-dimensional representations of rp,1⊕ . . .⊕rp,n of T k. Each of the representations
rp,j can be written as

rp,j(e
2πix1 , . . . , e2πixk)v = e2πi〈Λj(p),x〉v ,

for some Λj(p) = (Λ1
j(p), . . . , Λk

j (p)) ∈ Zk, where x = (x1, . . . , xk) ∈ Rk and 〈Λj(p),x〉 =
k∑

l=1

Λl
j(p)xl. The sequence {Λ1(p), . . . , Λn(p)} is called the weight vector for representation rp in

the fixed point p.
Let F (u, v) = u + v +

∑
αiju

ivj be the formal group for complex cobordism [20]. The cor-
responding power system {[w](u) ∈ Ω∗[[u]] : w ∈ Z} is uniquely defined with [0](u) = 0 and
[w](u) = F (u, [w − 1])(u), for w ∈ Z. For w = (w1, . . . , wk) ∈ Zk and u = (u1, . . . , uk) one
defines [w](u) inductively with [w](u) = [w](u) for k = 1 and

[w](u) = F k
q=1[wq](uq) = F (F k−1

q=1 [wq](uq), [wk](uk)) ,

for k > 2. Then for toric genus of the action θ with isolated fixed points the following localization
formula holds, which is first formulated in [4] and proved in details in [6].

Theorem 1. If the action θ has a finite set P of isolated fixed points then

(4) Φ(M2n, θ, cτ ) =
∑
p∈P

sign(p)
n∏

j=1

1

[Λj(p)](u)

and it is equal to [M2n] + L(u), where L(u) ∈ Ω∗
U [[u1, . . . , uk]] and L(0) = 0.

2.3. Chern-Dold character. In review of the basic definitions and results on Chern character we
follow [3].

Let U∗ be the theory of unitary cobordisms.

Definition 2. The Chern-Dold character for a topological space X in the theory of unitary cobor-
disms U∗ is a ring homomorphism

(5) chU : U∗(X) → H∗(X, Ω∗
U ⊗Q) .

Recall that the Chern-Dold character as a multiplicative transformation of cohomology theories
is uniquely defined by the condition that for X = (pt) it gives canonical inclusion Ω∗

U → Ω∗
U ⊗Q.

The Chern-Dold character splits into composition

(6) chU : U∗(X) → H∗(X, Ω∗
U(Z)) → H∗(X, Ω∗

U ⊗Q) .

The ring Ω∗
U(Z)) in (6) is firstly described in [3]. It is a subring of Ω∗

U ⊗ Q generated by the
elements from Ω−2n

U ⊗Q having integers Chern numbers. It is equal to

Ω∗
U(Z) = Z[b1, . . . , bn, . . .] ,

where bn = [CP n]
n+1

.
Then the Chern character leaves [M2n] invariant, i. e.

(7) chU([M2n]) = [M2n] ,

and chU is the homomorphism of Ω∗
U -modules
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It follows from the its description [3] that the Chern-Dold character chU : U∗(X) → H∗(X, Ω∗
U(Z))

as a multiplicative transformation of the cohomology theories is given by the series

chUu = h(x) =
x

f(x)
, where f(x) = 1 +

∞∑
i=1

aix
i and ai ∈ Ω−2i

U (Z) .

Here u = cU
1 (η) ∈ U2(CP∞), x = cH

1 (η) ∈ H2(CP∞, Z) denote the first Chern classes of the
universal complex line bundle η → CP∞.

From the construction of Chern-Dold character follows also the equality

(8) chU([M2n]) = [M2n] =
∑
‖ω‖=n

sω(τ(M2n))aω ,

where ω = (i1, . . . , in), ‖ω‖ =
∑n

l=1 l·il and aω = ai1
1 · · · ain

n . Here the numbers sω(τ(M2n)), ‖ω‖ = n
are the cohomology characteristic numbers of M2n.

If on M2n is given torus action θ of T k and stable complex structure cτ which is θ-equivariant,
then the Chern character of its toric genus is

(9) chU(Φ(M2n, θ, cτ )) = [M2n] +
∑
‖ω‖>0

[Gω(M2n)](chUu)ω ,

where chUu = (chUu1, . . . , chUuk) and chUui = xi

f(xi)
.

We have that F (u, v) = g−1 (g(u) + g(v)), where g(u) = u +
∑
n>0

[CP n]
n+1

un+1 (see [20]) is the

logarithm of the formal group F (u, v) and g−1(u) is the function inverse to the series g(u). Using
that chUg(u) = x (see [3]), we obtain chUF (u1, u2) = h(x1 + x2) and therefore

chU [Λj(p)](u) =
〈Λj(p),x〉

f(〈Λj(p),x〉)
.

Applying these results to the theorem (1) we get

(10) chU(Φ(M2n, θ, cτ )) =
∑
p∈P

sign(p)
n∏

j=1

f(〈Λj(p),x〉)
〈Λj(p),x〉

.

The formulas (9) and (10) gives that

(11)
∑
p∈P

sign(p)
n∏

j=1

f(〈Λj(p),x〉)
〈Λj(p),x〉

= [M2n] +
∑
‖ω‖>0

[Gω(M2n)](chUu)ω .

If in the left hand side of this equation we put tx instead of x and then multiplying it with tn we
obtain the following result.

Proposition 1. The coefficient for tn in the series in t∑
p∈P

sign(p)
n∏

j=1

f(t〈Λj(p),x〉)
〈Λj(p),x〉

represents the complex cobordism class [M2n].
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Proposition 2. The coefficient for tl in the series in t∑
p∈P

sign(p)
n∏

j=1

f(t〈Λj(p),x〉)
〈Λj(p),x〉

is equal to zero for 0 6 l 6 n− 1.

3. TORUS ACTION ON HOMOGENEOUS SPACES WITH POSITIVE EULER CHARACTERISTIC.

Let G/H be a compact homogeneous space of positive Euler characteristic. It means that G is
a compact connected Lie group and H its connected closed subgroup, such that rk G = rk H . Let
T be the maximal common torus for G and H . There is canonical action θ of T on G/H given by
t(gH) = (tg)H , where t ∈ T and gH ∈ G/H . Denote by NG(T ) the normalizer of the torus T in
G. Then WG = NG(T )/T is the Weyl group for G. For the set of the fixed points for the action θ
we prove the following.

Proposition 3. The set of fixed points under the canonical action θ of T on G/H is given by
(NG(T )) · H .

Proof. It is easily to see that gH is fixed point for θ for any g ∈ NG(T ). If gH is the fixed
point under the canonical action of T on G/H then t(gH) = gH for all t ∈ T . It follows that
g−1tg ∈ H for all t ∈ T , i. e. g−1Tg ⊂ H . This gives that g−1Tg is a maximal torus in H
and, since any two maximal toruses in H are conjugate, it follows that g−1Tg = h−1Th for some
h ∈ H . Thus, (gh)−1T (gh) = T what means that gh ∈ NG(T ). But, (gh)H = gH , what proves
the statement. �

Since T ⊂ NG(T ) leaves H fixed, the following Lemma is direct implication of the Proposi-
tion 3.

Lemma 1. The set of fixed points under the canonical action θ of T on G/H is given by WG ·H .

Regarding the number of fixed points, it holds the following.

Lemma 2. The number of fixed points under the canonical action θ of T on G/H is equal to the
Euler characteristic χ(G/H).

Proof. Let g, g
′ ∈ NG(T ) are representatives of the same fixed point. Then g

′
g−1 ∈ H and

g−1Tg = T = (g
′
)−1Tg

′ , what gives that g
′
g−1Tg(g

′
)−1 = T and, thus, g

′
g−1 ∈ NH(T ). This

implies that the number of fixed points is equal to

(12)
∥∥∥NG(T )

NH(T )

∥∥∥ =
‖NG(T )

T
‖

‖NH(T )
T

‖
=
‖WG‖
‖WH‖

= χ(G/H) .

The last equality is classical result related to equal ranks homogeneous spaces, see [21]. �

Remark 2. The proof of the Lemma 2 gives that the set of fixed points under the canonical action θ
of T on G/H can be obtained as an orbit of eH by an action of the Weyl group WG up to an action
of the Weyl group WH .
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4. THE WEIGHTS AT THE FIXED POINTS.

Denote by g, h and t the Lie algebras for G, H respectively and T = T k, where k = rk G =
rk H . Let α1, . . . , αm be the roots for g related to t, where dim G = 2m + k. Recall that the
roots for g related to t are the weights for the adjoint representation AdT of T which is given with
AdT (t) = de ad(t), where ad(t) is inner automorphism of G defined by the element t ∈ T . One
can always choose the roots for G such that αn+1, . . . , αm gives the roots for h related to t, where
dim H = 2(m− n) + k. The roots α1, . . . , αn are called the complementary roots for g related to
h. Using root decomposition for g and h it follows that Te(G/H) ∼= gC

α1
⊕ . . .⊕ gC

αn
, where by gαi

is denoted the root subspace defined with the root αi and Te(G/H) is the tangent space for G/H
at the e ·H . It is obvious that dimR G/H = 2n.

4.1. Description of the invariant almost complex structures. Assume we are given an invariant
almost complex structure J on G/H . This means that J is invariant under the canonical action of
G on G/H . Then according to the paper [7], we can say the following.

• Since J is invariant it commutes with adjoint representation AdT of the torus T. This im-
plies that J induces the complex structure on each complementary root subspace gα1

, . . . , gαn
.

Therefore, J can be completely described by the root system ε1α1, . . . , εnαn, where we
take εi = ±1 depending if J and adjoint representation AdT define the same orientation
on gαi

or not, where 1 6 i 6 n. The roots εkαk are called the roots of the almost complex
structure J .

• If we assume J to be integrable, it follows that it can be chosen an ordering on the canonical
coordinates of t such that the roots ε1α1, . . . , εnαn which define J make the closed system
of positive roots.

Let us assume that G/H admits an invariant almost complex structure. Consider an isotropy
representation Ie of H in Te(G/H) and let it decomposes into s real irreducible representations
Ie = I1

e + . . . + Is
e . Then it is proved in [7] that G/H admits exactly 2s invariant almost complex

structures. Because of completeness we recall the proof of this fact shortly here. Consider the
decomposition of Te(G/H)

Te(G/H) = I1⊕ . . .⊕ Is

such that the restriction of Ie on Ii is I i
e. The subspaces I1, . . . , Is are invariant under T and

therefore each of them is the sum of some root subspaces, i.e. Ii = gαi1
⊕ . . . ⊕ gαij

, for some
complementary roots αi1 , . . . , αij . Any linear transformation that commutes with Ie leaves each
of Ii invariant. Since, by assumption G/H admits an invariant almost complex structure, we have
at least one linear transformation without real eigenvalue that commutes with Ie. This implies that
the commuting field for each of I i

e is the field of complex numbers and, thus, on each Ii we have
exactly two invariant complex structures.

Remark 3. Note that this consideration shows that the numbers ε1, . . . , εn that define an invariant
almost complex structure may not vary independently.

Remark 4. In this paper we consider almost complex structures on G/H that are invariant under
the canonical action of the group G, what, as we remarked, imposes some relations on ε1, . . . , εn.
If we do not require G-invariance, but just T -invariance, we will have more degrees of freedom
on ε1, . . . , εn. This paper is going to have continuation, where, among the other, the case of T -
invariant structures will be studied.
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Example 1. Since the isotropy representation for CP n is irreducible over reals, it follows that
on CP n we have only two invariant almost complex structures, which are actually the standard
complex structure and its conjugate.

Example 2. The flag manifold U(n)/T n admits 2m invariant almost complex structure, where
m = n(n−1)

2
. By [7] only two of them, conjugate to each other, are integrable.

Example 3. As we already mentioned, the 10-dimensional manifold M10 = U(4)/(U(1) ×
U(1) × U(2)) is the first example of homogeneous space, where we have an existence of two
non-equivalent invariant complex structures, see [7]. We will in the last section of this paper also
describe cobordism class of M10 for these structures.

4.2. The weights at the fixed points. We fix now an invariant almost complex structure J on
G/H and we want to describe the weights of the canonical action θ of T on G/H at the fixed
points of this action. If gH is the fixed point for the action θ, then we obtain a linear map
dgθ(t) : Tg(G/H) → Tg(G/H) for all t ∈ T . Therefore, this action gives rise to the complex
representation dgθ of T in (Tg(G/H), J).

The weights for this representation at identity fixed point are described in [7].

Lemma 3. The weights for the representation deθ of T in (Te(G/H), J) are given by the roots of
an invariant almost complex structure J .

Proof. Let us, because of clearness, recall the proof. The inner automorphism ad(t), for t ∈ T
induces the map ad(t) : G/H → G/H given with ad(t)(gH) = t(gH)t−1 = (tg)H . Therefore,
θ(t) = ad(t) and, thus, deθ(t) = dead(t) for any t ∈ T . This directly gives that the weights for
deθ in (Te(G/H), J) are the roots that define J . �

For an arbitrary fixed point we prove the following.

Theorem 2. Let gH be the fixed point for the canonical action θ of T on G/H . The weights
of the induced representation dgθ of T in (Tg(G/H), J) can be obtained from the weights of the
representation deθ of T in (Te(G/H), J) by the action of the Weyl group WG up to the action of
the Weyl group WH .

Proof. Note that Lemma 1 gives that an arbitrary fixed point can be written as wH for some
w ∈ WG/WH . Fix w ∈ WG/WH and denote by l(w) the action of w on G/H , given by l(w)gH =
(wg)H and by ad(w) the inner automorphism of G given by w.

We observe that θ ◦ ad(w) = ad(w) ◦ θ. Then deθ ◦ de ad(w) = de ad(w) ◦ deθ. This implies
that the weights for deθ ◦ de ad(w) we get by the action of de ad(w) on the weights for deθ. From
the other hand θ(ad(w)t)gH = (w−1twg)H = (l(w−1) ◦ θ(t) ◦ l(w))gH what implies that de(θ ◦
ad(w)) = dwl(w−1) ◦ dwθ ◦ del(w). This gives that if, using the map dwlw−1 , we lift the weights
for dwθ from Tw(G/H) to Te(G/H), we get that they coincide with the weights for deθ ◦de ad(w).
Therefore, the weights for dwθ we can get by the an action of the element w on the weights for
deθ. �

5. THE COBORDISM CLASSES OF HOMOGENEOUS SPACES WITH POSITIVE EULER
CHARACTERISTIC

Theorem 3. Let G/H be homogeneous space of compact connected Lie group such that rk G =
rk H = k and dim G/H = 2n and consider the canonical action θ of maximal torus T = T k for

8



G and H on G/H . Assume we are given an invariant almost complex structure J on G/H . Let
Λj = εjαj , 1 6 j 6 n, where ε1α1, . . . , εnαn are the complementary roots of G related to H
which define an invariant almost complex structure J . Then the toric genus for (G/H, J) is given
with

(13) Φ(G/H, J) =
∑

w∈WG/WH

n∏
j=1

1

[w(Λj)](u)
.

Proof. Rewriting the Theorem 1, since all fixed points have sign +1, we get that the toric genus
for (G/H, J) is

(14) Φ(G/H, J) =
∑
p∈P

n∏
j=1

1

[Λj(p)](u)
,

where P is the set of isolated fixed points and (Λ1(p), . . . , Λn(p)) is the weight vector of the
representation for T in Tp(G/H) associated to an action θ. By Theorem 2, the set of fixed points
P coincides with the orbit of the action of WG/WH on eH and also by Theorem 2 the set of weight
vectors at fixed points coincides with the orbit of the action of WG/WH on the weight vector Λ at
eH . The result follows if we put this data into formula (14). �

Corollary 1. The Chern character of the toric genus for homogeneous space (G/H, J) is given
with

(15) chUΦ(G/H, J) =
∑

w∈WG/WH

n∏
j=1

f(〈w(Λj),x〉)
〈w(Λj),x〉

,

where f(t) = 1+
∑
i>1

ait
i for ai ∈ Ω−2i

U (Z), x = (x1, . . . , xk) and by 〈Λj,x〉 =
k∑

l=1

Λl
jxl is denoted

the weight vector Λj of T k-representation at e ·H .

Corollary 2. The cobordism class for (G/H, J) is given as the coefficient for tn in the series in t

(16)
∑

w∈WG/WH

n∏
j=1

f(t〈w(Λj),x〉)
〈w(Λj),x〉

.

Remark 5. Since the weights of different invariant almost complex structures on the fixed homoge-
neous space differ only by sign, the Corollary 2 provides the way for comparing cobordism classes
of two such structures without having their cobordism classes explicitly computed.

6. CHARACTERISTIC NUMBERS OF HOMOGENEOUS SPACES WITH POSITIVE EULER
CHARACTERISTIC.

6.1. Generally about stable complex manifolds. Let M2n be tangentially stable complex mani-
fold whose given action θ of the torus T k on M2n has only isolated fixed points. Denote by P the
set of fixed points for θ and set tj(p) = 〈Λj(p),x〉, where {Λj(p), j = 1, . . . , n} are the weight
vectors of the representation of T k at a fixed point p given by the action θ and x = (x1, . . . xk).

Set

(17)
n∏

i=1

f(ti) = 1 +
∑

fω(t1, . . . , tn)aω .

9



Using this notation the Proposition 2 could be formulated in the following way.

Proposition 4. For any ω with 0 6 ‖ω‖ 6 (n− 1) we have that

(18)
∑
p∈P

sign(p) · fω(t1(p), . . . , tn(p))

t1(p) · · · tn(p)
= 0 .

Note that the Proposition 4 gives the strong constraints on the set of signs {sign(p)} and the set
of weights {Λj(p)} at fixed points for some tangentially stable complex manifold. For example
‖ω‖ = 0 and ‖ω‖ = 1 gives that the signs and the weights at fixed points have to satisfy the
following relations.

Corollary 3.

(19)
∑
p∈P

sign(p) · 1

t1(p) · · · tn(p)
= 0 ,

(20)
∑
p∈P

sign(p) ·

n∑
i=1

tj(p)

t1(p) · · · tn(p)
= 0 .

As we already mentioned in (8) the cobordism class for M2n can be represented as

(21) [M2n] =
∑
‖ω‖=n

sω(τ(M2n))aω ,

where ω = (i1, . . . , in), ‖ω‖ =
∑n

l=1 l · il and aω = ai1
1 · · · ain

n .
If the given action θ of T k on M2n is with isolated fixed points, the coefficients sω(τ(M2n)) can

be explicitly described using Proposition 1 and expression (17).

Theorem 4. Let M2n be tangentially stable complex manifold whose given action θ of the T k have
only isolated fixed points. Denote by P the set of fixed points for θ and set tj(p) = 〈Λj(p),x〉,
where Λj(p) are the weight vectors of the representation of T k given by the action θ and x =
(x1, . . . xk). Then for ‖ω‖ = n

(22) sω(τ(M2n)) =
∑
p∈P

sign(p) · fω(t1(p), . . . , tn(p))

t1(p) · · · tn(p)
.

Example 4.
s(n,...,0)(τ(M2n)) =

∑
p∈P

sign(p) .

Example 5.

s(0,...,1)(τ(M2n)) = sn(M2n) =
∑
p∈P

sign(p)

n∑
j=1

tnj (p)

t1(p) · · · tn(p)
.

Remark 6. Note that the left hand side of (22) in the Theorem 4 is an integer number sω(τ(M2n))
while the right hand side is a rational function in variables x1, . . . , xk. So this theorem imposes
strong restrictions on the sets of signs {sign(p)} and weight vectors {Λj(p)} of the fixed points.

10



6.2. Homogeneous spaces of positive Euler characteristic and with invariant almost complex
structure. Let us assume M2n to be homogeneous space G/H of positive Euler characteristic
with canonical action of a maximal torus and endowed with an invariant almost complex structure
J . All fixed points have sign +1 and taking into account the Theorem 2, the Proposition 4 gives
that the weights at the fixed points have to satisfy the following relations.

Corollary 4. For any ω with 0 6 ‖ω‖ 6 (n− 1) where 2n = dim G/H we have that

(23)
∑

w∈WG/WH

w
(fω(t1, . . . , tn)

t1 · · · tn

)
= 0 ,

where tj = 〈Λj,x〉 and Λj, 1 6 j 6 n, are the weights at the fixed point e ·H .

In the same way, the Theorem 4 implies that

Theorem 5. For M2n = G/H and tj = 〈Λj,x〉, where 〈Λj,x〉 =
k∑

l=1

Λl
jxl, x = (x1, . . . , xk), k =

rk G = rk H , we have

(24) sω(τ(M2n)) =
∑

w∈WG/WH

w
(fω(t1, . . . , tn)

t1 · · · tn

)
for any ω such that ‖ω‖ = n.

Example 6.
s(n,...,0)(G/H, J) = ‖WG/WH‖ = χ(G/H)

and, therefore, s(n,...,0)(G/H, J) does not depend on invariant almost complex structure J .

Corollary 5.

s(0,...,1)(G/H, J) = sn(G/H, J)) =
∑

w∈WG/WH

w
( n∑

j=1

tnj

t1 · · · tn

)
.

Example 7. In the case CP n = G/H where G = U(n + 1), H = U(1) × U(n) we have
action of T n+1 and related to the standard complex structure the weights are given with 〈Λj,x〉 =
xj − xn+1, j = 1, . . . , n and WG/WH = Zn+1 is cyclic group. So

(25) sn(CP n) =
n+1∑
i=1

∑
j 6=i

(xi − xj)
n∏

j 6=i

(xi − xj)
= n + 1 .

Example 8. Let us consider Grassmann manifold Gq+2,2 = G/H where G = U(q + 2), H =
U(2) × U(q). We have here the canonical action of the torus T q+2. The weights for this action at
identity point related to the standard complex structure are given with 〈Λij,x〉 = xi − xj , where
i = 1, 2 and 3 6 j 6 q + 2. There are ‖WU(q+2)/WU(2)×U(q)‖ = (q+2)(q+1)

2
fixed points for this

action. Therefore
11



(26) s2q(Gq+2,2) =
∑

w∈WU(q+2)/WU(2)×U(q)

w
( q+2∑

j=3

(
(x1 − xj)

2q + (x2 − xj)
2q

)
q+2∏
j=3

(x1 − xj)(x2 − xj)

)
.

The action of the group WU(q+2)/WU(2)×U(q) on the weights at the identity point in formula (26)
is given by the following permutations w = wkl:

w00 = Id ,

wk0(1) = k, wk0(k) = 1, where 3 6 k 6 q + 2 ,

w0l(2) = l, w0l(l) = 2, where 3 6 l 6 q + 2 ,

wkl(1) = k, wkl(k) = 1, wkl(2) = l, wkl(l) = 2 for 3 6 k 6 q + 1, k + 1 6 l 6 q + 2 .

As we remarked before (see Remark 6), the expression on the right hand side in (26) is an integer,
so we can get a value for s2q by choosing the appropriate values for the vector (x1, . . . , xq+2). For
example, if we take q = 2 and (x1, x2, x3, x4) = (1, 2, 3, 4) the straightforward application of
formula (26) will give that s4(G4,2) = −20.

Example 9. In the case Gq+l,l = G/H where G = U(q + l), H = U(q)× U(l) we have

(27) slq(Gq+l,l) =
∑

σ∈Sq+l/(Sq×Sl)

σ
(∑

(xi − xj)
lq∏

(xi − xj)

)
,

where 1 6 i 6 q, (q + 1) 6 j 6 (q + l) and Sq+l is the symmetric group.

We consider later, in the Section 7, the case of this Grassmann manifold in more details.

6.2.1. Chern numbers. We want to deduce an explicit relations between cohomology characteris-
tic numbers sω and classical Chern numbers for an invariant almost complex structure on G/H .

Proposition 5. The number sω(τ(M2n)), where ω = (i1, . . . , in), ‖ω‖ = n, is the characteristic
number that corresponds to the characteristic class given by the orbit of the monomial

(u1 · · ·ui1)(u
2
i1+1 · · ·u2

i1+i2
) · · · (un

i1+...in−1+1 · · ·un
i1+...in) .

Remark 7. Let ξ = (j1, . . . , jn) and uξ = uj1
1 · · ·ujn

n . The orbit of the monomial uξ is defined with

O(uξ) =
∑

uξ′ ,

where the sum is over the orbit {ξ′ = σξ, σ ∈ Sn} of the vector ξ ∈ Zn under the symmetric
group Sn acting by permutation of coordinates of ξ.

Example 10. If we take ω = (n, . . . , 0) we need to compute the coefficient for an
1 and it is given as

an orbit O(u1 · · ·un) and that is elementary symmetric function σn. If we take ω = (0, . . . , 1) then
we should compute the coefficient for an and it is given with O(un

1 ) =
∑n

j=1 un
j , what is Newton

polynomial.
12



It is well known fact from the algebra of symmetric functions that the orbits of monomials give
the additive basis for the algebra of symmetric functions. Therefore, any orbit of monomial can be
expressed through elementary symmetric functions and vice versa. It gives a relation between the
characteristic numbers sω in terms of Chern characteristic numbers cω = ci1

1 · · · cin
n for an almost

complex homogeneous space (G/H, J).

Theorem 6. Let ω = (i1, . . . , in), ‖ω‖ = n, and assume that the orbit of the monomial

(u1 · · ·ui1)(u
2
i1+1 · · ·u2

i1+i2
) · · · (un

i1+...in−1+1 · · ·un
i1+...in)

is expressed through the elementary symmetric function as

(28) O((u1 · · ·ui1)(u
2
i1+1 · · ·u2

i1+i2
) · · · (un

i1+...in−1+1 · · ·un
i1+...in)) =

=
∑
‖ξ‖=n

βξσ
l1
1 · · ·σln

n

for some βξ ∈ Z and ‖ξ‖ =
∑n

j=1 j · lj , where ξ = (l1, . . . , ln). Then it holds

(29) sω(G/H, J) =
∑

w∈WG/WH

w
(fω(t1, . . . , tn)

t1 . . . tn

)
=

∑
‖ξ‖=n

βξc
l1
1 · · · cln

n ,

where ci are the Chern classes for the tangent bundle of (G/H, J).

Remark 8. Let p(n) denote the number of partitions of the number n. By varying ω, the equa-
tion (29) gives the system of p(n) linear equations in Chern numbers whose determinant is, by (28),
non-zero. Therefore, it provides the explicit formulas for the computation of Chern numbers.

Remark 9. We want to point that relation (29) in the Theorem 6 together with Theorem 5 proves
that the Chern numbers for (G/H, J) can be computed without having any information on coho-
mology for G/H .

Example 11. We provide the direct application of the Theorem 6 following Example 10. It is
straightforward to see that s(n,...,0)(G/H) = cn(G/H) for any invariant almost complex structure.
This together with Example 6 gives that cn(G/H) = χ(G/H).

We want to add that it is given in [18] a description of the numbers sI that correspond to our
characteristic numbers sω, but the numerations I and ω are different. To the partition i ∈ I
correspond the n-tuple ω = (i1, . . . , in) such that ik is equal to the number of appearances of the
number k in the partition i.

7. SOME APPLICATIONS.

7.1. Flag manifolds U(n)/T n. We consider invariant complex structure on U(n)/T n. Recall [1]
that the Weyl group WU(n) is symmetric group and it permutes the coordinate x1, . . . , xn on
Lie algebra tn for T n. The canonical action of the torus T n on this manifold has ‖WU(n)‖ =
χ(U(n)/T n) = n! fixed points and its weights at identity point are given by the roots of U(n).

We first consider the case n = 3 and apply our results to explicitly compute cobordism class and
Chern numbers for U(3)/T 3. The roots for U(3) are x1 − x2, x1 − x3 and x2 − x3. Therefore the
cobordism class for U(3)/T 3 is given as the coefficient for t3 in the polynomial

[U(3)/T 3] =
∑
σ∈S3

σ
(f(t(x1 − x2))f(t(x1 − x3))f(t(x2 − x3))

(x1 − x2)(x1 − x3)(x2 − x3)

)
,
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where f(t) = 1 + a1t + a2t
2 + a3t

3, what implies

[U(3)/T 3] = 6(a3
1 + a1a2 − a3) .

This gives that the characteristic numbers sω for U(3)/T 3 are

s(3,0,0) = 6, s(1,1,0) = 6, s(0,0,1) = −6 .

By the Theorem 6 we have the following relations between the characteristic numbers sω and the
Chern numbers cω

c3 = 6, c1c2 − 3c3 = 6, c3
1 − 3c1c2 + 3c3 = −6, what gives c1c2 = 24, c3

1 = 48 .

To simplify the notations we take further ∆n =
∏

16i<j6n

(xi − xj).

Theorem 7. The cobordism class for the flag manifold U(n)/T n is given as the coefficient for
t

n(n−1)
2 in the series in t

(30)
1

∆n

∑
σ∈Sn

sign(σ)σ
( ∏

16i<j6n

f(t(xi − xj)
)

,

where f(t) = 1 +
∑
i>1

ait
i and sign(σ) is the sign ±1 of the permutation σ.

7.1.1. Using of divided difference operators. Consider the ring of the symmetric polynomials
Symn ⊂ Z[x1, . . . , xn]. There is a linear operator (see [17])

L : Z[x1, . . . , xn] −→ Symn : Lxξ =
1

∆n

∑
σ∈Sn

sign(σ)σ(xξ) ,

where ξ = (j1, . . . , jn) and xξ = xj1
1 , . . . , xjn

n .
It follows from the definition of Schur polynomials Shλ(x1, . . . , xn) where λ = (λ1 > λ2 >

· · · > λn > 0) (see [17]), that

Lxλ+δ = Shλ(x1, . . . , xn) ,

where δ = (n − 1, n − 2, . . . , 1, 0) and Lxδ = 1. Moreover, the operator L have the following
properties:

• Lxξ = 0, if j1 > j2 > · · · > jn > 0 and ξ 6= λ + δ for some λ = (λ1 > λ2 > · · · > λn >
0);

• Lxξ = sign(σ)Lσ(xξ), where ξ = (j1, . . . , jn) and σ(xξ) = xξ′ , where σ ∈ Sn and
ξ′ = (j′1 > j′2 > · · · > j′n > 0);

• L is a homomorphism of Symn-modules.

We have

(31)
∏

16i<j6n

f(t(xi − xj)) = 1 +
∑
|ξ|>0

Pξ(a1, . . . , an, . . .)t
|ξ|xξ ,

where |ξ| =
n∑

q=1

jq.
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Corollary 6. Set m = n(n−1)
2

. The cobordism class for the flag manifold U(n)/T n is given by the
formula

(32) [U(n)/T n] =
∑
|ξ|=m

Pξ(a1, . . . , an, . . .)Lxξ .

Remark 10. As we will show in Corollary 8 below, polynomials Pξ in the formula (32) appears to
be polynomials only in variables a1, . . . , a2n−3.

The characteristic number sm for U(n)/T n is given as

(33) sm(U(n)/T n) =
∑

16i<j6n

L(xi − xj)
m .

Remark 11. The first property of the operator L gives that for any ξ such that |ξ| = m, we will
have Lxξ = 0, whenever xξ 6= σ(xδ) for every σ ∈ Sn. In other words, in order to have Lxξ 6= 0,
we need xξ to contain n− 1 variables and with different degrees.

Remark 11 together with (33) and Corollary 6, implies the following:

Corollary 7. s1(U(2)/T 2) = 2; s3(U(3)/T 3) = −6 and

(34) sm(U(n)/T n) = 0 ,

where m = n(n−1)
2

and n > 3.

We can push up this further. Denote by (u1, . . . , um) =
(
(xi − xj), i < j

)
, where m = n(n−1)

2
.

Then for ω = (i1, . . . , im), ‖ω‖ = m we have that

(35) sω(U(n)/T n) =
∑

L
(
(u1 · · ·ui1)(u

2
i1+1 · · ·u2

i1+i2
) · · ·

)
=

∑
Lxξ ,

where xξ = σ(xn−1
1 xn−2

2 · · ·xn−1) for some σ ∈ Sn.
Therefore, if ξ = (j1, . . . , jn), then max

p1,...,ps

(jp1 + · · · + jps) = s
(
n − s+1

2

)
, 1 6 s 6 n. In

particular, it holds that max
p1,p2

(jp1 + jp2) = 2n− 3.

Corollary 8. Let ω = (i1, . . . , im) such that ik 6= 0 for some k > 2n− 3, then

sω(U(n)/T n) = 0 .

If ω = (i1, . . . , ik), ‖ω‖ = m, does not satisfy Corollary 8, but ik1 , . . . , ikl
6= 0 for some

k1, . . . , kl then we have that kp = 2(n− 1)− qp, for qp > 1, 1 6 p 6 l. In this case we can say the
following.

Corollary 9. If n > 2l and
l∑

p=1

qp < l(2l − 1) then

sω(U(n)/T n) = 0 .

Remark 12. From the second property of the operator L we obtain that LP (x1, . . . , xn) = 0 ,
whenever σ(P (x1, . . . , xn)) = εP (x1, . . . , xn) for a permutation σ ∈ Sn, where ε = ±1 and
ε · sign(σ) = −1. This, in particular, gives that L(P (x1, . . . , xn) + σij(P (x1, . . . , xn))) = 0 for
any transposition σij of xi and xj , where 1 6 i < j 6 n.
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Using Remark 12 we can compute some more characteristic numbers of flag manifolds.

Corollary 10. Let n = 4q or 4q + 1 and ω = (i1, . . . , im), ‖ω‖ = m, where i2l−1 = 0 for
l = 1, . . . , m

2
. Then sω(U(n)/T n) = 0.

Since σ12((x1 − x2)
2l

∏
16i<j6n
(i,j) 6=(1,2)

f(t(xi − xj))) = (x1 − x2)
2l

∏
16i<j6n
(i,j) 6=(1,2)

f(t(xi − xj)) we have, also

because of Remark 12, that

L
( ∏

16i<j6n

f(t(xi − xj)
)

= L
(
f̃(t(x1 − x2))

∏
16i<j6n
(i,j) 6=(1,2)

f(t(xi − xj))
)

,

where f̃(t) =
∑
l>1

a2l−1t
2l−1. Using this property of L once more we obtain

Theorem 8. For n > 4 the cobordism class for the flag manifold U(n)/T n is given as the coeffi-
cient for t

n(n−1)
2 in the series in t

(36) L
(
f̃(t(x1 − x2))f̃(t(xn−1 − xn))

∏
16i<j6n

(i,j) 6=(1,2),(n−1,n)

f(t(xi − xj))
)

.

Remark 13. The Corollary 10 implies that if sω 6= 0 for some ω = (i1, . . . , im), then for some
1 6 l 6 m

2
it has to be i2l−1 6= 0. The Theorem 8 gives stronger results that, for n > 4 in

polynomials Pξ in (32) each monom contains the product of at least two elements of the form
a2i−1.

The Theorem 8 provide a way for direct computation of the number sω, for ω = (i1, . . . , im)
such that ‖ω‖ = 2, where ‖ω‖ = i1 + . . .+ im. For n > 5 we have that sω(U(n)/T n) = 0 for such
ω. For n = 4 and n = 5 these numbers can be computed very straightforward as the next example
shows.

Example 12. We provide the computation of the characteristic number s(1,0,0,0,1,0) for U(4)/T 4.
From the formula (36) we obtain immediately:

s(1,0,0,0,1,0)(U(4)/T 4) = L
(
(x1 − x2)(x3 − x4)

5 + (x1 − x2)
5(x3 − x4)

)
=

= 10L
(
(x1 − x2)(x3 − x4)(x

2
1x

2
2 + x2

3x
2
4)

)
=

= 20L
(
x3

1x
2
2(x3 − x4) + (x1 − x2)x

3
3x

2
4)

)
=

= 40L
(
x3

1x
2
2x3 + x1x

3
3x

2
4

)
= 80 .

Remark 14. We want to emphasize that the formula (36) gives the description of the cobordism
classes of the flag manifolds in terms of divided difference operators. The divided difference
operators are defined with (see [2])

∂ijP (x1, . . . , xn) =
1

xi − xj

(
P (x1, . . . , xn)− σijP (x1, . . . , xn)

)
,

where i < j. Put σi,i+1 = σi, ∂i,i+1 = ∂i, 1 6 i 6 n − 1. We can wright down operator L as the
following composition (see [11, 16])

L = (∂1∂2 · · · ∂n−1)(∂1∂2 · · · ∂n−2) · · · (∂1∂2)∂1 .
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Denote by w0 the permutation (n, n−1, . . . , 1). Wright down a permutation w ∈ Sn in the form
w = w0σi1 · · ·σip and set ∇w = ∂ip · · · ∂i1 . It is natural to set ∇w0 = I — identity operator. The
space of operators ∇w is dual to the space of the Schubert polynomials Gw = Gw(x1, . . . , xn),
since it follows from their definition that Gw = ∇wxδ. Note that Gw0 = xδ. For the identity
permutation e = (1, 2, . . . , n) we have e = w0 · w−1

0 . So ∇e = L and Ge = ∇ex
δ = 1.

Schubert polynomials were introduced in [2] and in [10] in context of an arbitrary root systems.
The main reference on algebras of operators ∇w and Schubert polynomials Gw is [16].

The description of the cohomology rings of the flag manifolds U(n)/T nand Grassmann mani-
folds Gn,k = U(n)/(U(k)× U(n− k)) in the terms of Schubert polynomials is given in [11].

The description of the complex cobordism ring of the flag manifolds G/T , for G compact,
connected Lie group and T its maximal torus, in the terms of the Schubert polynomials calculus is
given in [8, 9].

7.2. Grassmann manifolds. As a next application we will compute cobordism class, characteris-
tic numbers sω and, consequently, Chern numbers for invariant complex structure on Grassmannian
G4,2 = U(4)/(U(2) × U(2)) = SU(4)/S(U(2) × U(2)). Note that, it follows by [7] that, up to
equivalence, G4,2 has one invariant complex structure J . The corresponding Lie algebra descrip-
tion for G4,2 is A3/(t

1⊕A1 ⊕ A1).
The number of the fixed points under the canonical action of T 3 on G4,2 is, by Theorem 2, equal

to 6. Let x1, x2, x3, x4 be canonical coordinates on maximal abelian algebra for A3. Then x1, x2

and x3, x4 represents canonical coordinates for A1 ⊕ A1. The weights of this action at identity
point (Te(G4,2), J)are given by the positive complementary roots x1−x3, x1−x4, x2−x3, x2−x4

for A3 related to A1 ⊕ A1 that define J .
The Weyl group WU(4) is symmetric group of permutation on coordinates x1, . . . , x4 and the

Weyl group WU(2)×U(2) = WU(2)×WU(2) is the product of symmetric groups on coordinates x1, x2

and x3, x4 respectively. Let wj ∈ WU(4)/WU(2)×U(2). Corollary 2 gives that the cobordism class
[G4,2] is the coefficient for t4 in polynomial

6∑
j=1

wj

(f(t(x1 − x3))f(t(x1 − x4))f(t(x2 − x3))f(t(x2 − x4))

(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)

)
=

=
1

4
L

(
(x1 − x2)(x3 − x4)f(t(x1 − x3))f(t(x1 − x4))f(t(x2 − x3))f(t(x2 − x4))

)
,

(37)

where f(t) = 1 + a1t + a2t
2 + a3t

3 + a4t
4.

Expanding formula (37) we get that

[G4,2] = 2(3a4
1 + 12a2

1a2 + 7a2
2 + 2a1a3 − 10a4) .

The characteristic numbers sω can be read off form this formula:

s(4,0,0,0) = 6, s(2,1,0,0) = 24, s(0,2,0,0) = 14, s(1,0,1,0) = 4, s(0,0,0,1) = −20 .

The coefficients βξ from the Theorem 6 can be explicitly computed and for 8-dimensional man-
ifold give the following relation between characteristic numbers sω and Chern numbers:

s(0,0,0,1) = c4
1 − 4c2

1c2 + 2c2
2 + 4c1c3 − 4c4, s(2,1,0,0) = c1c3 − 4c4 ,

s(0,2,0,0) = c2
2 − 2c1c3 + 2c4, s(1,0,1,0) = c2

1c2 − c1c3 + 4c4 − 2c2
2, s(4,0,0,0) = c4 .
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We deduce that the Chern numbers for (G4,2, J) are

c4 = 6, c1c3 = 48, c2
2 = 98, c2

1c2 = 224, c4
1 = 512 .

The given example generalizes as follows. Denote by ∆p,q =
∏

p6i<j6q

(xi−xj), then ∆n = ∆1,n.

Theorem 9. The cobordism class for Grassmann manifold Gq+l,l is given as the coefficient for tlq

in the series in t

(38)
∑

σ∈Sq+l/Sq×Sl

σ
( ∏ f(t(xi − xj))

(xi − xj)

)
=

1

q!l!
L

(
∆q∆q+1,q+l

∏
f(t(xi − xj))

)
,

where 1 6 i 6 q, (q + 1) 6 j 6 (q + l) and Sq+l is the symmetric group.

7.3. Homogeneous space SU(4)/S(U(1)×U(1)×U(2)). Following [7] and [15] we know that
10-dimensional space M10 = SU(4)/S(U(1) × U(1) × U(2)) admits, up to equivalence, two
invariant complex structure J1 and J2 and one non-integrable invariant almost complex structure
J3. We provide here the description of cobordism classes for all of three invariant almost complex
structures. The Chern numbers for all the invariant almost complex structures are known and they
have been completely computed in [15] through multiplication in cohomology. We provide also
their computation using our method.

The corresponding Lie algebra description for M10 is A3/(t
2⊕A1). Let x1, x2, x3, x4 be canon-

ical coordinates on maximal Abelian subalgebra for A3. Then x1, x2 represent canonical coordi-
nates for A1. The number of fixed points under the canonical action of T 3 on M10 is, by Theorem 2,
equal to 12.

7.3.1. The invariant complex structure J1. The weights of the action of T 3 on M10 at identity
point related to J1 are given by the complementary roots x1−x3, x1−x4, x2−x3, x2−x4, x3−x4

for A3 related to A1, (see [7], [15]). The cobordism class [M1, J1] is, by Corollary 2, given as the
coefficient for t5 in polynomial

12∑
j=1

wj

(f(t(x1 − x3))f(t(x1 − x4))f(t(x2 − x3))f(t(x2 − x4))f(t(x3 − x4))

(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

)
,

where wj ∈ WU(4)/WU(2) and f(t) = 1 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5.
Therefore we get that

[M10, J1] = 4(3a5
1 + 12a3

1a2 + 7a1a
2
2 − 5a2

1a3 − 2a2a3 − 10a1a4 + 5a5) .

Then Theorem 6 gives the following relations between characteristic numbers sω and Chern
numbers for (M10, J1).

s(0,0,0,0,1) = 20 = c5
1 − 5c3

1c2 + 5c2
1c3 + 5c1c

2
2 − 5c1c4 − 5c2c3 + 5c5 ,

s(1,2,0,0,0) = 28 = c2c3 − 3c1c4 + 5c5, s(2,0,1,0,0) = −20 = c2
1c3 − c1c4 − 2c2c3 + 5c5 ,

s(0,1,1,0,0) = −8 = −2c2
1c3 + c1c

2
2 − c2c3 + 5c1c4 − 5c5, s(3,1,0,0,0) = 48 = c1c4 − 5c5 ,

s(1,0,0,1,0) = −40 = c3
1c2 − c2

1c3 − 3c1c
2
2 + c1c4 + 5c2c3 − 5c5, s(5,0,0,0,0) = 12 = c5 .

This implies that the Chern numbers for (M10, J1) are as follows:

c5 = 12, c1c4 = 108, c2c3 = 292, c2
1c3 = 612, c1c

2
2 = 1028, c3

1c2 = 2148, c5
1 = 4500 .
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7.3.2. The invariant complex structure J2. The weights of the action of T 3 on M10 at identity point
related to J2 are given by the positive complementary roots x4−x1, x4−x2, x4−x3, x1−x3, x2−x3

for A3 related to A1, (see [7], [15]). The cobordism class [M1, J2] is, by Corollary 2, given as the
coefficient for t5 in polynomial

12∑
j=1

wj

(f(t(x4 − x1))f(t(x4 − x2))f(t(x4 − x3))f(t(x1 − x3))f(t(x2 − x3))

(x4 − x1)(x4 − x2)(x4 − x3)(x1 − x3)(x2 − x3)

)
,

where wj ∈ WU(4)/WU(2) and f(t) = 1 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5.
Therefore we get that

[M10, J2] = 4(3a5
1 + 12a3

1a2 + 7a1a
2
2 − 5a2

1a3 + 8a2a3 − 10a1a4 − 5a5) .

Applying the same procedure as for above we get that the Chern numbers for (M10, J2) are:

c5 = 12, c1c4 = 108, c2c3 = 292, c2
1c3 = 612, c1c

2
2 = 1068, c3

1c2 = 2268, c5
1 = 4860 .

7.3.3. The invariant almost complex structure J3. The weights for the action of T 3 on M10 at
identity point related to J3 are given by complementary roots x1 − x3, x2 − x3, x4 − x1, x4 −
x2, x3 − x4, (see [15]). Using Corollary 2 we get that the cobordism class for (M10, J3) is

[M10, J3] = 4(3a5
1 − 12a3

1a2 + 7a1a
2
2 + 15a2

1a3 − 12a2a3 − 10a1a4 + 15a5) .

The characteristic numbers for (M10, J3) are given as coefficients in its cobordism class, what,
as above, together with Theorem 6 gives that the Chern numbers for (M10, J3) are as follows:

c5 = 12, c1c4 = 12, c2c3 = 4, c2
1c3 = 20, c1c

2
2 = −4, c3

1c2 = −4, c5
1 = −20 .

Remark 15. Further work on the studying of Chern numbers and the geometry for the generaliza-
tions of this example is done in [12] and in [15].
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