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Abstract

Segregation occurs in many natural and industrial free surface flows, and its study and

understanding is of fundamental importance in many fields. The thesis formulates a

new continuum model for this process in bi-dispersed equal density granular material.

Numerous analytical solutions of this model are obtained and are shown to be in

good qualitative agreement with existing experimental data. Then an accurate high

order Total Variation Diminishing numerical scheme is developed to investigate time

dependent flows and more complicated configurations. Additionally, the model is

extended to include the effect of a passive non-viscous fluid occupying the pore space

between the grains. The results of this extended model are in quantitative agreement

with existing experiment data. A brief investigation of experiments to test further the

predictions of this model was also undertaken. This included a study of the feed-back

that segregation can have on the bulk properties of a flowing granular material, which

highlights how this model could be used to investigate the important phenomenon of

granular fingering in the future.
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Chapter 1

Introduction

1.1 Particle size segregation mechanisms

Many industrial processes use materials in a granular form, as they are easy to pro-

duce and store. The mixing of powders and grains into a homogeneous blend is

essential in numerous areas of industry, including coal, stock feed, pharmaceuticals,

nuclear fuels, fertilizers, powders metallurgy, detergent and paint production. These

fields represent a substantial world-wide financial turnover, sales in powdered metals

alone exceed
�

6 billion in Europe and another � 5 billion in North America1. Segrega-

tion during transport and processing represents a huge problem in all these fields and

remains poorly understood. The importance to industry of producing good mixtures

and avoiding segregation is highlighted by the fact there have been over six hundred

papers written on the topic in the engineering literature, before the beginning of the

1980’s. Cooke, Stephens and Bridgewater [14], gave an overview of this vast amount

of material.

One common industrial process is the rotating drum/cylinder. These are used

extensively, especially in the food and pharmaceutical industry, to mix grains into a

consistent blend (e.g. [61, 74, 36]). Whereas, the rotary kilns (long inclined rotating

cylinder) are favoured by chemical engineers for sintering, calcination, humidifica-

tion, oxidation, drying, mixing, induration, reducing, gas-solid reaction, incineration,

1based upon information obtained from [1] and referenced link e.g. www.pmdatabase.com
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heating, cooling processes, because of their continuous feed. By far the biggest user

of these devices is the cement production industry. Cement is the basic ingredient of

concrete and it is estimated that 1700 billion tonnes of cement are used every year2.

This process is energy intensive and according to one estimate consumes 1% of world

wide electricity production. The size of the particles entering the kiln has to be care-

fully controlled and a large percentage of the cost of production is absorbed in milling

and sizing2, which is done to reduce the effect of size segregation when the material

enters the rotary kiln. Experiments (e.g. [92, 44]) have shown an axial instability

in these long rotating drums flows, leading to an axial banding, which results in a

spatially segregated mixture. It is clear that, in industry, the effect of this unwanted

segregation can cause many wide ranging effects, including tablets with too much, or

too little, active ingredient, through to less effective washing detergents, [76].

Despite the huge effect size segregation has on common place industrial flows,

very little theoretical work exist, and engineers rely on empirical “Do’s and Don’ts”

e.g. Johanson [53]. This, and other similar literature, consists of a list of processes

and procedures where segregation is likely to take place and recommends mixtures

of different size particles are mixed immediately before use or final packaging. This

requirement to keep remixing materials after transportation or processing and the

heavy use of sampling and testing for quality control is very costly and time consum-

ing.

There are several mechanisms for the segregation of dissimilar grains in granular

flows [8], including inter-particle percolation, convection [27], inertia, buoyancy, col-

lisional condensation [50], differential air drag, clustering [64] and ordered settling.

This thesis, however, focuses on kinetic sieving [72], which is the dominant mecha-

nism for particle-size segregation in dense granular free-surface flows. The basic idea

is that, as grains avalanche downslope, the local void ratio fluctuates and the small

particles fall into gaps which open up beneath them, as they are more likely to fit

into the available space than the large ones. The small particles, therefore, migrate

2Information obtained from Malvern Process Systems prospective or alternatively their website
located at www.malps/ProcessEng/industries/cement/overview.htm
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towards the bottom of the flow and lever the large particles upwards due to force im-

balances. In frictional flows this process is so efficient that segregated layers rapidly

develop, with a region of 100% large particles separated by a concentration jump

from a layer of 100% fines below, [72, 85]. In geology, this is known as inverse or re-

verse grading, [62], and distinguishes deposits from granular flows, such as rockfalls,

lahars, debris-flows and pyroclastic flows, [83, 47], from normally graded deposits

formed by settling in rivers and lakes, here, the Stokes drag implies the fines lie on

top of the coarser particles. In more energetic flows, diffusive mixing competes with

kinetic sieving to produce a smoothly varying inversely graded layer, [52]. Density

differences between particles complicate the picture still further by introducing buoy-

ancy effects. Although this is weaker than kinetic sieving, it is still strong enough to

prevent particle-size segregation altogether, [23], if the large particles are sufficiently

dense and promotes size-segregation when the small particles are denser.

The effect of size segregation is also often seen in the geological scale flows. These

include the creation of lobate deposits, [11, 47], from pyroclastic flows and submarine

landslides caused by volcano flank collapses, where “megablocks” of up to 1km in

size have been observed in the lateral levees, [89]. It has long been acknowledged,

in this community, that when granular material flows, an inverse grading of size is

created in the avalanching material. These flows are often highly sheared due to the

rough topography upon which they take place. When this inversely graded layer is

sheared, large particles tend to migrate towards the front of the flow and smaller

ones towards the rear. This has a striking effect on the bulk dynamics when the

large particles are less mobile than the small ones. In debris-flows, particle size

segregation causes the coarse particles to gather at the front, where the pore fluid

pressure drops, the mobility of the flow decreases and a surge front develops, which is

driven along by the high mobility, high pore pressure, fine grained material behind.

Secondary surges are also observed to form spontaneously within the flow itself. As

the debris-flow flows into the run-out zone the effect of size segregation becomes even

more pronounced. The coarse grains come to rest and are bulldozed to the sides,

to form stationary lateral levees that channelize the more mobile fine grain material
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Figure 1.1: An experimental debris-flow descends the USGS Flume in Oregon, U.S.A.
(left) and flows out onto a horizontal runout pad (centre) 82.5m from the release
point (Images courtesy of USGS/Cascades Volcano Observatory). The large particles
gather at the head of the flow, but encounter greater resistance in the run-out zone
and are pushed to the side to form lateral coarse grained levees (dark regions) that
channelize the finer grained (light) material in the interior. The same effect can be
generated in the laboratory (right) with a 14% mixture of (orange) sand and (white)
glass balotini. The flow becomes unstable and multiple fingers are formed each of
which is bounded by a lateral levee.

and lead to significantly longer run-out distances than if it were unconfined. There

is a large amount of field and large-flume experimental data of this process. The left

panels of figure 1.1 shows one such experiment performed by USGS, in which they

have a 60 metre long chute where they can carefully control the setup and initiation

conditions. The middle panel shows a top view of the run-out zone, here segregation

can clearly be seen and the fine material is channelized by large material building up

at the side of the flow. This process is what leads to greatly increased flow distances

than predicted by avalanche models that take no account of the segregation process.

For sometime now, the particle-size segregation process and its subtle feedback onto

the bulk flow, has been the single biggest stumbling block in accurately predicting

the path and run-out distance of hazardous granular and granular-fluid flows in the

natural environment, [45].

Rock avalanches and landslides can often have a deadly effect. For example, on
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the 29th of April 1903, Turtle Mountain collapsed and created the largest landslide

ever recorded in North America. Its path took it through the town of Frank, Alberta

and destroyed 2/3 of the houses and claimed 76 lives. This flow contained a large

number of massive limestone boulders, which bulldozed their way through most of the

objects in their path. There is also increasing evidence that it is pyroclastic flows, not

the air-fall pumice, that create most of the devastation in volcanic eruptions. These

consist of a high speed avalanche of hot pumice and ash. Their direction is heavily

influenced by the topography over which they are travelling, and size-segregation

effects are also likely to play a role. Possibly the most famous pyroclastic flow is

that of AD79 when Mount Vesuvius erupted, the resulting flow reached three Roman

towns (Herculaneum, Oplontis and Pompeii) and the deposit created can be found

up-to 10km from the source, [75]. A lot of geological disasters create avalanches with

a variation in size of material, many of which consist of a large amount of small

particles with the odd large boulders embedded. Therefore, trying to understand

the segregation process, and eventually the feed-back this has on the bulk, is of vital

importance in many areas of hazard protection.

Similar effects can be observed in dry granular flows in the laboratory [67, 68] by

pouring a mixture of large rough sand particles and small glass balotini down a slope.

In these experiment a uniform flow front is seen to break down into a multiple finger

state, two examples of which are shown in the right panel of figure 1.1. The white

material is very smooth fine glass balotini whereas the darker orange material is large

rougher sand. On close inspection, these individual fingers look strikingly similar to

the structure found in the large scale confined flows of USGS (middle panel). These

experiments are discussed in more detail in � 7.4. In [68] Pouliquen and Vallance

proposed how the feed-back from the segregation process to the avalanche could be

added. They allowed the coefficient of friction to be a function of the volume fraction

of the small particles at any given point. They went on to show, using a shooting code,

that the front is linearly stable for a homogeneous mixture but unstable if the rough

material is forward of the smooth material. As they had no model of the segregation

process, it was not possible to model the whole break-down from a uniform front.
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Particle-size segregation can manifest itself in observed deposits in others ways.

Often geologists encounter stratified reverse graded deposits, [62, 28, 11]. These are

produced by a sequence of avalanches, each of which is brought to rest en masse

by the upslope propagation of a shock wave. As the shock passes, the avalanche

rapidly thickens and the inversely graded layers expand and are frozen into the deposit

to create a two-layer reverse-graded stripe. This is then buried and the process is

repeated to create the stratified deposit. This same process leads to patterns in

rotating drums, in this situation the material is frozen into the solid body rotating

region underneath an avalanching layer. These stripes are then periodically destroyed,

on returning to the free surface, and reformed by the free flowing layer. The theory of

Gray [36] gives a method of determining the interface between these fluid/solid-like

regions, though, no model to describe the full process giving a complete treatment of

the segregation exists.

It is clear that dense granular flows, where the phenomena of size segregation

plays an important role, are common and occur across wide ranging length scales

varying from table top to geophysical. The only existing theory to-date for this flow

regime was derived by Savage & Lun [72] in 1988. They used statistical mechanics

and information entropy ideas to derive a theory, which was able to predict the

steady-state particle-size distribution in a steady uniform flow. This theory is looked

at in more detail in � 1.3. Jenkins & Yoon [50, 52] investigated one-dimensional

steady-state segregation in energetic collisional flows. This theory is derived from

the kinetic theory of granular material. The kinetic theory has been developed over

the last twenty years starting with the original paper of Jenkins and Savage, [51],

in 1983. One of the key assumptions of this theory is that particles only interact

through binary collisions. Any segregation theory derived from this leads to a gradual

transition between states of pure type. This matches experimental results for very

high energy flows, but for slightly slower flows sharp transitions between pure regions

are experimentally observed. In this thesis, attention is restricted to this intermediate

region where there is flow, but enduring contacts between neighbouring particles still

exist. This is often referred to as the granular fluid-state and most avalanche flows
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take place in this velocity range. Dolgunin & Ukolov [21] have recently used a physical

argument to arrive at a segregation model for these high energy flows which has the

same structure of the Savage & Lun with an additional diffusion type term. Due to the

physical nature of these arguments, the resulting model has a lot of free parameters

that are fitted from experimental data.

1.2 Avalanche models

The purpose of this thesis is to develop a model of segregation in dense-granular free

surface flows or avalanches. Therefore, some time will be taken to look at existing

avalanche models. These fall into two main types; shallow water theories developed by

Eglit, Grigorian & Kulikovskii ([41, 55, 26, 38]) and Mohr-Coulomb model developed

by Savage & Hutter and later extended by numerous people including Gray, Denlinger

and Iverson ([70, 71, 40, 19, 18]). These extensions include adding the effect of

a viscous pore fluid and generalising to complicated, rapidly changing topography.

This has allowed the construction of numerical algorithms that can cope with real-life

geological flows for the first time.

The Savage-Hutter model is derived from general mass and momentum conserva-

tion laws. Coulomb’s sliding friction law is applied at the base of the flow and the

model is closed by assuming that the material is always in the a stress-state con-

sistent with the Mohr-Coulomb yield criterion. The equations are integrated across

the vertical direction, z dependence can be included by the addition of shape fac-

tors, discussed later. The resulting governing equations in Cartesian two-dimensional

coordinates are

∂h

∂t
+

∂

∂x
(hu) = d, (1.1a)

∂

∂t
(hu) +

∂

∂x

(

α1hu
2
)

+
∂

∂x

(

kxgh
2 cos ξ

h2

2

)

= hgD, (1.1b)

where d is the rate of deposition, ξ is the local angle of inclination of the slope, and

h = h(x, t) is the local depth of the flow, measured in the direction opposed to gravity.
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The driving force, D, applied to the avalanche is given by

D = cos ξ (tan ξ − tan δ) , (1.2)

where δ is the angle of friction and Earth-pressure coefficient, kx, arises from the

Mohr-Coulomb closure model. The exact form of this and a derivation of the two-

dimensional Savage Hutter avalanche model is considered in detail in appendix A.

The shape factor, α1, arises from the depth integration and is often taken to be unity.

A more detailed consideration of the possible values for the shape factors is discussed

at the end of this chapter.

Anyone who is familiar with the theory of shallow water waves, for example, see

[77], will observe similarity with (1.1). Considerably earlier in the Russian literature,

[41], the same equation can be found, but with the identification that kx = 1 by

assuming that a granular avalanche acts like an inviscid swallow fluid with a Coulomb

basal sliding friction law. It still remains an open question within the field of which

form of the Earth-Pressure coefficient should be taken.

Both sets of models assume that the granular avalanche is incompressible and the

bulk material has a constant density, so

∇.u = 0 (1.3)

must hold.

1.2.1 Vertical structure of avalanche models

The Savage-Hutter model is obtained by depth integrating the equations in the di-

rection defined by gravity, see Appendix A for details. During this process, a vertical

velocity structure needs to be assumed. In this section a model for this vertical

structure for avalanching flows is considered.

One of the first sets of experiments to obtain the velocity field of a granular flow

was performed by Vallance, [84]. These were carried out on a bumpy chute 1.2m

long and 7.5cm wide, and the surface was roughened by sticking the material under

investigation to its surface. Experiments were carried out with three different sizes
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of glass spheres, polystyrene spheres and Ottawa sand and for a variety of chute

inclination angles from 18.5 to 35 degrees. The method of horizontal trapping was

used to determine the velocity structure. This process is quite intrusive and leads

to the conclusion that vertical velocity profile is “approximately linear”. Further

experiments and analysis suggested that the mean velocity scales with the depth of

the flow to the power 3/2. The results also suggested that the bulk solids density

across the chute is constant.

Later Pouliquen, [66], performed more detailed experiments on the mean flow

velocity using a rough chute 200cm long and 70cm wide. He used a front tracking

method and image processing to determine how far the front moved between each

frame. In this case, four different systems were used with varying surface roughness

and glass bead sizes. The full phase space of different angles and flow depth was

investigated. This space could be divided into three regions where either no flow

takes place, no steady flow was observed or steady uniform flows were achieved.

For the region of phase space where steady uniform flow was obtained, all the

experimental data was found to collapse on to one curve if the Froude number was

plotted against the ratio of the flow depth, h, to the depth of the remaining material

after a flow had come to rest, hstop, i.e.

ū√
gh

= β
h

hstop
. (1.4)

The constant of proportionality β was found to be 0.136 and is independent of all

flow properties. hstop is a strong function of both the angle of inclination of the chute

and the basal of roughness and seems to be all that is required to understand all

properties of a chute flow. Equation (1.4) immediately reveals the same mean flow

to the power 3/2 of flow depth law, which was first suggested by Vallance, [84]. This

shows that this scaling to 3/2 can be produced in chute flows of substantially different

aspect ratios.

Recently (2001) Silbert et al. [56] have used the constitutive law first proposed

by Bagnold, in 1954 ([4]), to obtain a velocity profile for granular material in a chute

flow. Bagnold [4] proposed that the shear stress σxz is proportional to the strain rate
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γ̇, hence

σxz = A2
bagγ̇

2, (1.5)

where Abag is a constant of proportionality, σ is the stress-tensor and the rate of

strain is given by

γ̇ =
∂u(z)

∂z
. (1.6)

Silbert et al. started from the two dimensional steady-state Cauchy equation,

which states

∂σzz

∂z
= ρg cos θ, (1.7a)

∂σxz

∂z
= ρg sin θ, (1.7b)

where θ is the angle of inclination of the chute. On the assumption that the granular

material has a constant density throughout its depth, (1.7b) is easily integrated to

give

σxz = ρg sin θ (h− z) . (1.8)

It was also assumed the material is stress-free at a free surface located at z = h.

Substituting this result into (1.5) reveals the result,

∂u(z)

∂z
=

1

Abag

√

ρg sin θ (h− z). (1.9)

Integrating (1.9) across the avalanche depth and applying a non-slip condition at

z = 0 gives the following velocity profile

u(z) =
h3/2

Abag

(

2

3

√

ρg sin θ

)

[

1 −
(

h− z

h

)3/2
]

. (1.10)

The mean velocity is clearly given by

ū =
1

h

∫ h

0

u(z) dz. (1.11)

Substituting (1.10) into (1.11) and after evaluation of the integral the implied mean

velocity from this analysis is

ū =
2

5

h3/2

Abag

√

ρg sin θ. (1.12)
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Immediately it is clear that this has the relationship of mean velocity propor-

tional to flow depth to the power 3/2 shown in both the experiments of Vallance

[84] and Pouliquen, [66]. Silbert et al. also performed three/two dimensional molec-

ular dynamics simulations in two/one dimensional chutes. The chute was chosen to

be periodic in the cross flow direction. Layers of around thirty particles deep were

studied, which is considerably deeper than the layers obtained in the experimental

studies, where 10-15 particles was more the norm. The flow was initiated by tilting

the chute to a large angle and slowly reducing this until the flow obtained a steady

state. Steady state was taken to be the point where the energy input from gravity

was exactly balanced by the energy removed from the system by dissipation due to

friction and collisions. They again constructed the full phase space where no flow

was observed, no steady-state was observed and steady flow was obtained. These

are comparable to the experimental diagrams constructed by Pouliquen [66]. The

results for 3D and 2D are not identical and in the 3D simulations hysteric effects

were observed in results near the domain boundaries. Also the location of these flow

domains were found to be dependent on the coefficient of restitution and friction, of

the particles. These simulations also showed that this derived velocity profile (1.10)

holds for systems which are more than twenty particles deep. For these thinner layers

a linear velocity profile seems to be more appropriate.

The velocity profile in (1.10) seems incompatible with the observations of Vallance

[84], as Vallance found a linear profile with depth, but closer inspection of Vallance’s

experimental data show that for most were conducted with flow depths under the

twenty particle diameters depth found to be required by the numerics. In addition,

a small change in the gradient of the velocity profile, especially in the deeper flows,

can be observed. It would be very hard to distinguish between a linear profile and

z3/2 using this technique, as in most experiments the velocity was only measured at

approximately ten different locations across the depth.

The shape factor that appear in the 2D Savage Hutter equations is given by

α1 =
h
∫ h

0
u2 dz

(

∫ h

0
u dz

)2 . (1.13)
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This will be evaluated for the Silbert profile, first the mean square velocity needs to

be computed. This is given by

ū2 =
1

h

∫ h

0

u2 dz =
1

5

h3

A2
bag

ρg sin θ (1.14)

Using results (1.14) and (1.12) with the definition (1.13) gives,

α1 =
5

4
(1.15)

Note, that Louge [58] has extended Silbert et al.’s [56] theory to determine the con-

stant of proportionality, Abag.

1.3 Summary of the Savage-Lun Theory

Savage and Lun [72] proposed a model for kinetic sieving in dense dry cohesion-less

granular flows. In this chapter an outline of their derivation is given and their main

conclusions are summarised. This is not designed to be a comprehensive derivation

of the model they present, but to explain the physical basis and structure that their

argument takes. They consider a simplified problem involving steady two-dimensional

flow of a binary mixture of particles of equal density. The flow is assumed to consist

of a series of layers aligned parallel to the base of the flow, which is taken to be

impermeable. Each of these layers is sheared relative to their neighbours with a

constant mean rate, generated by a rough chute base. The flow is assumed to be

sufficiently slow, such that, contacts between particles are long, i.e. the collisions are

not binary. If the flow is too energetic, collisions will lead to diffusive remixing and

in this limit the model of Jenkins & Yoon [52] is applicable.

Savage & Lun propose two mechanisms for the transfer of particles between these

layers, the first of which was termed the “random fluctuating sieve”. At any instant

in time, there will be a random distribution of void spaces within each layer. Due

to the relative motion of layers, particles will be presented with voids beneath them.

If the void is large enough the particle will fall into this hole and since the size of

these spaces is randomly distributed the probability of a small particle filling a void
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is greater than that of a large particle. Hence, with this mechanism small particles

preferentially move towards the base of the flow.

The second mechanism is due to force imbalances on individual particles, this can

‘push’ a particle into an adjacent layer. This process was termed “squeeze expulsion”

and is assumed to be size independent. It is then required that the flux due to this

process is such that there is zero net total mass flux, when both mechanisms are

considered.

1.3.1 Statistical mechanical description of the random fluc-

tuating sieve

The first step in determining the fall velocity due to this mechanism is to determine

the probability distribution of the voids within each layer. This is done using the

‘maximum-entropy approach’, e.g. [49, 10]. From this argument it can be shown

that, if all void sizes are equally probable then the probability of finding a given void

diameter ratio (E) is

p(E) =
1

Ē − Em

exp

(

−E − Em

Ē − Em

)

, (1.16)

where Em is the minimum possible and Ē is the mean void diameter ratio. E is a

dimensionless measure of the size of a void and is defined as the ratio of the diameter

of a void to the mean local particle diameter. The result will be familiar to anybody

with knowledge of the Maxwell-Boltzmann distribution for the probability of finding

a particle at a given energy T (for example see [60]). The only difference is the fact

that the distribution is shifted such that the minimum value is Em not 0 and the

mean value is Ē not kT .

The number of small particles captured per unit area per unit time by a void

having diameters in the range Dv → Dv + dDv is given by the flux of small parti-

cles relative to the layer below multiplied by the probability of a void, of that size,

multiplied by the capture width of a void, of that size, i.e.

nv
ns

nl + ns
urDcnpp dE, (1.17)
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where nl/ns is the number of large/small particles the local vicinity, nv/np is the

number of voids/particles per unit area in a layer. It should be emphasised that

np 6= ns + nl, as ns and nl are not per unit area, ur is the relative velocity between

the two layers, this is clearly just the product of the shear rate and the mean distance

between adjacent layers, Dc is the capture width of void of size Dv. The latter is the

distance over which a particle will feel the effect and the void and fall toward the

void. This is approximately given by the loci of points where the centre of mass of

the particle overlaps with the void, hence, it is taken that Dc = Dv + D̄.

To obtain the number of small/large particles which fall due to this mechanism

per unit time, equation (1.17) is integrated from the size of the particle to infinity.

This produces the following results

Ns = nv
ns

nl + ns
urD̄np

[

Es − Ē − Em + 1
]

exp

{

−Es − Em

E − Em

}

(1.18a)

and

Nl = nv
ns

nl + ns
urD̄np

[

El − Ē − Em + 1
]

exp

{

−El − Em

E − Em

}

(1.18b)

where Eν = Dν/D̄ is the dimensionless diameter of the small/large particles respec-

tively, for ν = s, l. From this point onwards the convention that the subscript ν will

mean a quantity associated with small/large particles.

1.3.2 Continuum quantities

So far, a statistical approach has been used to determine the number of particles per

unit time per unit volume which are captured by voids in the layer below. To produce

a continuum model for the complete procedure of kinetic sieving the statistical results

(1.18) are averaged to produce percolation velocities for each constituent, qν. This

average percolation velocity is defined as

qν = −mνNν

ρν

, (1.19)

where mν is the mass of an individual large/small particle and ρν is the density of a

constituent per unit total volume. The minus sign signifies that the flux due to this

“fluctuating sieve” is towards the base of the flow.



CHAPTER 1. INTRODUCTION 39

This mechanism only gives flow in the downwards direction, this has to be balance

by the second “squeeze expulsion” process, thus the flux for this second process (qse)

is defined such that the total mass flux is zero. Hence,

ρsqs + ρlql + ρqse = 0, (1.20)

where ρ is the bulk solid density (i.e. the intrinsic particle density). The intrinsic

densities of small/large particles is given by

ρs =
ρησ3

(1 + e)(1 + ησ3)
, (1.21a)

ρl =
ρ

(1 + e)(1 + ησ3)
, (1.21b)

respectively; where η = ns/nl is the number density ratio, σ = Ds/Dl is the ratio of

the diameter of small to large particles and e is the volume voids ratio i.e. the volume

of voids/volume of solids. Alternatively, the mass conservation equation (1.20) could

have been written in the following form

ρlqNl
+ ρsqNs = 0, (1.22)

where the qN ’s represent the net percolation flux of each constituent. It is assumed

that this “squeeze expulsion” flux is the same for both particles, hence,

qNs = qs + qse and qNl
= ql + qse. (1.23)

It is convenient to write these net mass fluxes in terms of the statistical “fluctuating

sieve” drop frequencies, determined in � 1.3.1. Using (1.19), (1.20) and (1.23), the

following results are obtained

ρlqNl
= −ρs

ρ
mlNl +

ρl

ρ
msNs, (1.24a)

ρsqNs = +
ρs

ρ
mlNl −

ρl

ρ
msNs. (1.24b)

Using the definitions of the densities, (1.21), this can be expressed in terms of perco-

lation fluxes as

qNl
=

1

1 + ησ3
(ql − qs) , (1.25a)
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qNs = − ησ3

1 + ησ3
(ql − qs) . (1.25b)

This second form will be found to be more convenient, in � 2.3, when comparing this

model to the new model proposed in � 2.

So far, conservation of mass has only been considered in the normal to chute

direction for steady uniform flow global mass conservation implies that,

∇.(ρνvν) = 0 ν = (s, l), (1.26)

where vν is the velocity of the constituent. Imposing that the downslope velocity is

simple shear with a rate γ, these equations are reduced to

γz
∂ρν

∂x
+

∂

∂z
[ρνqNν ] = 0 ν = (s, l). (1.27)

1.3.3 Solution of the Savage-Lun equations

These equations are coupled through the definition of the net percolation (1.24). This

set of coupled equations is solved using the method of characteristics, which gives a

family of characteristic curves on which the number ratio, η, is constant

z =
[

z2
0 − 2DlKsx

]
1
2 , (1.28)

where z0 is a constant corresponding to z-value of the characteristic line at the initial

station x = 0 and Ks, in general, is a complicated function of η. The method of

characteristics will be discussed in more detail in � 3.1.1, when it is used to solve the

new model. In appendix B, the full form of this and the small η limit is discussed.

This characteristic solution leads to the small particles having a percolation rate

toward the base of the flow given by Ks, which in the limit of η → 0 is a constant

(see appendix B), this clearly has to break down at the base of flow as the bed is

impermeable. At this point the fines accumulate and a region of 100% concentration is

produced. Then, a shock condition should be applied, but they continued incorrectly,

instead they assumed that the fall line (or shock) marking the 0% fines region, was

given by the characteristic curve emanating from the top of the inflow boundary. The

equation of the curve given by setting z0 = h in (1.28), is

z2 = (h2 − 2DlKsx)
1
2 . (1.29)
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Throughout this PhD the convention will be used that a shock emanating from the

free surface will be labelled 2, a shock from the base of the flow 1 and a shock

separating two regions of pure constituent 3. They then used the fact that, at any

position along the chute, the depth-integrated flux of small particles must be equal

to the inflow flux, i.e.
∫ h

0

γρsz dz =

∫ z1

0

γz dz +

∫ z2

z1

γρsz dz, (1.30)

which is easily evaluated to give the equation of shock 1 as

z1 =
(

2DlKsη0σ
3x
)

1

2 , (1.31)

where η0 is η evaluated at x = 0. The intersection of these two lines marks the point

that full segregation first occurs. The point is given by

xs =
h2

2DlKs (1 + η0σ3)
, (1.32a)

zs =

(

η0σ
3

1 + η0σ3

)
1
2

h. (1.32b)

This solution is easily summarised in the following equations,

z1 = (2DlKsη0σ
3x)

1
2 , in 0 ≤ x ≤ xs,

z2 = (h2 − 2DlKsx)
1
2 , in 0 ≤ x ≤ xs,

z3 =

(

η0σ
3

1 + η0σ3

)
1
2

h, in x > xs,



























. (1.33)

which splits the domain into three regions. Above the line z2 for x ≤ xs and above

z3 for x > xs, η = 0 i.e. this region is filled purely with large particles. Between z1

and z2, η = η0 i.e. the homogeneously mixed inflow exists for a triangular domain

enclosed by the 0% fall line and 100% concentrations line. Below z2 for x ≤ xs and

below z3 for x > xs, η = ∞ i.e. these regions contain purely small particles.

It has already been pointed out that the above analysis is not correct. The correct

solution and the differences will be discussed in � 3.1.5 in more detail.

1.3.4 Laboratory experiments

Savage & Lun also performed experiments on binary mixtures of large and small

grains for flows down inclined chutes. They used glass beads where the small grains
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Figure 1.2: Diagram showing the experimental cofiguration of the experiments of
Savage and Lun. The left panel shows a diagramatic version of the equipment setup
(taken from [72]). The right panel shows a still extracted from an animation of the
experiments. In this the large particles are white and the small particles black, the
shape segregation is apparent in this image

had a mean diameter of 0.943mm and the large 1.6mm, this implies σ = 0.589. The

mean angle of repose was measured to be 25 degrees for both size particles. The chute

was constructed such that it had smooth transparent glass side walls and a rough

bottom. Its dimensions were 1 meter in length and 75 mm in width. A series of

splitter plates were used to split the flow into five distinct layers. Each of these layers

was directed into different collector bins. The concentration of fines was measured in

each of the bins. The location of the feeding hopper could be moved and by changing

the distance between the hopper and the splitter-plates, the full structure of the

segregating flow could be built up, with a series of experiments.

They performed experiments at different flow depths and angles of inclination

and found good agreement with the theory, especially in the relatively slow flow

case. The physical information about the voids was computed assuming there were

five particles around each void space. This information is exact for this configuration,

but can be considered only approximate for real flow. Whereas, the information about

packing fraction and bulk properties was experimentally determined using the data

of Bridgewater et al. [9], who measured the percolation rate of a single small particle

through a sheared bed of large granular material. The disagreement, between theory

and experiment, increased with greater flow speed as diffusive remixing effects are

apparent here. In this region, models based on the kinetic theory are more applicable.
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The general theory predicts a longer segregation length than the dilute limit for

η = 0.1 and η = 0.15 and does appear to give better agreement to the experimental

results. At this point, it is worth pointing out that a correct application of a shock

condition would increase the predicted segregation length and, hence, increase the

accuracy of the dilute limit, this is discussed in more detail in section 3.1.5.

1.4 Aim of the thesis

Since the Savage & Lun theory [72] gives such good agreement with the experimental

results, the question arises of what remains to be done on this topic and what is the

aim of this thesis. Despite the apparent good agreement between this theory and

experiments there are a few problems with it. Firstly, the question of what hap-

peneds to gravity arises. In the above model the direction of segregation artificially

appears as the direction the “fluctuating sieve” must act in. Additionally, there are

no parameters which are affected by the strength of the gravitation field. Hence, this

predicts that there will be no change in segregation length, xs, as the strength of

gravity is changed. This also raises the interesting question of what happened in the

limit of zero gravity. Clearly if there is no gravitational field present the “fluctuating

sieve” cannot be active, so this theory would predict a sudden stop in the segregation

process at this point rather than a gradual increase in xs, as g is decreased. Later,

more detailed experiments by Valance & Savage [85] where performed. They reduce

the effect of gravity by submerging the flow in a fluid and showed an increase in

segregation length as gravity was reduced, this is discussed in more detail in section

6.

The reason for the absence of gravity in the Savage & Lun model is because of the

way particles fall from one layer to another. If there is a space available the particle

instantaneously falls and fills the space. In reality when a void is available and the

particle is inside it capture width, it would start to fall under the influence of grav-

ity. Also the particles are not contained within layers but are completely randomly

distributed, therefore, to capture gravity the “fluctuating sieve ” mechanism needs to
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Number of particles around
a void in a layer

M/N Ē kAV

3 (closest packing) 2.0 0.1547 0.466
4 (simple cubic) 1.0 0.414 0.63
5 0.6 0.701 0.712
6 0.5 1.000 0.765

Table 1.1: Values of various physical quantities for packing of equal sized spheres
around a void, for the Savage-Lun Theory. Taken from p321 of [72]

be replaced with a continuum momentum balance description of this falling process

that does not rely on the particles being contained within layers. Such a formulation

of the “kinetic sieving” will be considered in � 2.

Another major drawback of their model is its complexity. There are a host of

parameters and variables in the final equation, which either, have to be experimentally

determined, approximated by assuming perfectly spherical particles clustered around

a void or estimated using physical arguments. This makes it very hard to apply

in a quantitative way, as there is a degree of arbitrariness in these approximations.

A classic example of this is the assumption that there are five equal sized particles

around each void, this number was chosen because it was “felt to be reasonable

... for the present inclined-chute experiments”. Changes to the number of particles

assumed to be around the void has a significant effect of the segregation length. Table

1.1 shows the change in value of varies quantities, which appear in the Savage & Lun

theory against number of voids round a sphere. Assuming, as Savage & Lun do, that

kLT = 1.0 and Em = 0.1547, from (B.5), it is clear that the model would break down

if there were only three spheres round each void, as Ē = Em. In addition, changing

the assumed number of particles from 4 to 5 changes the segregation length, for the

case σ = 0.5, by a factor of 4.8. The model breaks down again for six particles as the

voids start to become too small to fit particles in.
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1.5 Mixture theory

The model will be formulated using the framework of mixture theory, which is often

to used to study porous media flow problems (e.g. the flow of gas, oil and wa-

ter mixtures through a deformable porous matrix) [63], sea ice dynamics [37], snow

metamorphism [69], determining the properties of concrete [87], swelling of chemically

active saturated clays [29] and many more applications.

Mixture theory deals with partial variables that are defined per unit volume of the

mixture rather than intrinsic variables associated with the material, i.e. the values

you would measure experimentally. The basic mixture postulate states that every

point in the mixture is ‘occupied simultaneously by all constituents’, and, hence, at

each point in space and time there are overlapping particle velocities (displacements)

associated with the different constituents.

Since each constituent is assumed to exist everywhere, a volume fraction φν is used

to represent the percentage of the local volume occupied by constituent ν. Clearly,

n
∑

ν=1

φν = 1, (1.34)

where n is the number of constituents in the problem. Conservation laws can be

derived for each individual constituent. The conservation laws for mass, momentum,

energy and angular momentum are

∂ρν

∂t
+ ∇ · (ρνuν) = mν , (1.35a)

ρνDνu
ν
i

Dt
=
∂σν

ij

∂xj
+ ρνbνi + βν

i + β̃ν
i , (1.35b)

ρνDνU
ν

Dt
= ρνrν + ρ

(

ψν + ψ̃ν
)

−
∂qν

j

∂xj
+ δijσ

ν
iαD

ν
αj, (1.35c)

and

ψν = −1

2

n
∑

κ=1

δij
(

λνκ
iα

(

W κ
αj −W ν

αj

))

+ βνκ
i (vν

i − vκ
i ) , (1.35d)

respectively, where Dν

Dt
= ∂

∂t
+uν

i
∂

∂xi
is the total derivative moving with constituent ν.

The host of parameters which appear in the theory are summarised in table 1.2. The

generality of the theory is clear from (1.35). For example, when considering sea-ice,
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Variable Description
ρ Density
t Time
uν Velocity of constituent ν
mν Rate of mass transfer to constituent ν per unit mixture volume
mνκ Rate of mass transfer to constituent ν from constituent κ
σν

ij Partial stress tensor of constituent ν
bνi Body force per unit mass on constituent ν
βν

i Interaction body forces on constituent ν per unit mixture mass

β̃ν
i Interacting body force due to mass transfer mν

rν Rate of energy supply per unit mass of constituent ν
ψν Rate of energy transfer to constituent ν per unit mass (independent

of transfer due to mass transfer

ψ̃ν Rate of energy transfer to constituent ν per unit mass (solely due
to mass transfer)

qν
i Energy flux in constituent ν per unit mixture volume

Dν
ij Partial strain rate of constituent ν

λνκ
ij The interaction couple on constituent ν from constituentκ

W ν
ij Partial spin of constituent ν

βνκ
i Interaction body forces on constituent ν from constituent κ
uν

i Velocity of constituent ν
Uν Energy of constituent ν

Table 1.2: Summary of the variables used in full mixture theory in their most general
form
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[37], the ice is allowed to gain heat from the water, which in turn, melts the ice

creating a mass transfer to the water and hence a drag force on the moving ice-block.

The reason for separating out the contribution to both the interaction body force

and rate of energy supply due to mass transfer is because relationships can be shown

between these and the mν. The relationships between these quantities are simply

given by,
n
∑

ν=1

ρβ̃ν
i =

n
∑

ν=1

mνvν
i , (1.36a)

ρψ̃ν = −1

2

n
∑

ν=1

mµκ (Uν − Uκ) . (1.36b)

The βν
i are representations of the internal forces between the constituent, so it is

obvious from Newton’s Third Law that

n
∑

ν=1

βν
i = 0. (1.37)

Stating it in this form indicates that these internal drags are closely related to the

intrinic stress field of the consituents, this point will be expanded upon with an

example in the next section.

Most of the variables appearing in the theory are partial not intrinsic, these are

defined, such that, their sum is equal to the bulk quantity. For example,

ρ =
n
∑

ν=1

ρν , (1.38)

this makes the bulk quantities easy to calculate, by simply summing over all con-

stituents. Various relations can be shown between the intrinsic (the convention of a

superscript * denoting a intrinsic variable) and partial variables. The relationships

for velocity and density are

ρν = φνρν∗ , uν = uν∗, (1.39)

but no relationship can be shown between the partial and intrinsic stress of the

constituents in general. For the case where the stress tensor can be represented by

a hydrostatic pressure field, it is common in the application of mixture theory to

assume a linear volume fraction scaling for the pressure as well i.e.

pν = φνpν∗. (1.40)
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From Archimedes’ Principle, (1.40) can be shown to be correct for a fluid con-

stituent interacting with a fluid constituent. Archimedes’ principle states that the

uplift on an object, submerged in a fluid a, is proportional to the weight of fluid

displaced by the object, i.e. ρa∗V |g| where V is the volume of the object. Therefore,

for a collection of objects (particles) making up a constituent the following result

must hold

∇pµ = −ρa∗gΦµ, (1.41)

for the force per unit mixture volume. This can be integrated to give the contribution

to individual partial pressure due to the presence of the fluid is and is in accordance

with (1.40).

A similar argument cannot be constructed for the pressure due to the presence of

the granular material, as there is no equivalent principle for the force on a granular

material submerged in other granular material. In � 2.2, the particle size segregation

theory departs from this standard pressure relationship, since the bulk pressure is

not shared in proportion to the local volume fraction of each constituent.

1.5.1 Slow flow of a viscous fluid flow through a porous ma-

trix

As discussed in the general framework, in mixture theory, the interaction is broken

down into the stress tensor and the internal forces. To solve any physical problem

the form of these interaction terms needs to be determined. In this section, the

problem of determining the internal drag for the viscous fluid phase flowing slowly

though a porous matrix, will be considered. This will be seen to be closely related to

segregation in granular flows as the small particles can be thought of as percolating

slowly through a porous media.

Henry Darcy, in Appendix D of [17], published the results from a series of experi-

ments to determine the law of slow viscous fluid flow through a porous matrix. These

original experiments were performed using siliceous sand of the Saone and water.

The conclusions were
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“ It thus appears that for sand of comparable nature, one can conclude

that output volume is proportional to the head and inversely related to

the thickness of the layer traversed.”

Later this result has been generalised to include the effect of changing the viscosity

of the fluid. Hence, it is normally stated, for example [6], as

−∇pf∗ =
µ

k
Q (1.42)

where µ is the viscosity of the fluid, k is the matrix permeability and Q is the volume

of fluid discharged per unit time per unit area. The superscript f is just used to

indicate that this pressure drop is applied to the fluid constituent. It is clear, that

Q is just φfvf written in terms of the mixture theory variables and if the matrix is

also allowed to move then the most general form of Darcy Law is

−∇pf∗ =
µφf

k

(

vf − vs
)

, (1.43)

where vs is the velocity of the matrix.

So far, we have expressed Darcy’s Law in it most general form in terms of the

framework of mixture theory. For rocks and aggregates there is a range of permeabil-

ities of k ≈ 10−7 → 10−16m2 and for gas, water and oils a range a viscosity range of

µ ≈ 10−5 → 10−3Pa s. It can be shown that for slow flow with zero body force and

no mass transfer within these ranges of parameters the momentum balance equation

(1.36a) is reduced to

ρβ = −∇pf . (1.44)

The partial pressure gradient can be expanded in terms of intrinsic variables, with

application of (1.40), i.e.

∂pf

∂x
= φf ∂p

f∗

∂x
+ pf∗∂φ

f

∂x
. (1.45)

Substitution of (1.45) and (1.43) into (1.44) leads to an expression for the Darcy drag

of

ρβ = −µ
k

(

φf
)2 (

vf − vs
)

+
pf

φf
∇φf . (1.46)
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Now that the drag has been determined, the problem is closed and can be solved for

various situations. Numerous problems that include a viscous fluid where this Darcy

drag is used can be found in [63].

There is an alternative way of looking at the way this result is derived. The

pressure gradient and drag terms are modelled together by specifying a rule for the

intrinsic pressure gradient. A proposed relationship between the intrinsic pressure and

other variables can be used to derive a drag relation. This is the normal situation

when considering complex fluids. An experimentally, or physically, derived form of

the intrinsic stress tensor will be known and can then be used in the above manner

to calculate the internal drag between the consituents; this creates in the framework

of mixture theory. This is exactly what is done when modelling the load distribution

in � 2.2.1



Chapter 2

A Theory for particle size

segregation in granular free-surface

flows

2.1 Mixture framework and conservation laws

In this chapter, a simple two-component particle size segregation model will be formu-

lated ignoring the effects of air. The granular material is assumed to be a bi-dispersed

mixture of ‘large’ and ‘small’ particles. The constituent letters l and s will be used

for the ‘large’ and ‘small’ particles throughout. This problem will be formulated us-

ing the framework of mixture theory, as introduced in � 1.5. Since a two constituent

model is being considered (1.34), implies

φs + φl = 1. (2.1)

In reality the flow consists of three-constituents, the additional component being the

‘void’ space between the particles. The effect of including this space is minor and is

discussed in more detail in � 6.

A granular free-surface flow will automatically find its own energy equilibrium.

In these flows, energy is removed by friction, with the base of the chute and inelastic

51
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collisions between particles. There is an input of gravitational potential energy re-

sulting from the materials’ motion downslope. If the rate of energy input is greater

than the rate of removal, from the system, the kinetic energy of individual particles

will increase leading to a greater number of collisions and, hence, bring the material

back to equilibrium. Therefore, it is a very good assumption that there is no net flow

of energy into or from the flow, hence, the general conservation of energy, (1.35c),

will not be considered. In the molecular dynamics simulations discussed in � 1.2.1,

the reaching of this balance between gravitational input and dissipation of energy

in the system is used as the definition of achieving steady-state and the end of any

transients. This gives further weight to the validity of this assumption for the flow

regimes under consideration here. It has already been discussed in � 1.1, that as the

total kinetic energy of the flow is increased, this model will break down and a binary

collision model, for example [52], needs to be considered.

Additionally, the particles are not allowed to break or amalgamate, therefore,

there is zero mass transfer between the constituents implying mµ = 0. The stress

tensor will be assumed to be approximated by a hydrostatic pressure field

σµ
zz = −pµ. (2.2)

Even in granular statics the principle stress axis (σ11, σ22) dominates, and in the case

of avalanching this assumption is an extremely good approximation. For details of

why this term is the leading order term for avalanching material, see [38] for details,

or Appendix A for an outline.

The only body force in this problem will be gravity and it will have the same

effect on both constituents, hence,

bµi = gi. (2.3)

Under these circumstances the general framework of mixture theory (1.35) is reduced

to

∂ρµ

∂t
+ ∇ · (ρµuµ) = 0, (2.4a)

for mass and

−∇pµ + ρµg + ρβµ = ρµDµv
µ

Dt
, (2.4b)
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for momentum. Experimental observations of size segregation in granular flows, on

the geological scale [11, 47], in industrial flows [61, 74, 36] and on the laboratory scale

[72, 85] all show that the ratio of the segregation length (L), defined as the distance

at which a fully segregated state is first observed, is an order of magnitude greater

than the thickness of the avalanche. This leads to the conclusion that in the normal

direction the acceleration term can be neglected and the momentum equation (2.4b)

is further reduced to

−∇pµ + ρµg + ρβµ = 0. (2.5)

The bulk density, ρ, and the bulk pressure, p, are defined as the sum of the partial

densities and partial pressures, hence,

ρ = ρl + ρs, p = pl + ps. (2.6)

Since this is a two component model, it follows from (1.37) that

βs = −βl, (2.7)

which is simply a statement that the drag applied to the small constituent by the

large, is equal and opposite to that applied by the small on the large constituent.

The relationship between the intrinsic variables and their partial counterparts

for velocity and density are given by (1.39), whereas, as previously noted, for the

pressure, the standard linear volume fraction scaling will be modified.

2.2 The particle size segregation model

Let Oxyz be a coordinate system with the x-axis pointing down a chute inclined at

an angle ζ to the horizontal, the y-axis across the chute and the z-axis being the

upward pointing normal as shown in figure 2.1. The large and small particles are

assumed to have the same constant density

ρl∗ = ρs∗, (2.8)
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O

z

x

ζ

Figure 2.1: A diagram showing the coordinate system Oxz with the x-axis pointing
down a chute, which is inclined at an angle ζ to the horizontal. The y-axis is into
the plane of the paper and the z-axis is normal to the slope. Particle-size segregation
takes place within the avalanche creating inversely-graded layers. In the centre of
mass frame the velocity field is such that the material is circulated round, as indicated
by the solid line. When shear is present, the large particles have a tendency to move
towards the front of the flow and the fines towards the rear.

which is necessarily equal to the bulk density, ρ. Here and through this thesis the ∗

is being used to indicate an intrinsic variable. It should be emphasised that, since

the interstitial pore space has been incorporated into each phase, the intrinsic den-

sities, ρµ∗, are in fact the mean solids fraction multiplied by the bulk solid density,

therefore, (2.8) implicitly assumes that the mean solids fraction is a constant, which

is consistent with the results of Vallance [84]. The sum of the normal momentum

balance component (2.4b) over large and small constituents, implies

− d

dz

(

pl + ps
)

− (ρs + ρl)g cos ζ + ρ(βs + βl) = 0, (2.9)

where g is the constant of gravitational acceleration. Using (2.6), (2.1) and (2.7), the

bulk pressure can be shown to be

dp

dz
= −ρg cos ζ. (2.10)

Since ρ is constant and the free-surface is traction free, (2.10) can be integrated

through the avalanche depth, h, revealing that the bulk pressure is hydrostatic

p = ρg(h− z) cos ζ. (2.11)

The key idea behind the kinetic sieving model is that, whilst the small particles

percolate through the matrix, they support less of the overburden pressure, and
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the large particles must, therefore, carry proportionately more of the load. A new

pressure scaling is therefore introduced

pl = f lp, ps = f sp, (2.12)

where the factors f l and f s determine the proportion of the hydrostatic load that

is carried by the large and small particles. Specific forms for these factors will be

proposed later, but it is worth noting that (2.6) implies that they must sum to unity

f l + f s = 1. (2.13)

2.2.1 Determining the drag law

To close the model, the interaction drag needs to be specified, which will be performed

in a similar manner to the determination of the Darcy drag in � 1.5.1. In the example

discussed in � 1.5.1, a pressure gradient leads to a proportional difference in velocity

between matrix and fluid. The simplifications made to the momentum equations for

this situation are similar to the ones for this granular model. In this situation, each

constituent takes a share of the overburden pressure, which was discussed above, its

share is given by fµ∇p∗. Due to the similarity with Darcy’s Law, it seems reasonable

to assume that this pressure gradient will drive a linear velocity difference between

this constituent and the matrix, i.e.

fµ∇p∗ = cρµ (u − uµ) , (2.14)

where c is the coefficient of inter-particle drag and

u = (ρlul + ρsus)/ρ, (2.15)

is the bulk velocity. It should be noted, that c has dimension of s−1, and 1/c is

a measure of the time taken for a particle to percolate a set distance for a given

pressure gradient. Hence, physically, c is a measure of the resistance on a particle to

its percolation from the matrix. Equation (2.14) states that for each constituent its

share of the overburden pressure drives a flow relative to the bulk flow, which itself

is just given by the barycentric velocity of the two constituents.
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Due to the use of the non-standard pressure scaling (2.12), the expansion of the

partial pressure, (2.14), in terms of the intrinsic pressure takes the form

∂pµ

∂x
= fµ ∂p

∂x
+ p

∂fµ

∂x
, (2.16)

which is more general than the standard expression (1.45). Following the same pro-

cedure as � 1.5.1 leads to an interaction drag of the form

ρβµ = p∇fµ − ρµc(uµ − u), µ = l, s. (2.17)

In terms of the Savage-Lun model this drag is a continuum version of the “squeeze

expulsion” mechanism for the momentum balance. Since its effect is to induce a differ-

ence in velocity between the constituent and the bulk flow. As the bulk flow velocity

is linked back to the constituent velocity through the definition of the barycentric ve-

locity (2.15), this automatically enforces that there is no momentum transfer between

the two constituents in regions of 100% concentration. Additionally, (2.7) means the

momentum lost by one constituent is gained by the other, hence, no momentum is

lost or gained by this mechanism. The constant of proportionality, c, is a measure

of how much force is required to create a velocity difference of a given magitude, i.e.

the lower the value, the easier it is for particles to slide past one another. In general,

this constant would be expected to depend on material properties like particle shape

and surface roughness, but not on kinematic properties.

2.2.2 Individual constituent velocities

The large and small particle percolation velocities are assumed to be of the same

order of magnitude as the normal bulk velocity, but much smaller than typical bulk

downstream velocities. To reflect this, the constituent velocities in the down and

cross-slope directions are assumed to be equal to the bulk down and cross-slope

velocity components, i.e.

u = uµ, v = vµ, µ = l, s. (2.18)
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Whilst the normal constituent velocities, wµ, are obtained by substituting (2.17) into

the normal component of the momentum balance equation (2.5), to give

∇pµ = −ρg cos ζ + p∇fµ − ρµc (wµ − w) . (2.19)

Expanding the right hand side of (2.19), using (2.16), and eliminating the dependence

of the pressure, using (2.12), leads to an expression for the normal to chute velocity,

for each constituent, relative to the bulk velocity

φµwµ = φµw + (fµ − φµ)(g/c) cos ζ, µ = l, s. (2.20)

The significance of the pressure scalings fµ is now clear. If fµ > φµ, then the

particles will rise, if fµ < φµ the particles will fall and if fµ = φµ, there will be no

motion relative to the bulk normal flow.

Written in this form, (2.20) is a flux conservation equation, which has been derived

from a momentum balance equation. Physically this equation states that the flux of

small particles is comprised of three parts; the first term on the right hand-side

represents the flux due to advection with the bulk flow. The second term consists

of two parts, a non-preferential part proportional to φµ, due to “squeeze expulsion”

and the second part (proportional to fµ) represents the “fluctuating sieve”. This will

be discussed in more detail in the next section. With this observation it is now clear

that, fµ > φµ means the “squeeze expulsion” flux is greater than the “fluctuating

sieve” and on average the particles will rise and visa-versa for f µ < φµ.

2.2.3 The load sharing factors

Since φl = 1−φs, the pressure scalings fµ can, without loss of generality, be assumed

to be a function of the local volume fraction of small particles φs only. The functional

form must satisfy the constraint that when only one type of particle is present it must

support the entire load, i.e.

f l = 1, f s = 0 when φs = 0,

f s = 1, f l = 0 when φs = 1.
(2.21)
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The f factors are equivalent to the “fluctuating sieve” mechanism in the Savage-

Lun theory, as they can be considered to be a model of the percentage of particles

that are falling for a given volume fraction and constituent. It should be possible to

construct factors that give the same functional dependence as the ones Savage & Lun

derived. By casting them into this form, gravity will be retained and a segregation

direction clearly defined. For ease, the simplest non-trivial functions that satisfy the

constraints (2.21) and the condition (2.13) will be considered. These are

f s = φs −Bφs(1 − φs),

f l = (1 − φs) +Bφs(1 − φs),
(2.22)

where the non-dimensional factor B determines the magnitude of the pressure per-

turbation away from the hydrostatic. When the functions (2.22) are substituted into

(2.20), they imply that the large and small particle percolation velocities, relative to

the bulk, are

wl − w = +qφs,

ws − w = −qφl,
(2.23)

respectively, where

q = (B/c) g cos ζ, (2.24)

is the mean segregation velocity. The large particles, therefore, move up through the

matrix at a velocity proportional to the volume fraction of small particles, whilst the

small particles drain down at a velocity proportional to the volume fraction of large

particles. In both cases, the segregation stops when a 100% concentration of that

constituent is reached.

2.2.4 The segregation equation

An equation to compute the volume fraction, φs, can be formulated by substituting

(2.23) into the mass balance (2.4a) for the small particles, to give

∂φs

∂t
+

∂

∂x
(φsu) +

∂

∂y
(φsv) +

∂

∂z
(φsw) − ∂

∂z
(qφsφl) = 0. (2.25)

It is immediately clear that, the governing equation for the large particles has exactly

the same form with the only difference being that there is an opposite sign in the final
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segregation term, since the volume fractions are related through (2.1). Physically this

says that the large particles are advected with bulk flow, but the segregation ‘force’

is in the opposite direction. Without any loss of generality, only the equations for

the small particles will be considered from this point onwards.

The bulk flow, u = (u, v, w), can either be prescribed or computed from the

avalanche models discussed in � 1.2. Both sets of models assume that the granular

avalanche is incompressible i.e.

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.26)

with constant uniform bulk density and a hydrostatic pressure distribution through

their depth. This is consistent with the bulk density and pressure fields assumed in

this model, and the incompressibility condition is recovered by summing the mass

balance equations (2.4a) over the large and small constituents and using (2.8).

2.3 Comparison with the Savage & Lun theory

Direct comparison between the two models governing equations (2.25) and Savage

and Lun’s (1.27) is difficult, as the Savage-Lun theory is formulated in terms of

the number density ratio, η, and the particle diameter ratio, σ, instead of volume

fractions. Relationships between these different variables are easily obtained by ex-

pressing the volume fraction relations in terms of the number and diameter of the

particles. Physically the volume fraction of each constituent is the total volume of

that constituent over the total volume of both constituents, i.e.

φs =
ns(Ds)

3

nl(Dl)3 + ns(Ds)3
, φl =

nl(Dl)
3

nl(Dl)3 + ns(Ds)3
. (2.27)

Dividing top and bottom of these results by nl(Dl)
3 reveals the relationship between

the number density and the volume fraction variables, is given by

φl =
1

1 + ησ3
, φs =

ησ3

1 + ησ3
, (2.28)

revealing a connection between the microscopic variables like number density, η, and

the macroscopic variables, for example, volume fraction φ. It is possible to write
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(1.27) in terms of these macroscopic variables, using (2.28), (1.25) becomes

qNl
= qSLφ

s, (2.29a)

qNs = −qSLφ
l. (2.29b)

where

qSL = ql − qs. (2.30)

On substitution back into the small particle mass balance equation (1.27) and appli-

cation of (1.25), the following results for the small particles is revealed

γz
∂φs

∂x
− ∂

∂z

(

qSLφ
sφl
)

= 0. (2.31)

To be consistent with (2.1) the volume voids ratio e has been taken to be zero, in

(1.25). This is because in this model only the solid volume has been considered.

Equation (2.1) can easily be generalised to allow for this constant voids space by

replacing it with φs + φl + e = 1, which does not change the result as the constant

cancels out. This and other generalisations to the derivation presented above are

discussed in more detail in � 6.

Writing (1.27) in the form of (2.31) it is clear that this is equivalent to the steady

state version of (2.25) with the bulk flow velocity field taken to be u = (γz, 0, 0),

which is in agreement with the bulk velocity assumption of Savage & Lun. The

models only differ in their definitions of the segregation velocities q and qSL, in (2.24)

and (2.30). A significant advantage of the new theory is that the segregation velocity

is dependent on the normal component of gravity, g cos ζ, which automatically defines

the direction for segregation and ensures that there is no segregation in the absence

of gravity. Even though the two equations have the same structure, the lack of

gravity in the original Savage-Lun model makes it impossible to use this comparison

to obtain expressions for the undetermined quantities c and B, in terms of the particle

parameters. Additionally the new equation is more general and able to deal with any

velocity profile and also provides information about the temporal development of

segregating flows, which is essential for a large number of important applications

including the fingering instability [67, 68].
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The load sharing factors fµ where chosen to give the simplest possible mathemat-

ical structure that leads to segregation. This leads to a q that is constant, ultimately

it may be possible to incorporate some of the other more complex dependencies of

qSL, but, for the remainder of this thesis, the constant case is investigated.

2.4 Non-dimensional segregation equation

Avalanche models all exploit the shallowness of the flow to derive a system of depth-

averaged mass and momentum equations for the thickness and the mean downslope

velocity. Anticipating that the bulk flow will be computed using such models, the

variables are non-dimensionalised by the standard avalanche scalings

x = Lx̃, z = Hz̃, (u, v) = U(ũ, ṽ), w = (HU/L)w̃, t = (L/U)t̃, (2.32)

where U is a typical downslope velocity magnitude, and the typical avalanche length

L is much larger than the typical thickness H. Dropping the tildes and the superscript

s, the segregation equation (2.25) becomes

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂y
(φv) +

∂

∂z
(φw) − Sr

∂

∂z

(

φ(1 − φ)
)

= 0, (2.33)

where the non-dimensional segregation number

Sr =
qL

HU
(2.34)

is the ratio of the mean segregation velocity to typical magnitudes of the normal bulk

velocity, w. The non-dimensional form of the incompressibility condition (2.26) can

be used to simplify the conservation form of the segregation equation (2.33) to

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z
+ Sr(2φ− 1)

∂φ

∂z
= 0, (2.35)

which, when u is given, is a classical first order quasi-linear equation for the volume

fraction of small particles. When Sr ≡ 0 there is no segregation and (2.35) reduces

to the tracer equation, which has been used by Gray & Tai [33] and in later publica-

tion Gray, Tai and Hutter [34] to model the formation of stratification patterns in a



CHAPTER 2. TWO PHASE GRANULAR MODEL 62

pre-segregated bi-disperse mixture. The non-dimensional segregation number Sr de-

termines the strength of the segregation. Strong segregation is usually observed, [72],

when there is a significant gradient in the downslope velocity through the avalanche

depth, but segregation can also occur, over longer distances, in avalanches with weak

shear. Avalanche models usually assume a plug flow regime with uniform down- and

cross-slope velocity profiles, but vertical structure can easily be incorporated by the

inclusion of shape factors (e.g. [70]) in the depth averages of u2, uv and v2 in the

momentum transport terms, see section � 1.2 for details. Both strong and weak shear

can be generated in laboratory experiments, and it is therefore of interest to see what

effect they have on the resulting particle size distribution.



Chapter 3

Analytical solutions

In this section a series of analytical solutions to the segregation equation (2.35) will

be constructed. They will be used for two main purposes: firstly, to gain an un-

derstanding of both the mathematical and physical phenomena that the solutions of

the equation possess and secondly they will be used as a test bed for the numerical

algorithms developed in chapter 4. The solutions found will also be compared and

contrasted to those of Savage & Lun, discussed in � 1.3.3, and used to further analyse

the differences and similarities between the two theories.

3.1 Steady-state segregation in steady uniform flows

with homogeneous inflow conditions

The first problem that will be considered is the steady-state segregation generated by

a homogeneous inflow of particles in a shearing flow. This is precisely the situation

Savage & Lun [72] considered with their model and which they compared to a series

of detailed laboratory experiments (for more details see � 1.3). A slightly more general

velocity field than simple shear, given by

u = u(z), v = 0, w = 0, (3.1)

will be considered. Using conservation of mass, this velocity field implies that the

avalanche is of constant thickness. Experimentally this situation is relatively easy

63
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to reproduce. To achieve this requires that the angle of inclination of the chute is

approximately equal to the angle of friction of the granular material being used.

Under the velocity field (3.1), the conservation form of the segregation equation

(2.33) reduces to

∂

∂x
(φu) − Sr

∂

∂z

(

φ(1 − φ)
)

= 0, (3.2)

where Sr is the non-dimensional segregation number given by (2.34). This must

be solved subject to the condition that a homogeneous mixture of concentration φ0

enters the chute at x = 0,

φ(0, z) = φ0, 0 ≤ z ≤ 1, (3.3)

and there is no normal flux through the free-surface or the base. Representing the

segregation equation in flux form,(3.2), reveals its physical meaning, whereby the flux

of small particles in the x-direction is φu and φ(1− φ) in the z-direction. Therefore,

no flux through the free-surface and base can mathematically be represented as,

φ(1 − φ) = 0, at z = 0, 1. (3.4)

This equation will be used to enforce no flux in the development of the analytical

solution, but in the numerical solutions it will be imposed more directly. The numeri-

cal method calculates the numerical fluxes across boundaries between adjoining cells,

therefore this flux will be set identically to zero across the top and bottom boundaries

of the computational domain, details can be found in � 4.

3.1.1 Characteristics

The conservative segregation equation (3.2) can be rewritten as a simple first order,

quasi-linear equation by expanding out the derivatives to give

u
∂φ

∂x
+ Sr(2φ− 1)

∂φ

∂z
= 0. (3.5)

Solutions to (3.5) may be constructed by the method of characteristics, which can be

found in many textbooks, for example [2, 30, 77, 7]. The method of characteristics

is a way of reducing a hyperbolic PDE to family of ODEs. Along a characteristic φ
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is constant and will be taken to be equal to φλ, this implies the equation is only a

function of one variable, hence

x = x(r), z = z(r), (3.6)

where r is a measure of the distance along a given characteristic. Therefore, the

derivative of φ with respect to r will be given by

dφ

dr
=
dx

dr

∂φ

∂x
+
dz

dr

∂φ

∂z
. (3.7)

Comparison with (3.5) reveals for the following results,

dx

dr
= u,

dz

dr
= (2φλ − 1) , (3.8)

where the subscript λ is used to label the characteristic under discussion and is a

constant along this curve. Eliminating r from (3.7) leads to a family of ODEs,

u
dz

dx
= Sr(2φλ − 1), (3.9)

which is equivalent to the original PDE (3.2). As φλ is constant and u is a function of

z, this is a separable equation that can easily be integrated once the velocity field is

known. Solutions for general velocity fields can, however, be constructed by defining

a depth-integrated velocity coordinate

ψ =

∫ z

0

u(z′) dz′, (3.10)

which increases monotonically with increasing z, provided u > 0. Even though ψ has

been used for this variable, it should not be confused with rate of energy transfer

in the general framework of mixture theory, as in this model an energy equation is

never considered or used. Since the avalanche velocity magnitude is set by the scalings

(2.32), it may be assumed without loss of generality, that ψ = 1 at the free surface

z = 1. Differentiating the velocity transform (3.10) using the chain rule reveals,

dψ

dx
= u

dz

dx
. (3.11)

Substitution of (3.11) into the characteristic equation (3.9) gives

dψ

dx
= Sr(2φλ − 1), (3.12)
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which is independent of the prescribed velocity field, meaning that the constructed

solution is valid for any field consistent with (3.1). The physical solution is simply

obtained by inverting (3.10) for any prescribed u(z). The solution of (3.12) is

ψ = Sr(2φλ − 1)(x− xλ) + ψλ, (3.13)

where (xλ, ψλ) is the initial position of the characteristic. Therefore, in transformed

variables all characteristics are straight lines, the gradients of which are set by the non-

dimensional segregation parameter and the small particle concentration. For regions

with 100% concentration of large particles the characteristics propagate downwards

with gradient −Sr, for regions with 100% concentration of small particles the char-

acteristics propagate upwards with gradient Sr and for particles entering the domain

with concentration φ0 the characteristics has a gradient of Sr(2φ0 − 1), which may

point either upwards or downwards, depending on the value of φ0.

Physically, the characteristics represent the propagation of information into the

domain. The boundary condition for the top and bottom boundary (3.4) have two

solutions φ = 0, 1. In order for information to propagate into and not out of the

domain the condition φ = 1 must be enforced at the base of the flow and φ = 0 at the

free-surface. The characteristics are illustrated for an inflow concentration of 60% in

figure 3.1.

3.1.2 Segregation jump condition

As can be seen from figure 3.1 there are three lines on which the characteristics

intersect. These are points where the inflow and boundary information meet and are

inconsistent with each other. At these points the classical continuous solutions break

down and shock conditions need to be applied to obtain a discontinuous solution. This

is a common situation and the construction of these ‘shock conditions’ is discussed in

detail, for the case of incompressible fluids, in [77], whereas [2] gives a treatment for

numerous different problems, including traffic flow, gas dynamics, plasticity and the

mechanics of granular materials. In [7] a more abstract treatment, independent of

any underlying physical problem, can be found. In one-dimensional problems these
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Figure 3.1: A plot of the steady-state solution in depth-integrated velocity coordinates
(x, ψ) for an inflow concentration φ0 = 0.6 and Sr = 1. The bulk flow is from left
to right. The shocks (straight thick lines) meet at the triple-point (grey circle) and
divide the domain into three regions. A homogeneous mixture enters from the left-
hand side. The characteristics (straight thin lines) carry this information into the
triangular region, as indicated by the arrow. The bottom layer is filled by small
particles and have upward sloping characteristics, whilst the top layer is filled with
large particles and have downward propagating characteristics, which intersect with
one another at the shocks.
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shocks arise due to characteristics whose paths converge and intersect, then shock

conditions are used to continue the solutions beyond this point. Here it is due to an

‘incompatibility’ between inflow and boundary conditions and the solution is already

known on both sides of the shock. Therefore, it will be used to check the boundary

and inflow conditions are mathematically consistent and to determine the precise

location of the discontinuity.

The jump or shock condition can be derived from an integral version of the con-

servative form of the segregation equation (3.2). Integrating this from L1 to L2 with

respect to z gives

∂

∂x

∫ L2

L1

φu dz − Sr

[

φ(1 − φ)
]L2

L1

= 0. (3.14)

Assuming that there is a jump in φ located at z = s(x), equation (3.14) becomes

∂

∂x

[

∫ s−

L1

φu dz +

∫ L2

s+

φu dz

]

− Sr

[

φ(1 − φ)
]L2

L1

= 0, (3.15)

where the plus/minus superscripts denote evaluation of the limits on right/left side

of the discontinuity respectively. Leibniz’s rule, e.g. � 3.3.7 of [3], states

∂

∂x

∫ a(x)

b(x)

f(x, z) dz =

∫ a(x)

b(x)

∂f(x, z)

∂x
dz − f(x, b(x))

∂b

∂x
+ f(x, a(x))

∂a

∂x
, (3.16)

which will be used to differentiate under the integral sign. Interchanging the order

of differentiation and integrating using (3.16), (3.15) can be expressed as

∫ L2

L1

∂

∂x
(φu) dz − ds

dx
[φu]+− − Sr

[

φ(1 − φ)
]L2

L1

= 0, (3.17)

where the jump bracket [φ]+− = φ+ − φ− is the difference of the enclosed quantity on

the forward and rearward sides of the shock. Shrinking the domain [L1, L2] onto the

shock by taking the limits L1 → s− and L2 → s+ yields the jump condition

[φus′ + Srφ(1 − φ)]
+
− = 0, (3.18)

where s′ = ds/dx. This can be rearranged to give

u
ds

dx
= Sr(φ

+ + φ− − 1), (3.19)
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which is an ordinary differential equation for the position of the shock. Using depth

integrated-velocity coordinates, defined in (3.10), (3.11) shows this can be trans-

formed to

dψ

dx
= Sr(φ

+ + φ− − 1), (3.20)

which is independent of the assumed velocity profile.

3.1.3 Shock solutions in mapped coordinates

Savage & Lun’s [72] experiments showed that a layer of 100% fines developed near

the base and that there was a sharp concentration jump between this region and

the homogeneous inflowing mixture. There is a simple physical explanation for this,

as the mixture flows into the chute, small particles drain down through the matrix

and in turn lever large particles towards the surface. The net effect of this is that

the local volume fraction of small particles remains at the inflow concentration φ0

throughout most of the flow, just as the solution by the method of characteristics

suggests. However, at the lower boundary there are no more large particles to be

levered up, and the no-normal flux condition (3.4) implies that a region of 100% fines

develops at the base. This layer becomes progressively thicker downstream, because

no large particles can be supplied from the pure phase. They also observed the

development of a similar concentration shock near the free-surface, between a region

of 100% large particles and the homogeneous mixture. This time the pure phase of

large particles is generated because there are no more small particles to fall down

through the matrix.

This is demonstrated in the characteristic diagram 3.1 which shows three different

regions with φ = 0, φ0 and 1 separated by shocks. It still remains to compute and

check the consistency of these boundaries (shocks) using the shock condition (3.20).

The position of the lower shock, which separates the fines from the homogeneous

mixture, can be computed from (3.20) by substituting φ+ = φ0 and φ− = 1 and

integrating subject to the boundary condition that ψ = 0 at x = 0. This implies

ψ1 = Srφ0x, (3.21)
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where, as before in � 1.3.3, the subscript 1 is used to denote the lower shock. In

depth integrated-velocity coordinates this grows linearly with downstream distance,

as shown in figure 3.1, but, in general, when mapped back to physical coordinates, it

will describe a curve. Specific results for a range of velocity profiles will be analyzed

at the end of this section, once the complete solution has been constructed.

Using exactly the same arguments as above, the position of the top shock, ψ2, can

be computed by substituting φ+ = 0 and φ− = φ0 into (3.20) and integrating subject

to the boundary condition ψ2 = 1 at x = 0, which implies

ψ2 = 1 − Sr(1 − φ0)x. (3.22)

This shock falls linearly from the free surface and meets the bottom shock at xp =

1/Sr at a height ψ = φ0 in depth-integrated velocity variables. When the two shocks

merge a third shock is formed, between the pure phases of small and large particles,

creating a triple-point. The final (third) shock position is determined by substituting

φ+ = 0 and φ− = 1 into (3.20) and integrating to give

ψ3 = φ0, for x ≥ xp. (3.23)

The solution consists of three domains of constant concentration, which are sepa-

rated by straight shocks (3.21)-(3.23) in depth-integrated velocity coordinates (x, ψ).

This is exactly as illustrated in figure 3.1, confirming the inflow and boundary are con-

sistent. The full structure is now clear, at x = 0 the homogeneous mixture enters the

domain and the initial concentration, φ0, is swept into the triangular region adjacent

to the ψ-axis by the characteristics. At the base, and free-surface, there are no more

large, or small, particles to propagate through the domain and pure phases of small

and large particles develop near the base and free-surface respectively. Within these

pure regions no further segregation takes place and the particles move downstream

along constant height trajectories by virtue of (2.23). The small particles have char-

acteristics that propagate upwards and the large ones propagate downwards. These

eventually intersect, either with one another or with the characteristics from the

homogeneous domain, to generate the three shocks.
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3.1.4 Physical solutions

The beauty of the depth-integrated velocity coordinates is that the solution given by

(3.21)–(3.23) is valid for all velocity fields that satisfy the constraint that u(z) > 0.

To visualize specific results in physical coordinates, a velocity field must be prescribed

and the integral (3.10) solved to obtain ψ = ψ(z). A series of linear velocity profiles

u = α+ 2(1 − α)z, 0 ≤ α ≤ 1, (3.24)

are investigated here, where the parameter α is used to generate plug flow, α = 1,

simple shear, α = 0, and shear with basal slip, for intermediate values. The integral

(3.10) implies that the depth-integrated velocity coordinate is

ψ = αz + (1 − α)z2, (3.25)

which has the property that at the free-surface ψ(1) = 1, as required. Note, for the

case α = 0, this velocity field (3.25) is equal to zero at the point z = 0. As this is an

isolated point no problems arise with uniqueness when the integral transformation

(3.10) is applied. This can easily be inverted to give the position of the shocks in

physical space

z =















ψ, α = 1,

−α +
√

α2 + 4(1 − α)ψ

2(1 − α)
, α 6= 1.

(3.26)

The exact solutions are illustrated in figure 3.2 for a series of linear velocity profiles

generated by parameter values of α = 0, 1/2, 1, initial concentrations of φ0 = 50%

and 30% and for a segregation number Sr = 1. Plug flow is the simplest case as the

physical and transformed coordinates are identical. The shocks and characteristics are

therefore all straight lines, as described above. The solutions are shown in the top two

panels using a contour scale, blue regions are small particle dominated, red regions

large particle domained, with the darker shades indicating a higher concentration

and green represents equal volumes of both. For 50% inflow concentration, the third

shock lies at z = 0.5 to create an inversely-graded layer of large particles overlying

small particles. At 30% inflow concentration, the solutions are similar, but the third

shock lies at z = 0.3.
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Figure 3.2: Steady-state solutions for the concentration of small particles φ are shown
as a function of the downslope coordinate x and avalanche depth z. The bulk flow
is from left to right and the concentration is shown using a contour scale. A blue
shading corresponds to higher concentrations of large particles than small, and red
visa versa. Whereas green indicates an equal amount of both by volume fraction.
The top 3 sets of panels assume linear velocity profiles corresponding to plug flow
(α = 1), linear shear with basal slip (α = 1/2) and simple shear (α = 0), from
top to bottom respectively. The bottom two panels correspond to Silbert et al.’s
velocity u = 5(1 − (1 − z)3/2)/3. The left hand panels are for a homogeneous inflow
concentration φ0 = 50% and the righthand panels for 30%. The segregation number
Sr = 1, implies that all of the solutions segregate fully at x = 1.



CHAPTER 3. ANALYTICAL SOLUTIONS 73

The intermediate case of shear and translation is often observed in physical flows

and lies between simple shear and plug flow. Solutions for α = 1/2 are shown in the

middle two panels of figure 3.2, i.e. for the velocity field u = z + 1/2. The shocks

(3.21)–(3.23) and characteristics (3.13) are mapped to the physical space using the

full quadratic mapping defined in (3.26). The solution, therefore, has the same basic

structure as the other two cases. The upper and lower shocks are not straight lines,

but are less curved than in simple shear and the lower shock has a finite gradient at

the origin. The final layer thickness of large particles lies between that of uniform

flow and simple shear in both the 30% and 50% concentration cases.

3.1.5 Comparison to Savage-Lun

For simple shear flow the solution is constructed by substituting the shock relations

(3.21)–(3.23) into the mapping (3.26) with α = 0, to give

z1 = (Srφ0x)
1
2 in 0 ≤ x ≤ 1/Sr,

z2 = (1 − Sr(1 − φ0)x)
1
2 in 0 ≤ x ≤ 1/Sr,

z3 = (φ0)
1
2 in x > 1/Sr,



















(3.27)

which is illustrated in the second from bottom two panels of figure 3.2. The upper and

lower shocks have square root profiles, with the lower one having an infinite gradient

at the origin. The third shock is again straight, but it is significantly higher than in

plug flow. This reflects the fact that there is a far greater total flux of particles in

the upper fast moving layers of the flow than in the lower, slower moving layers.

Savage & Lun constructed steady-state solutions for this case, which were dis-

cussed in detail in � 1.3.3. For (1.33) to be compared directly to (3.27), they firstly

need to be non-dimensionalised using the scaling given in (2.32) and written in terms

of volume fractions using the relations (2.27). Additionally a relationship between η0

and φ0 must be obtained from their definitions this is clearly given by (2.28)2 with

η/φ replaced with η0/φ0 respectively i.e.,

φs
0 =

η0σ
3

1 + η0σ3
, (3.28)
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where σ is the ratio of the particle diameters. Putting all these results into (1.33)

gives the Savage-Lun shock relations in terms of volume fractions as,

z1 =

(

Ss
φ0

1 − φ0
x

)
1

2

in 0 ≤ x ≤ (1 − φ0)/Ss,

z2 = (1 − Ss(1 − φ0)x)
1
2 in 0 ≤ x ≤ (1 − φ0)/Ss,

z3 = (φ0)
1
2 in x > (1 − φ0)/Ss,



























(3.29)

where

Ss =
2LDlKs

H2
. (3.30)

In general, Ks is a complicated function of η, hence Ss is not a constant. See Appendix

B for details.

Superficially, (3.29) looks similar to (3.27) but these are based on an incorrect

assumption, as discussed in � 1.3.3. Instead of using a shock condition, Savage & Lun

assumed that the fall line (or shock), marking the 0% fines region, was given by the

characteristic curve emanating from the top of the inflow boundary. The authors then

used the fact that, at any position along the chute, the depth-integrated flux of small

particles must be equal to the inflow flux. The upper and lower shocks are steeper

than those in the correct solution and therefore the distance for complete segregation

is shorter. However, the conservation of the depth-integrated flux of small particles

ensures that the final height of the third shock is correct. If shock conditions had been

applied, the structure would be identical to that of (3.27), with the only difference

being in the definition of the segregation strength Ss compared to Sr, as defined in

(3.30) and (2.34) respectively.

As discussed in Appendix B, in the low η limit, Ks is a constant. From (B.5)

and the scalings given in (2.32) it follows that in this limit Ss → Sr and the theories

predict exactly the same structure. This vindicates the choice of the form of the

load factors (2.21), as this simplest form is just equivalent to the dilute limit of the

Savage-Lun theory.

With this comparison complete it is clear that (3.27) represents the correct dilute

limit solutions of the Savage-Lun theory, where (3.29) describes the incorrectly solved
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Figure 3.3: The shock positions for the Savage & Lun theory (3.29) (dashed line)
and the current theory (solid line) (3.27) for homogeneous inflow concentrations of
50% (left panel) and 10% (right panel) in a simple shearing flow with Sr = 1. The
distances for complete segregation to occur are comparable for the dilute case, but
differ significantly at larger concentrations.

solution to the general Savage-Lun equations. As discussed in � 1.3.4, their experi-

ments showed very good agreement with the incorrect solution to the general theory.

Figure 3.3 shows that for η = 0.1, which is in the range where the experiments were

performed, there is only a small difference between the two solutions. Therefore,

there is still very good agreement between the new theory and the experiments of

Savage & Lun [72] and Vallance & Savage [85].

Note, figure 3.3 has been constructed for two different values of φ0. Assuming

that σ = 1/2, which is around the typical value for an experiment, implies that the

left panel is for η0 = 0.21 and the right for η0 = 1.14. This indicates that the models

are in agreement for all the experiments Savage & Lun performed, as they never

considered η greater than 0.15.

3.1.6 A velocity field that scales with the thickness to the

power 3/2

As discussed in � 1.2.1, there is considerable evidence that the mean velocity of chute

flows scales with the thickness of the layer to the power 3/2. For this reason the

velocity profile proposed by Silbert et al. [56], given by equation (1.10), will be

investigated. Before continuing, this profile needs to be non-dimensionalised subject
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to the scaling in (2.32) and recalling ū given by (1.12), reveals the dimensionless

downslope velocity profile as

u =
5

3

[

1 − (1 − z)3/2
]

. (3.31)

The integral transform (3.10) implies that the depth integrated velocity coordinate

is

ψ =
5

3
z − 2

3

[

1 − (1 − z)5/2
]

. (3.32)

This transformation can not be inverted to give explicit relations for the shocks, but

it is a simple procedure to produce contour plots of the results, which are shown in

the bottom two panels of figure 3.2. They look quite similar to the case of simple

shear as the bottom shock has an infinite gradient at the origin, but the third shock is

not as high. This minor discrepancy between the two profiles would be very hard to

see experimentally, and the linear shearing profile remains a very good approximation

to this more complicated profile.

3.1.7 Particle paths

To understand these solutions, it is instructive to explore the trajectories of the large

and small particles moving through the flow. The idea and detailed explanation of

particle paths can be found in many standard textbooks, for example � 1.8 of [88].

The particle-paths of constituent µ are obtained by solving

dxµ

dt
= uµ,

dyµ

dt
= vµ,

dzµ

dt
= wµ, µ = l, s. (3.33)

For this model the individual constituent velocities are given by (2.18) and (2.23),

with the bulk velocity under consideration in this section, i.e (3.1), (3.33) is reduced

to the following,

dxs

dt
= u(z),

dzs

dt
= Sr(1 − φ),

dxl

dt
= u(z),

dzl

dt
= −Srφ, (3.34)

which has been written in terms of non-dimensional variables, using (2.32).

Eliminating time, to obtain the particle paths, and changing to the depth inte-

grated coordinates, using (3.11), gives the particles paths as

dψs

dxs
= −Sr(1 − φ) and

dψl

dxl
= Srφ. (3.35)
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The particles will enter the chute at x = 0 at a height z0 where, for both large and

small particles, 0 ≤ z0 ≤ 1. Initially the particles find themselves in a region of

concentration φ0. Integrating (3.35) gives the paths as

ψs = −Sr(1 − φ0)x
s + ψ0, ψl = Srφ0x

l + ψ0, (3.36)

where ψ0 =
∫ z0

0
u(z′) dz′. For the series of linear velocities (3.24) under consideration,

ψ0 = αz0 + (1 − α) z2
0 . (3.37)

The small particles will continue along this trajectory until they cross the lower shock,

given by (3.21), which occurs at the point

x =
ψ0

Sr

, ψ = ψ0φ0. (3.38)

Whereas, the large particles will head upward until crossing the shock emanating

from the top corner of the inflow, (3.23), occurring at

x =
1 − ψ0

Sr

, ψ = φ0 + ψ0 − ψ0φ0. (3.39)

After the large/small particles cross the top/bottom shock they find themselves in a

region filled of there own type and (3.36) implies the trajectories then become parallel

to the base of the flow.

The particle paths are illustrated in figure 3.4. The homogeneous mixed region

is immediately obvious, in this region the small particles can be seen to percolate

down as the large particles are levered up toward the free surface. In both the simple

shear and the plug flow case, shock 2 (top) is also given by the particle path of the

small particle started at the point z = 0, likewise shock 1 (bottom) is the trajectory

of a large particle starting at the very bottom of the chute, as is expected from the

physical explanation of the shocks in � 3.1.4

As discussed previously, there is the same flux of material above and below shock

3 (the segregation shock) even in the shear case. This is neatly illustrated by figure

3.4 as the flux is simply related to the number of particle paths and the same number

of particles can be seen above and below this shock in both cases.
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Figure 3.4: Graph showing the particle paths for large (blue) and small (red) particles
starting from an homogeneous inflow condition. The flow is from left to right and
the plots are constructed for Sr = 1. A path is drawn for 11 particles, of each type,
whose initial height ranges from 0 to 1 in steps of 0.1. The left panel is for plug flow
(α = 1) and the right for simple shear (α = 0).

3.2 Steady-state segregation in steady uniform flow

with normally graded inflow conditions

The exact solutions for the segregation from a homogeneously mixed inflow were

motivated by the experiments and approximate solutions of [72]. In practice, it is

quite difficult to generate a homogeneous inflow, as the material tends to segregate

in transport and setup. Such segregation can be seen in the original videos they

recorded. This is a minor effect but can be avoided by using an alternative inflow

configuration in which the particles are normally graded, i.e. with the small particles

on top of the large particles. Analytical solutions for such a case are now considered.

3.2.1 General solution for arbitrary positive velocity fields

The same velocity, as in previous section (3.1), will be considered. As before, this

velocity profile reduces the segregation equation (2.33) to the form of (3.5), which

in this case is subject to the normally graded inflow condition, with a pure phase of

small particles lying above a pure phase of large particles, at x = 0. Mathematically
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this is given by,

φ(0, z) =







1 zr ≤ z ≤ 1,

0 0 ≤ z < zr,
(3.40)

where zr is the height of the sharp interface. In addition, as before, no particles are

allowed to pass through the free-surface or base of the flow, which implies that (3.4)

must be applied at both z = 0, h.

The same depth integrated transform, (3.10), will be used. Hence, following the

analysis in � 3.1.1, the characteristics are again given by

ψ = Sr (2φλ − 1) (x− xλ) + ψλ. (3.41)

Before continuing, the initial condition (3.40) needs to be transformed into the depth

integrated coordinates (3.10). In this coordinate system it becomes

φ(0, ψ) =







1 ψr ≤ z ≤ 1,

0 0 ≤ z < ψr,
(3.42)

where

ψr =

∫ zr

0

u(z′) dz′. (3.43)

Figure 3.5 illustrates how the characteristics propagate downstream from the in-

flow at x = 0. Above the discontinuity, the particles are all small and the charac-

teristics propagate upwards with gradient Sr, whilst below the discontinuity, where

the particles are all large, the characteristics propagate downwards with gradient

−Sr. These characteristics are consistent with the no flux boundary conditions (3.4),

therefore no shocks are generated when these intersect the top/bottom boundaries.

At the point x = 0, ψ = ψr = ψ(zr) all values of φλ are present from 0 to 1,

therefore a rarefaction fan is formed from this point. The equation of this fan is

simply obtained by substituting in the value of the emanation point,(0, φr), in to the

general characteristic equation (3.41). After rearranging this gives,

φλ =
1

2

(

1 +
ψ − ψr

Srx

)

. (3.44)

The solution described by (3.44) is valid until the φλ = 0 characteristic emanating

from the fan propagates down and reaches the base of the flow at xb = ψr/Sr, and
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Figure 3.5: The steady-state solution in depth-integrated velocity coordinates (x, ψ)
of the characteristics for the normally graded case. The inflow concentration jump
is located at (0, ψr) and the bulk flow is from left to right. The characteristics are
shown as straight thin lines and the arrows show their direction of propagation. A
rarefaction fan is centred at the discontinuity and a series of characteristics radiate
away from it. The front marking the first small particles that propagate downwards is
indicated by the downward bold characteristic emanating from the fan. This reaches
the base at a distance xb = ψr/Sr downstream and a curved (bold) shock wave is
generated that separates the expansion fan from the pure phase of small particles
that gather beneath. A similar situation occurs at the top boundary, where the large
particles first reach the surface at xs = (1 − ψr)/Sr and a curved shock is generated
that separates the pure phase of large particles from the expansion fan. At a distance
xp downstream the two shocks meet and a third parallel shock at height 1 − ψr is
formed, creating a completely segregated inversely graded layer.



CHAPTER 3. ANALYTICAL SOLUTIONS 81

generates a shock wave. Physically this characteristic represents the front between a

region of purely large particles and the first small particles that propagate downwards.

Within the avalanche a downward motion of small particles automatically implies that

there is a corresponding upward flux of large particles by (2.23). However, at the lower

boundary, there are no more large particles available and the flux condition (3.4)

implies that the small particles separate out into a pure phase. This concentration

shock then propagates upwards into the domain as more and more particles separate

out.

In � 3.1.2 the following shock condition was derived,

dψ

dx
= Sr

(

φ+ + φ− − 1
)

, (3.45)

in depth integrated coordinates. This condition remains valid for this situation. The

shock ψ1, that forms when the lead characteristic φλ = 0 reaches the base, has a pure

phase of small particles on the forward side, φ+ = 1, and the expansion fan (3.44) on

the rearward side. Substituting these into (3.45) implies

dψ1

dx
=

1

2

(

1 +
ψ1 − ψr

Srx

)

, (3.46)

which is a linear separable ODE and can be integrated subject to the initial condition

that ψ1 = 0 at x = ψr/Sr to give the height of the bottom shock as

ψ1 = ψr + Srx− 2
√

Srψrx. (3.47)

A similar situation develops on the upper side of the expansion fan. The φλ = 1

characteristic marks the front of large particles that propagate upwards into the pure

phase of small particles entering from the inflow. This reaches the free-surface ψ = 1

at xs = (1−ψr)/Sr and a shock ψ2 is formed between a pure phase of large particles

on the forward side, φ+ = 0 and the expansion region (3.44) on the rearward side.

The shock condition (3.45) yields a linear ordinary differential equation which can be

integrated to give

ψ2 = ψr − Srx + 2
√

Sr(1 − ψr)x. (3.48)
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The lower shock (3.47) increases in height with downstream distance x, whilst the

upper shock decreases in height. The two shocks meet at

xp =
1

Sr

(
√

ψr +
√

1 − ψr

)2
, ψp = 1 − ψr, (3.49)

and a third shock ψ3 is formed between the large and small particles. In this case

the jump condition (3.45) reduces to dψ/dx = 0, so that for this shock

ψ3 = ψp, for x ≥ xp, (3.50)

and it is parallel to the downstream coordinate. The point xp determines the down-

stream location at which complete segregation first occurs. It is proportional to 1/Sr,

which, like the solutions � 3.1.4, show that inversely graded layers form at shorter

downstream distances when the segregation number Sr is larger. The segregation

distance also depends on ψr, which is qualitatively different to the homogeneous in-

flow case, where the distance for complete segregation was independent of the initial

concentration. The transform (3.43) implies that xp is dependent of both the initial

segregation height zr and the under-lying velocity field u(z). This means that com-

parison with experiments cannot be conducted unless detailed information on the

velocity field is known.

The region above this final ψ3 shock is filled with large particles, which implies

that φ = 1 on the top boundary after xs. This clearly has to be the case as the

characteristics represent the direction of information propagation from the boundary.

As no information can cross the shock it must take a value such that the solution exists

in this region. Therefore the point xs represents the location where the boundary

solution switches from φ = 0 to φ = 1. As already discussed, physically this represents

the arrival of the first large particles at the top boundary and the formation of a pure

large phase. Mathematically, this switch is required so that a solution exists in the

whole domain. Similar arguments can be constructed for the opposite switch in the

value of φ at the bottom boundary, occurring at the point xb. Figure 3.5 shows

the full diagram of the characteristics and how information from the boundary is

propagated and fills the whole domain.
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3.2.2 Physical solutions

In this section the physical solution for a number of different velocity fields, as in

� 3.1.4, will be investigated. Initially we will look at a series of linear velocity fields

given by (3.24). As before, with this velocity profile, the mapping back into physical

space is given by (3.26).

The physical solutions are illustrated for three values of α and two values of zr in

the top six panels of figure 3.6, for Sr = 1. A contour scale is used to help identify

regions of high concentrations of small particles (red) and large grains (blue). The

top two panels correspond to plug flow where, in this case, the physical and depth-

integrated coordinates are identical, ψ = z, so the fan is bounded by straight lines

and the upper and lower curved concentration shocks have square-root dependence

as defined in (3.47) and (3.48). The point xp where the two shocks meet, and the

grains separate out into stratified inversely graded layers, is dependent on the height

of the inflow discontinuity zr. Equation (3.49) implies xp = 2 for zr = 1/2, whilst

for zr = 0.7 the shocks meet slightly earlier at xp = 1.91. The upper middle panels

of figure 3.6 show the solutions for linear shear and translation with α = 1/2, which

requires the full quadratic mapping (3.25). The characteristics in the expansion fan

are now curved, rather than straight. This is because as the small particles percolate

down through the matrix their downslope velocity becomes progressively less, even

though the percolation velocity at a given concentration remains constant by (2.23).

As a consequence, the lower φλ = 0 characteristic emanating from the fan reaches the

base of the avalanche slightly earlier than for plug flow, whilst the upper characteristic

φλ = 1 reaches the free-surface slightly further downstream. The combination of the

mapping and these shifts in the initiation point of the shocks results in the upper

and lower shocks meeting at a far higher level in the avalanche, so that the layer of

inversely graded large particles is much thinner for sheared flow than for plug-flow.

Physically, the reason for this is that there is simply a far higher mass flux of particles

in the upper rapidly moving layer of the flow. The segregation length xp, where the

two shocks meet, is in almost the same position for both zr = 0.5 and 0.7. For simple
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Figure 3.6: Steady-state solutions for the concentration of small particles φ are shown
as a function of the downslope coordinate x and avalanche depth z. The bulk flow
is from left to right and the concentration is shown using a contour scale. A shade
of blue corresponds to higher concentrations of large particles than small, and red
vice versa. The bulk flow is from left to right and the top 3 sets of panels assume
linear velocity profiles corresponding to plug flow (α = 1), linear shear with basal slip
(α = 1/2) and simple shear (α = 0), from top to bottom respectively. The bottom
two panels correspond to Silbert et al.’s velocity u = 5(1−(1−z)3/2)/3. The solution
is plotted for zr = 0.5 (left) and zr = 0.7 (right)
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Figure 3.7: A contour plot of the segregation distance Ls = Srxp as a function of
the linear velocity profile parameter α and the initial discontinuity height zr. The
dot-dash line shows the points where the maximum value of Ls = 2 is attained.

shear, α = 0, the reverse mapping (3.26) reduces to z =
√
x. The lower characteristic,

which marks the first small particles percolating downwards and emanates from the

fan, has an infinite gradient at z = 0, which is caused by the zero velocity at the

base of the avalanche. In addition, the lower shock now has a concave instead of

convex profile and the layer of rapidly moving large particles far downstream is even

thinner than for linear shear and translation. Interestingly, the segregation length is

now longer for zr = 0.7 than for zr = 0.5, with xp = 1.99 and xp = 1.86 respectively,

reversing the order found in plug-flow.

It should be noted that the segregation strength parameter, Sr could be scaled

out, for the situation under investigation. It has been left in to emphasise the effect

of changing the strength has on the equation solution. To remove this effect

Ls = xpSr, (3.51)
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will be defined. Considering Ls will give information about the difference in segre-

gation lengths of the same materials between different configurations. For all values

of α and different initial concentrations Ls = 1 for the homogeneous inflow case.

Therefore, this can be considered the ratio of the segregation length in homogeneous

inflow case to any other configuration for a given set of two granular materials.

As pointed out above for this configuration, there is a complicated dependence of

the segregation length xp on both α and zr. To investigate this further we differentiate

(3.49) with respects to ψr, this reveals

∂xp

∂ψr
=

1

Sr

(1 − 2ψr)
√

ψr − ψ2
r

= 0. (3.52)

The maximum segregation parameter Ls is equal to 2 and this is attained when

ψr = 1/2, or, equivalently using (3.43), when α = (1/2 − z2
r )/(zr − z2

r ), as shown by

the dot-dash line in figure 3.7. By expressing (3.49) as

Srxp = 1 + 2
√

ψr − ψ2
r , (3.53)

it is immediately clear that the lower limit of Ls, for this configuration, is 1 and is

achieved in either limit of ψr → 0, 1. This should be expected as in these limits you

are approaching very thin initial layers of one or the other constituent, therefore, the

inflow looks like a homogeneous inflow. Figure 3.7 demonstrates how the segregation

parameter Ls = Srxp varies as a function of α and zr. This shows that the segregation

distance is strongly dependent on zr and only weakly dependent on α.

Finally we investigate the Silbert et at, [56], velocity profile. The transformation

to physical space is given by (3.32). As discussed in � 3.1.6 it is not possible to invert

this for explicit relations for the shocks, but it is easy to numerically solve and to

construct contour plots of this solution. These are illustrated by the bottom two

panels of figure 3.6. Again, there is very little difference between this case and simple

shear. The final shock is lower which is a representation of the lower net flux in the

upper half of the flow with the Silbert et al. profile. Figure 3.8 shows the percentage

error between the simple shear case (α = 1) and the Silbert profile. There is no

difference between the case when zr = 0, 0.7 and 1 and it attains a maximum error
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Figure 3.8: Graph showing the percentage difference, in segregation length, when
using simple shear as an approximation to the Silbert profile against initial separation
height zr. The maximum in the estimation is 2.78 and occurs when zr = 0.3

of 2.78% at the point zr = 0.3. This shows that for all values of zr, simple shear is

a good approximation and from this point onwards the Silbert et al. profile will no

longer be considered.

3.2.3 Particle paths

As done previously the particle paths will be determined. Equation (3.35) remains

valid for this configuration, but this time the values of z0 are restricted. For the large

particles 0 ≤ z0 ≤ zr and small particles zr ≤ z0 ≤ 1. As the particles are initially

in a pure phase of their own type, they travel downstream at their initial height ψ0,

given by (3.37) for the linear velocity profiles. The particles move along until they

intersect the expansion fan, inside φ is given by (3.44), and the point of intersection

xe is given by

xs
e =

ψ0 − ψr

Sr
, xl

e =
ψr − ψ0

Sr
. (3.54)
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Figure 3.9: Graph showing the particle paths for large (blue) and small (red) particles
starting from a normally graded inflow condition. The flow is from left to right and
the plots are constructed for Sr = 1 and zr = 0.5 A path is drawn for 6 particles, of
each type, whose initial height ranges from 0 to 0.5 in steps of 0.1 for large and 0.5
to 1 in steps of 0.1 for small. The left panel is for plug flow (α = 1) and the right for
simple shear (α = 0).

Equation (3.36) is easily integrated subject to these conditions to give,

ψl = ψr + Srx
l − 2

√

Srxl
e

√

Srxl, ψs = ψr − Srx
s + 2

√

Srxs
e

√

Srxs. (3.55)

Since the second term grows quicker than the third, it is clear that within the fan

the large particles are forced upwards and small particles percolate downwards. To

conclude the particle-path analysis, the exit point from the fan needs to be computed.

For large particles this occurs when they cross shock 1, whose equation is given by

(3.47), solving (3.55) and (3.47) gives this exit point, xl
x as

xl
x =

(

√

1 − ψr +
√

Srxl
x

)2

/Sr, ψl
x = 1 − Srx

l
e. (3.56)

For the small particles this occurs on crossing shock 2, given by (3.48) and happens

at the point

xs
x =

(

√

ψr +
√

Srxs
x

)

/Sr, ψs
x = Srx

s
e. (3.57)

On exit from the fan, the particles again enter a pure phase of their own type and

move downstream at a constant height ψν
x. The full particle-paths have now been

determined and are illustrated in figure 3.9
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For the plug-flow case consider a single large particle entering with initial height

z0 = 0.2, shown on figure 3.9. This particle moves along at height z0 until a small

particle percolates past it, this is highlighted by the crossing of the first red particle

path. Once it has passed this point small particles percolate passed, and it is levered

upward passing more small particles. Eventually it crosses the small particle path

emanating from the point z = 1, after this point it has passed all the small particles

and is in a region of pure large particles, hence it is no longer pushed upwards and

remains at this height for the rest of the length of the chute.

3.3 Time-dependent segregation in steady uniform

plug-flows with homogeneous inflow conditions

Segregation by kinetic sieving is usually associated with flows that are strongly

sheared through their depth. However, many geophysical scale ([20]) and labora-

tory scale ([70, 54]) avalanches have relatively blunt downstream velocity profiles

with slip at the base. Segregation can still occur in these flows provided the particle

size difference is large enough and the agitation strong enough for the matrix to dilate

sufficiently for percolation to take place. Considerable insight into segregation in this

weak shear limit is provided by the case of plug flow.

3.3.1 Segregation in independent columns

For uniform plug-flow in a domain of unit height the segregation equation (2.25)

reduces to

∂φ

∂t
+ u0

∂φ

∂x
− Sr

∂

∂z

(

φ(1 − φ)
)

= 0, (3.58)

where the transport velocity u0 can, without loss of generality, be assumed to be unity

by virtue of the scalings in (2.32). As the velocity is independent of depth, consider-

able simplification can be achieved by transforming to a frame moving downstream

with speed u0 ≡ 1 (from non-dimensionalisation). Using the change of coordinates

t′ = t, ξ = x− t, z′ = z, (3.59)
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the segregation equation (3.58) reduces to

∂φ

∂t
− Sr

∂

∂z

(

φ(1 − φ)
)

= 0, (3.60)

in the moving frame, where the primes are now dropped. Since, this equation is

independent of ξ it implies that particle size segregation in a fixed moving column

of granular material is completely independent of the segregation taking place in

adjacent columns. This uncoupling is very useful for the construction of exact time-

dependent solutions.

A comparison of (3.60) with (3.2) shows that the segregation problem in a moving

column has exactly the same structure as the steady-state problem with u ≡ 1, except

that the spatial coordinate is now replaced by time. The solutions constructed in � 3.1

can therefore be applied directly here. To apply the solution from � 3.1 the following

identifications need to be made: Firstly since (3.60) is equivalent to (3.2) with u ≡ 1

then the integral transform (3.10) simply implies that ψ = z. So the shock equation

for this problem is simply

dz

dt
= Sr

(

φ+ + φ− − 1
)

. (3.61)

If each of these independent homogeneous columns is assumed to be created at t = tc

with concentration φc. It is clear that the shock solution (3.21)-(3.23) is valid with

the changes x→ t− tc, φ0 → φc and ψ = z. Hence the solution of (3.58) is

z1 = Srφc(t− tc) in 0 ≤ t− tc ≤ 1/Sr,

z2 = 1 − Sr(1 − φc)(t− tc) in 0 ≤ t− tc ≤ 1/Sr,

z3 = φc in t− tc > 1/Sr,



















(3.62)

which separate the homogeneous mixture and the pure phases in an exactly analogous

manner to the problems in � 3.1. These solutions are effectively illustrated in the top

two panels of figure 3.2, the only difference is that the x-axis must now be replaced

by the t− tc axis.

3.3.2 General time-dependent solutions for plug-flow

A full time-dependent solution can be constructed for plug flow, by using the simple

column solution (3.62) in a series of adjacent columns moving downstream at speed
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u0 ≡ 1. The coordinate ξ will be used to uniquely identify each column, by labelling

them using their initial position

ξ = x, at t = 0. (3.63)

It follows, from (3.59), that at a general time t column ξ has position

x = ξ + t. (3.64)

Columns with positive ξ are therefore initially within the avalanche, whilst columns

with negative ξ first enter the avalanche, at x = 0, at time −ξ. The transition point,

ξ = 0, between the columns initially within the avalanche and those that subsequently

enter it, is transported downstream with constant speed u0 ≡ 1 and has position

xtrans = t. (3.65)

Since the columns are independent of one another, different values of the con-

stants tc and φc can be chosen in each column, and they may therefore be considered

to be functions of ξ. A single function ϕ is therefore used to parameterise both the

initial and boundary conditions. Assuming that the homogeneous inflow concentra-

tion varies as ϕ(t), and that the initial mixture has a uniform concentration equal to

ϕ(0), the column parameters tc and φc are

tc = 0, φc = ϕ(0), for ξ ≥ 0,

tc = −ξ, φc = ϕ(tc), for ξ < 0.
(3.66)

Substituting these into the solutions (3.62) implies that the three shocks are simply

time-dependent in the region that was initially in the chute

z4 = Srϕ(0)t in 0 ≤ t ≤ 1/Sr,

z5 = 1 − Sr[1 − ϕ(0)]t in 0 ≤ t ≤ 1/Sr,

z6 = ϕ(0) in t > 1/Sr,



















and x ≥ t(= xtrans), (3.67)

but have both space and time dependence in the region that flows into the chute

z1 = Srϕ(t− x)x in 0 ≤ x ≤ 1/Sr,

z2 = 1 − Sr[1 − ϕ(t− x)]x in 0 ≤ x ≤ 1/Sr,

z3 = ϕ(t− x) in x > 1/Sr,



















and x < t(= xtrans). (3.68)
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Note that in the above equations the round brackets () are being used to emphasize

the functional dependence of ϕ, i.e. in (3.67) ϕ is a constant and in (3.68) ϕ is

a function of ξ = t − x. The shock solutions (3.67)–(3.68) determine the general

solution for the small particle concentration for any time-dependent function of the

inflow concentration ϕ. The full solution, given by (3.67) and (3.68) has been shown

to be made up, in general, of six shocks. The numbering system has been chosen such

that it is consistent with all previous sections. It will be shown in this section that

shocks 1 through to 3 tend towards the steady-state shocks of the homogeneous inflow

( � 3.1), for constant inflow problems. Whereas shocks 4-6 are transitional and are not

found in the steady-state solution. Shock 4 emanates from the bottom boundary, 5

from the top and 6 is another segregation shock.

3.3.3 Solution for ϕ = 0.5

Three solutions for different function ϕ will be constructed to illustrate the use of the

column solution. The first case to be considered will be,

ϕ = 1/2. (3.69)

Physically this describes a chute which, at t = 0, is filled with homogeneously mixed

material with φ = 0.5. At the inflow the same material is fed in, the flow begins to

move at t = 0 and from that point is allowed to segregate. Substituting (3.69) into

(3.67) and (3.68) reveals the solution to be given by,

z4 = Srt/2 in 0 ≤ t ≤ 1/Sr,

z5 = 1 − Srt/2 in 0 ≤ t ≤ 1/Sr,

z6 = 1/2 in t > 1/Sr,



















and x > t

z1 = Srx/2 in 0 ≤ x ≤ 1/Sr,

z2 = 1 − Srx/2 in 0 ≤ x ≤ 1/Sr,

z3 = 1/2 in x > 1/Sr,



















and x < t.

(3.70)

From here is clear the transition point, given by xtrans = t, marks the divide be-

tween the steady-state solution and the region of transient adjustment to the initial

conditions and it propagates downstream with speed u0 ≡ 1.
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Figure 3.10: An exact solution for the time-dependent evolution of the small particle
concentration φ in a steady uniform plug-flow. The bulk flow is from left to right
and the concentration is shown using a contour scale. A shade of blue corresponds to
higher concentrations of large particles than small, and red vice versa. Whereas green
indicates there is an equal amount of both by volume fraction. Initially the chute
is filled with a homogeneous mixture of particles with a concentration of 50%. At
the inflow a homogeneous mixture of particles, also with concentration 50%, enters
the chute and flows downstream. The segregation number is taken as Sr = 1 and
plug velocity u0 = 1, which implies that the particles fully segregate at x = 1. The
steady-state is attained at t = 1.
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Figure 3.10 shows contour plots of the solution of these six shocks for a series of

time intervals and Sr = 1. Initially the chute is entirely filled with a homogeneous

uniform mixture with a concentration of 50%. Immediately after the system is re-

leased the particles segregate in the interior, creating two spatially uniform shocks

that separate the pure phases from the mixture. These two shocks eventually meet

at t = 1 to create a stationary third shock at z = 1/2, which separates the large

particles from the small ones beneath. As this process is taking place, new material

is fed into the chute and segregates, creating two additional straight shocks from the

top and bottom corners of the inflow, these shocks meet at x = 1, which from (3.64)

occurs at t = 1. From this it is clear that shocks 3 and 6 are created at the same

time, shock 3 is created at (x, t) = (1, 1) and grows with time whereas shock 6 exists

initially from x ∈ [1,∞), but its initiation point moves forward with time. It is clear

that these shocks, 3 and 6, are two parts of the same physical shock and can be

replaced with

z3 = 0.5 x > 1 t > 1. (3.71)

It is now apparent that after t = 1 the solution is completely steady for the entire

length of the semi-infinite chute. This steady-state solution is precisely the same as

the one shown in the top left panel of figure 3.2, as expected.

3.3.4 Sinusoidally Oscillating Inflow Conditions

In physical experiments the material entering the avalanche is supplied from a hopper

and once flow starts, inhomogeneities often develop, causing the inflow concentration

to vary as a function of time. Exact solutions for the plug-flow regime can be con-

structed for this case, using the method above.

Suppose that the variation in the homogeneous inflow concentration is parame-

terized by

ϕ = 0.5 + 0.1 sin(10 t). (3.72)

Substituting (3.72) into (3.67) and (3.68) shows that this time the six shocks, making
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Figure 3.11: An exact solution for the time-dependent evolution of the small particle
concentration φ in a steady uniform plug-flow. The bulk flow is from left to right
and the concentration is shown using a contour scale. A shade of blue correspond
to higher concentrations of large particles than small, and red vice versa. Whereas
green indicates there is an equal amount of both by volume fraction. Initially the
chute is filled with a homogeneous mixture of particles with a concentration of 50%.
The inflow concentration varies sinusoidally in time with amplitude 10% about a
background concentration of 50%. The segregation number was taken to be Sr = 1
and plug flow velocity, which implies that the particles fully segregate at x = 1.
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up the solution, are given by

z4 = Srt/2 in 0 ≤ t ≤ 1/Sr,

z5 = 1 − Srt/2 in 0 ≤ t ≤ 1/Sr,

z6 = 1/2 in t > 1/Sr,



















and x > t

z1 = Srx [0.5 + 0.1 sin (10 (t− x))] in 0 ≤ x ≤ 1/Sr,

z2 = 1 − Sr [0.5 − 0.1 sin (10 (t− x))] in 0 ≤ x ≤ 1/Sr,

z3 = 0.5 + 0.1 sin (10 (t− x)) in x > 1/Sr,



















and x < t.

(3.73)

This solution is illustrated, for Sr = 1, in figure 3.11 at a sequence of time intervals.

The structure in front of the transition point is identical to that of the first problem,

with two uniform shocks generated at the boundaries that propagate inwards and

meet at (z, t) = (1/2, 1), to leave a stationary shock. However, behind the transi-

tion, in the domain controlled by the boundary conditions, the sinusoidal variation

propagates into the domain and distorts the shocks, which are fully time and space

dependent. The shocks 1 and 2 oscillate 180 degrees out of phase and the third shock

moves exactly in phase and with the same period as the inflow condition. At t = 1

the two shocks meet at x = 1 to form a triple point, which oscillates up and down

with time. For t > 1 the segregation shock becomes time-dependent in the region

controlled by the boundary conditions and remains straight in the region determined

by the initial conditions, as shown in the right middle panel of figure 3.11.

Such regular sinusoidal variations are unlikely to occur in an experiment setup,

but this problem still gives insight into the effect of fluctuations of the feed condition.

This problem will also produce an interesting test case for numerical algorithms that

are constructed in � 4, as there are three fully time and spatially dependent shocks

for the method to resolve.

3.3.5 Piece-wise Continuous Solution

Since the solution (3.67) and (3.68) only depend on ϕ it is still valid for piecewise

continuous data. With this in mind one final problem will be considered. The chute

will initially be filled with a homogeneous mixture of concentration φ = 0.25 at time
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Figure 3.12: An exact solution for the time-dependent evolution of the small particle
concentration φ in a steady uniform plug-flow. The bulk flow is from left to right
and the concentration is shown using a contour scale. A shade of blue corresponds
to higher concentrations of large particles than small, and red vice versa. Whereas
green indicates there is an equal amount of both by volume fraction. Initially the
chute is filled with a homogeneous mixture of particles with a concentration of 25%.
The inflow starts at a concentration of 50%, after t = 0.5 this is steps up to 75% .
The segregation number is Sr = 1 and plug velocity, is used, which implies that the
particles fully segregate at x = 1.
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t = 0, a concentration of φ = 0.5 will be fed into the domain and at t = 0.5 this

inflow concentration will be increased to φ = 0.75. This implies

ϕ(t) = 0.25 + 0.25H(t) + 0.25H(t− 0.5), (3.74)

where H(t) is the Heaviside step function and is defined as

H(t) =







0 t ≤ 0

1 t > 0
. (3.75)

Substituting (3.74) into (3.67) and (3.68) reveals the solutions to be

z4 = Srt/4 in 0 ≤ t ≤ 1/Sr,

z5 = 1 − Sr3t/4 in 0 ≤ t ≤ 1/Sr,

z6 = 1/2 in t > 1/Sr,



















and x > t,

z1 = Srx [0.25 + 0.25H(t− x) + 0.25H(t− x− 1/2)] in 0 ≤ x ≤ 1/Sr,

z2 = 1 − Sr [0.75 − 0.25H(t− x) − 0.25H(t− x− 1/2)] in 0 ≤ x ≤ 1/Sr,

z3 = 0.25 + 0.25H(t− x) + 0.25H(t− x− 1/2) in x > 1/Sr

and x < t.



































(3.76)

The solutions for Sr = 1 are shown in figure 3.12. The first panel shows the initial

chute filled with a 25% mixture of small particles. The middle left panel shows the

situation at t = 0.5. The material that started in the chute has been advected along

while segregating. A straight shock moving up with speed 0.25 is generated from the

bottom boundary and from the top a straight shock moves down with speed 0.75.

These two shocks meet at t = 1 and produce a segregation shock from the point

x = 1, z = 1/4 and stretching to infinity. Behind these shocks the inflow conditions

generate two shocks from the corners, which will meet at x = 1, z = 1/2. When

these meet at t = 1 a second segregation shock is generated, at the higher height of

z = 1/2, this is then also advected downstream with the bulk flow. At t = 1/2 the

inflow conditions change, modifying the gradient of the shocks generated from the

corners. At t = 1.5 these new inflow conditions cause the segregation shock to jump

again to the height of z = 3/4. After t = 1.5 everything behind the point x = 1 is

steady and the segregation shock, with two jumps, continues to be advected with the
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bulk flow. At t = 2.5 the solution is steady for a chute of length of x = 2 and the

infinite chute problem never reaches a steady-state, but the solution becomes steady

behind the point x = t− 0.5 for t > 0.5.

This problem creates a very difficult test case for the numerical algorithms de-

veloped, as there are a lot of shocks with sharp gradients in its solution. A detailed

analysis of how the numerics perform on this problem is considered in � 4.

3.4 Time-dependent segregation in steady uniform

plug flows from initially normally graded in-

flow conditions

In this section, as in the previous section, time-dependent plug flow solutions will

be investigated, but this time subject to the inflow condition discussed in � 3.2, i.e.

(3.42). As before, the segregation equation (2.25) with the bulk velocity given by

u = (u0, 0, 0) and under the transformation (3.59) is reduced to (3.60). Following the

discussion in � 3.3 the solution derived in � 3.2 is valid with the following identifications

x→ t− tc , ψ → z and ψr → zc, (3.77)

where tc is the time and zc is the initial height of separation for each of these inde-

pendent columns. Therefore using (3.77) with the solution for normal graded inflow

conditions (3.44), (3.47), (3.48) and (3.50) gives the independent column solution for

this setup.

The concentration within the expansion fan is therefore

φ =
1

2

(

1 +
z − zc

Sr(t− tc)

)

, |z − zc| < Sr(t− tc), z1 < z < z2, (3.78)

where the shocks

z1 = zc + Sr(t− tc) − 2
√

Srzc(t− tc), (t− tc) < tp,

z2 = zc − Sr(t− tc) + 2
√

Sr(1 − zc)(t− tc), (t− tc) < tp,

z3 = 1 − zc, (t− tc) ≥ tp,



















(3.79)
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and the triple-point

tp(zc) =
1

Sr

(√
zc +

√
1 − zc

)2
. (3.80)

This time-dependent solution for the evolution of the concentration in a column of

material moving downstream with speed u0 ≡ 1 is effectively illustrated in the top

two panels of figure 3.6, except that the x-axis must now be replaced by the t − tc

axis.

As before, since the columns are independent, different values of zc and tc can be

chosen for each. A single function Z can be used to parameterise both the initial

and boundary conditions. Assuming the chute is initially filled with small on top of

large separated at a height of Z(0) and the separation height at the inflow boundary

varies as Z(t), then the column parameters are given by,

tc = 0, zc = Z(0), for ξ ≥ 0,

tc = −ξ, zc = Z(tc), for ξ < 0.
(3.81)

Substitution of (3.81) into (3.79) gives the equation of the six shocks, which bound

the solution,

z4 = Z(0) + Srt− 2
√

SrZ(0)t in 0 ≤ t ≤ tp(Z(0)),

z5 = Z(0) − Srt+ 2
√

SrZ(0)t in 0 ≤ t ≤ tp(Z(0)),

z6 = 1 − Z(0), in t > tp(Z(0))



















and x > t,

z1 = Z(t− x) + Srx− 2
√

SrxZ(t− x) in 0 ≤ x ≤ tp(Z(t− x)),

z2 = Z(t− x) − Srx+ 2
√

SrxZ(t− x) in 0 ≤ x ≤ tp(Z(t− x)),

z3 = 1 − Z(t− x), in x > tp(Z(t− x))

and x < t,



































(3.82)

where the same numbering convention as the previous section has been adopted and

tp(Z) =
1

Sr

(
√
Z +

√
1 −Z

)2
. (3.83)

Additional to these shocks, the solution contains two expansion fans, one in space
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and the other in time. These are given by substituting (3.81) into (3.78), producing,

φet =
1

2

[

1 +
z − Z(0)

Srt

]

z4 < z < z5, |z − Z(0)| < Srt, x > t,

φex =
1

2

[

1 +
z − Z(t− x)

Srx

]

z1 < z < z2, |z − Z(t− x)| < Srx, x < t.

(3.84)

The full solution for any Z is described by (3.82),(3.83) and (3.84).

3.4.1 Solution Z = 0.5

As for the previous case of homogeneous inflow, the solution will be investigated for

several different functions of Z. The first case which will be considered is

Z = 0.5. (3.85)

This corresponds to the chute initially being filled with small on top of large separated

at a height by the line z = 0.5. At t = 0 the material starts to move and the same

configuration is fed in.

Substitution of (3.85) into (3.82),(3.83) and (3.84) shows the solution is composed

of the following six shocks and two expansion fans,

z4 = 1/2 + Srt− 2
√

1/2Srt in 0 ≤ t ≤ tp,

z5 = 1/2 − Srt+ 2
√

1/2Srt in 0 ≤ t ≤ tp,

z6 = 1/2 in t > tp,

φet =
1

2

[

1 +
z − 1/2

Srt

]

in z4 < z < z5



































and x > t

z1 = 1/2 + Srx− 2
√

1/2Srx in 0 ≤ x ≤ tp,

z2 = 1/2 − Srx+ 2
√

1/2Srx in 0 ≤ x ≤ tp,

z3 = 1/2 in x > tp,

φex =
1

2

[

1 +
z − 1/2

Srx

]

in z1 < z < z2



































and x < t

where tp = 2/Sr.

(3.86)

The solution generated by (3.86) is illustrated in figure 3.13. It consists of two

parts. For ξ ≥ 0 a spatially uniform time-dependent expansion fan develops and shock
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Figure 3.13: The exact plug-flow solution for the concentration of small particles φ
is illustrated at a sequence of time-steps using the same contour scale as in all other
figures. Initially the flow is normally graded and normally graded material is fed
in at x = 0 and flows downstream from left to right. The solution consists of a
time-dependent, spatially uniform part that is separated by a transition line moving
downstream at speed u0 from a steady-state region behind. The parameter zr = 1/2
for all columns and the segregation number is Sr = 1.
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waves are subsequently generated when the fronts reach the surface and base of the

flow. These then propagate into the domain before they meet to form a spatially and

temporally uniform third concentration shock separating an inversely graded layer of

large particles from the fines beneath. Columns which enter the chute after t = 0

are equivalent to a steady-state solution in a fixed frame of reference. A transition

line ξ = 0, therefore moves downstream at speed 1 and separates the time-dependent

solution from the steady-state solution behind. At time t = 2 the upper and lower

shocks meet in the time-dependent region to form an inversely-graded layer and there

is no further change in the solution. In the plug-flow case the solution, therefore,

attains a global steady-state in finite time.

3.4.2 Piece-wise continuous solution

In this section the solution to the problem of initially filling the chute with normally

graded material separated at a height z = 0.25, with material separated at the higher

height of z = 0.75 fed in from the boundary will be investigated. This corresponds

to

Z = 0.25 + 0.5H(t), (3.87)

where H is defined by (3.75). Substitution of (3.87) into (3.82),(3.83) and (3.84)

gives the full solutions as

z4 = 1/4 + Srt−
√
Srt in 0 ≤ t ≤ tp,

z5 = 1/4 − Srt+
√
Srt in 0 ≤ t ≤ tp,

z6 = 3/4 in t > tp,

φet =
1

2

[

1 +
z − 1/4

Srt

]

in z4 < z < z5



































and x > t

z1 = 3/4 + Srx−
√

3Srx in 0 ≤ x ≤ tp,

z2 = 3/4 − Srx + 2
√
Srx in 0 ≤ x ≤ tp,

z3 = 3/4 in x > tp,

φex =
1

2

[

1 +
z − 3/4

Srx

]

in z1 < z < z2



































and x < t

where tp = 1
Sr

(

1
2

+
√

3
2

)2

≈ 1.866.

(3.88)
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Figure 3.14: The exact plug-flow solution for the concentration of small particles φ
is illustrated at a sequence of time-steps using the same contour scale as in all other
figures. Initially the flow is normally graded with zr = 0.25 and normally graded
material is fed in at x = 0, at a time dependent height given by zr = 0.75. The flow
is from left to right. The solution consists of a time-dependent, spatially uniform part
that is separated by a transition line moving downstream at speed 1 from a boundary
controlled solution behind. The parameter Sr = 1 is used.
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This takes on such a simple form, since for x < t, t−x > 0, hence Z(t−x) = 3/4

in (3.83). Due to the fact tp(Z) = tp(1−Z) the transition point is in the same place

for both the steady and time dependent expansion fans. This is clearly shown by

figure 3.14. Behind the transition point a spatial expansion point is mapped out that

has zr = 0.75 and in front a temporal expansion fan with zr = 0.25 evolves. Since

tp = 1.866 is the same for both of these fans, at the same time, the spatial fan becomes

fully developed and the temporal fan is destroyed, as shown by the bottom left panel.

After this point a segregation shock with a jump location at x = t is formed and is

advected downstream with the bulk velocity. This is the final quasi-steady state of

the solution and a finite length L steady-state will be achieved at t = L.

The solution to this problem is not very physical but it will again create an

interesting and tricky test problem for the numerical algorithms.

3.4.3 Solution for Z = 0.5 + 0.1 sin(10t)

The final problem which will be investigated is the effect of a small perturbation to

the inflow condition, hence

Z = 0.5 + 0.1 sin(10t). (3.89)

Physically, this corresponds to the chute initially filled with normally graded material

segregated by the line z = 0.5. At t = 0 this material is allowed to flow and segregate,

while normally graded material is fed in from the boundary with a point of segregation

that varies with dimensionless amplitude 0.1 and frequency 10/2π.

Substitution of (3.88) in the general solution gives

z4 = 1/2 + Srt−
√

2Srt in 0 ≤ t ≤ 2/Sr,

z5 = 1/2 − Srt+
√

2Srt in 0 ≤ t ≤ 2/Sr,

z6 = 1/2, in t > 2/Sr

φet =
1

2

[

1 +
z − 1/2

Srt

]

in z4 < z < z5



































and x > t, (3.90)
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Figure 3.15: The exact plug-flow solution for the concentration of small particles φ
is illustrated at a sequence of time-steps using the same contour scale as in all other
figures. Initially the flow is normally graded with zr = 0.5 and normally graded
material is fed in at x = 0 at a time dependent height given by zr = 0.5+0.1 sin(10t).
The flow is from left to right. The solution consists of a time-dependent spatially
uniform part that is separated by a transition line moving downstream at speed 1
from a boundary controlled solution behind. The parameter Sr = 1 is used.
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z1 = 1/2 + 1/10 sin (10 (t− x)) + Srx

−2
√

Srx (1/2 + 1/10 sin (10 (t− x))) in 0 ≤ x ≤ tp(t− x),

z2 = 1/2 − 1/10 sin (10 (t− x)) − Srx

+2
√

Srx (1/2 + 1/10 sin (10 (t− x))) in 0 ≤ x ≤ tp(t− x),

z3 = 1/2 − 1/10 sin (10 (t− x)) in x > tp(t− x),

φex =
1

2

[

1 +
z − 1/2 − 1/10 sin (10 (t− x))

Srx

]

in z1 < z < z2































































and x < t,

(3.91)

where

tp(t− x) = 1
Sr

(
√

1/2 + 1/10 sin (10 (t− x))

+
√

1/2 − 1/10 sin (10 (t− x))
)2
.

(3.92)

Figure 3.15 clearly shows the effect of this perturbation, which is advected through

the flow and causes all the shocks and the solution within the fan to oscillate about

the unperturbed mean with the same frequency. The triple point moves backwards

and forwards in a complicated manner but again its mean location is given by tp(0.5).

The resulting segregating shock oscillates with the same frequency of the perturbation

but 180 degrees out of phase. Once a numerical algorithm has been constructed, the

effect of shear on this problem will be investigated.



Chapter 4

Numerical solutions

In this section a series of shock-capturing numerical algorithms will be discussed.

These will be used to obtain numerical solutions of the segregation equation (2.35).

The analytical solutions constructed in � 3 will be used as a test bed to determine

the accuracy and validity of the methods employed for these types of problems. This

method will then be used to look at more interesting and physically realistic problems.

4.1 Shock-capturing numerical methods for first

order hyperbolic equations

Due to the large numbers of shocks apparent in the analytic solution, the use of

shock-capturing rather than shock-tracking methods seems to be appropriate. The

former have the advantage over shock-tracking methods in that they automatically

deal with discontinuities, hence, no pre-knowledge of their location is required. In

the solutions of the segregation equation, (2.35), lots of shocks are apparent and

interact in a complicated way requiring highly sophisticated shock-tracking routines.

Therefore, attention will be restricted to shock-capturing methods.

For this analysis finite volume method will be considered. Here, the domain

is broken down into grid cells and approximate numerical fluxes of material across

the grid boundaries are computed. These have the advantage over more traditional

finite difference methods, in that they do not break down when the solution contains

108
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discontinuities. There are many papers on the topic of shock-capturing finite volume

methods. These methods have a long history starting with the classic papers of

Godunov [32], Van Leer [86], Harten [43] and Yee [90], and there are now a wide

range of textbooks on these powerful schemes e.g. [57, 31, 81]. Reference [57] gives

a very detailed and invaluable description of all issues that arise with finite volume

methods including how to apply different types of boundary conditions and extending

one-dimensional methods to multiple dimensions. In this section an effort is made to

reference the original papers were the work was first presented.

Initially, the following one-dimensional equation will be considered

∂ω

∂t
+ a(ω)

∂ω

∂x
= 0, (4.1)

where a(ω) is the characteristic speed, which is dependent on the variable ω. Writing

this equation in flux form gives

∂ω

∂t
+
∂f(ω)

∂x
= 0, (4.2)

where a and f are connected by the relation,

a(ω) =
∂f(ω)

∂ω
. (4.3)

Physically, f represents the flux of the variable ω in the x direction. Considering

(4.3) integrated over the region [xj− 1
2
, xj+ 1

2
] × [tn, tn+1] gives

∫ x
j+1

2

x
j− 1

2

∫ tn+1

tn

{

∂ω

∂t
+
∂f

∂x

}

dt dx = 0. (4.4)

The general form of Green’s theorem states

∫ ∫

R

(

∂Q

∂y
− ∂P

∂z

)

dy dz =

∫

C

(Q dz + P dy) , (4.5)

where C is the boundary of the region R. Applying this to equation (4.4) with the

identifications Q→ ω, P → −f, y → t and z → x gives the following result

∫

C

(ω dx− f dt) = 0, (4.6)
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where C is the contour surrounding the region. Equation (4.6) is easily re-arranged

to give

∫ x
j+1

2

x
j− 1

2

ω(x, tn+1) dx =

∫ x
j+1

2

x
j− 1

2

ω(x, tn) dx−
∫ tn+1

tn

(

f(xj+ 1
2
, t) − f(xj− 1

2
, t)
)

dt. (4.7)

Defining the mean values by

Un
j =

1

∆x

∫ xj+1/2

xj−1/2

ω(x, tn+1) dx (4.8a)

and

F (U ; j + 1/2) =
1

∆t

∫ tn+1

tn
f(xj+1/2, t) dt, (4.8b)

equation (4.7) becomes

Un+1
j = Un

j − ν [F (U ; j + 1/2) − F (U ; j − 1/2)] , (4.9)

where

ν =
∆t

∆x
. (4.10)

Considering the solution of equation (4.2) in the region 0 ≤ x ≤ L and for time

0 ≤ t ≤ tend, then this problem can be discretised onto a stationary uniform grid

with space ∆x and time step ∆t, such that

xj = j∆x, tn = n∆t. (4.11)

The boundary of these discrete cells is clearly [xj− 1
2
, xj+ 1

2
]× [tn, tn+1], so the solution

in each grid cell will be given by (4.9). It is now apparent that the second and third

terms on the right hand side of (4.9) represent the flux in from the cell to the left

and the flux out to the cell on the right. All that is required to complete the method

and solve this equation is to numerically approximate these flux terms.

If the cell averages are computed at time step tn then the resulting scheme is ex-

plicit, whereas if the averages are computed at step tn+1 the scheme will be implicit.

There are various advantages and disadvantages of explicit and implicit schemes.

Explicit schemes are simpler, leading to less complex programs that require less com-

putational effort to compute each step. The payoff of this is lower stability and hence
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explicit schemes require the use of a small time step (∆t) to stop the scheme becom-

ing unstable. Implicit methods often lead to an under relaxation of the solution and

hence a smoothing between neighbouring cells. For this reason implicit methods are

often better when steady-state solutions are desired, but explicit schemes can give

better temporal accuracy for lower computational expense. Also, since the equation

under consideration is hyperbolic, information propagates at a finite speed. For these

reasons attention will be restricted to a selection of explicit schemes.

Here, the exact flux F t
j+1/2 will be approximated by a numerical flux F(Un

j+1, U
n
j ).

Hence all the methods considered will be explicit schemes with a three-point stencil,

meaning that the value of Un+1
j will only depend on Un

j−1, U
n
j and Un

j−1.

4.1.1 Total variation diminishing (TVD) schemes

It is well known that first-order (upwind) methods result in smeared solutions and

shocks can be lost, while second-order methods often produce spurious oscillations.

The aim is to have a method which is second order accurate, but will not give rise to

oscillations. Total variation diminishing (TVD) schemes have exactly this property.

Several studies have shown the strength of TVD in capturing and following compli-

cated shock structures. For example, [82] compared a variety of TVD methods, for

a series of hydrodynamic and magnetohydrodynamics test problems. The methods

performed extremely well and captured very intricate structures of the flows. Tai’s

PhD thesis, [79], demonstrates the power of the methods for numerical solutions of

Savage-Hutter avalanche equations for numerous situations including the propaga-

tion of a shock wave in inclined chute flows. Due to the strong performance of TVD

methods in flows with shocks, they have recently been applied to many complicated

physical problems like galaxy formation [65] and gas explosion [22]. Additionally,

many hybrid methods have started to be developed to help resolve shocks contained

within solutions. For example Cho et al. used a hybrid TVD method to look at the

flow over different air-foils, [12], whereas Hahn and Drikakis used a hybrid method

to preform large eddy simulations [42].
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It is useful to define the Total Variation (TV ) of a numerical solution at a given

time step tn by

TV (Un) =
N−1
∑

j=0

=
∣

∣Un
j+1 − Un

j

∣

∣ . (4.12)

It is clear that any oscillations will be such as to increase the TV of the function,

therefore any scheme where

TV (Un+1) ≤ TV (Un), (4.13)

cannot have spurious oscillations. Any method satisfying this condition is called a

TVD method.

It was shown by Harten, [43], that for the constant coefficients case i.e. when

a = a0, that the general form

Un+1
j = Un

j − Cj− 1
2
(Un

j − Un
j−1) +Dj+ 1

2
(Un

j+1 − Un
j ) (4.14)

is a TVD method if all the following conditions hold,

0 ≤ Cj− 1

2
∀j, (4.15a)

0 ≤ Dj+ 1
2

∀j, (4.15b)

0 ≤ Cj+ 1
2

+ Dj+ 1
2
≤ 1 ∀j. (4.15c)

4.1.2 The CFL Condition

The CFL condition is a necessary but not sufficient condition for any explicit finite

volume or difference method to remain stable. The condition is named after Courant,

Friedrichs, and Levy and was first published in [15], then an English translation

appeared much later in [16]. This condition states that a numerical method can only

be convergent if its domain of dependence contains the physical domain of dependence

in the limit of ∆x and ∆t tending to zero. Stated more physically, information is

not allowed to propagate further in one time step than the numerical methods own

domain.
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When considering the CFL condition it is convenient to define the Courant num-

ber of the system. For (4.2) this is given by

C = aν, (4.16)

where a is the wave speed defined by (4.3).

This condition will be used in the following sections when considering algorithms,

which lead to stable TV D schemes.

4.1.3 The Lax-Friedrichs (LF) Method

As discussed above, finite volume methods require the evaluation of the flux through

each boundary of the grid cells, which requires an estimate of U at these boundaries.

The simplest method would be to take a piecewise linear construction i.e.

Uj−1/2 =
Uj + Uj−1

2
. (4.17)

Here and throughout the next few sections, the superscript n will be omitted for

the flux functions because, as stated at the beginning of this chapter, only explicit

methods will be considered, therefore, all the contributions to the numerical flux

function, F , will be evaluated at a time-step n not n + 1. Equation (4.17) implies a

numerical flux of the form

F(Uj−1/2) =
1

2
(f(Uj+1) + f(Uj)). (4.18)

It is clear from the definition in � 4.1.2 that the CFL for this case is ∆x ≥ a∆t or

re-arranging

C ≤ 1. (4.19)

The resulting method is, however, very unstable and cannot be used even with a

very small time step that satisfies the condition (4.19). However, stability can be

recovered by adding to (4.18) a term to give

FLF (Uj−1/2) =
1

2
(f(Uj+1) − f(Uj)) −

1

2ν
(Uj − Uj−1), (4.20)
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this is the classical Lax-Friedrichs method. The additional term appears to be mod-

elling a diffusion style term. Since this extra term vanishes in the limit ∆x → 0,

for a fixed value of ν, the original equation is recovered as the grid is refined. From

this it is clear that this additional term creates numerical diffusion that damps out

the instabilities inherent in (4.18). This has the downside that the resulting method

tends to smear the data unless a fine grid is used, which is computationally expensive,

though the method is stable right up to the CFL limit of (4.19).

The scheme produced from substituting (4.20) into (4.9) gives

Un+1
j =

1

2

[

Un
j−1 + Un

j+1

]

− ν

2

[

f(Un
j+1) − f(Un

j−1)
]

. (4.21)

Consider the constant coefficient case i.e. f(Uj+1) = a0Uj+1, when the method is

reduced to

Un+1
j =

1

2

[

Un
j−1 + Un

j+1

]

− ν

2

[

a0U
n
j+1 − a0U

n
j−1

]

. (4.22)

In this form it is not possible to tell whether (4.22) is a TV D method, but by adding

and subtracting Un
j and (ν/2)a0U

n
j (4.22), can be written in the form of (4.14), i.e.

Un+1
j = Un

j −
[

1

2
+
ν

2
a0

]

(

Un
j − Un

j−1

)

+

[

1

2
− ν

2
a0

]

(

Un
j+1 − Un

j

)

, (4.23)

which is clearly in the form of (4.14) with the identifications

Cj−1/2 =
1

2
+
ν

2
a0 ∀j, (4.24a)

Dj+1/2 =
1

2
− ν

2
a0 ∀j. (4.24b)

It is clear that if a0 → −a0, then the forms of (4.24a) and (4.24b) are interchanged,

hence the case of a0 ≥ 0 can be considered without loss of generality. Condition

(4.15a), then, is automatically satisfied and condition (4.15b) can be rearranged to

give C ≤ 1, which is equivalent to the CFL condition for this problem and hence,

must also be satisfied. Since Cj+1/2 + Dj+1/2 = 1, the final condition is also met.

Hence, this Lax-Friedrichs method is a TV D for all a0 as long as the CFL condition

is maintained.
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4.1.4 Slope Limiters

The first order LF scheme has been shown to be TV D, but being first-order it is

highly diffusive. A system to make this method second-order, but remain TV D,

needs to be constructed. A more general version of the cell reconstruction, (4.17), is

Uj−1/2 = Uj + σj(x− xj) for xj−1/2 ≤ x < xj+1/2 (4.25)

Clearly, taking σj = (Uj+1 − Uj)/∆x the above is reduced back to (4.17). Here, the

more general form of

σj =
εj(Uj+1 − Uj)

∆x
, (4.26)

is used, where ε is a slope limiter, εj = εj(θ) and will be a function of data smoothness.

The measure of smoothness, θ is defined as

θ =
Uj − Uj−1

Uj+1 − Uj
, (4.27)

i.e. the ratio of consecutive differences. This measure clearly breaks down as the

variation becomes small, therefore the additional condition that

θ ≥ 0 (4.28)

is also imposed. Clearly, (4.27) can only be negative near a turning point of U . In

the locality of this point the function is smooth and definition (4.28) is sensible and

consistent. It is now apparent that where the data is smooth, θ is small and increases

as the data becomes more discontinuous.

4.1.5 Lax-Wendroff (LW) Method and TVD Limiters

In this section attention will again be restricted to the constant coefficient case. The

information contained in this chapter closely follows � 3 of [78]. The natural second-

order extension to the flux in (4.18), presented in � 4.1.3 for the constant coefficient

case, is

Un+1
j =

a0ν

2

(

Un
j+1 − Un

j−1

)

+
a2

0ν
2

2

(

Un
j+1 − 2Un

j + Un
j−1

)

. (4.29)

This is called the Lax-Wendroff (LW) scheme and is stable upto its CFL condition,

without the need for an additional numerical diffusion term, as used by the LF scheme.
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It can be shown not be to a TV D method and its computation produces oscillations

when shocks are present in the solution, which lead to large errors and numerical

instability. Rewriting in the following form gives

Un+1
j = Un

j − a0ν
(

Un
j − Un

j−1

)

− a0ν

2
(1 − a0ν)

(

Un
j+1 − 2Un

j + Un
j+1

)

, (4.30)

where it is clear that the LW method is a combination of a first-order method with

the inclusion of an additional flux

−a0ν

2
(1 − νa0)

(

Un
j+1 − 2Un

j + Un
j+1

)

, (4.31)

which will be termed the ‘anti-diffusion flux’. Without this flux term, the method

would be TV D. Its addition massively reduces the numerical diffusion but creates

oscillations.

Sweby [78], proposed considering the method

Un+1
j = Un

j − ν
(

Un
j − Un

j−1

)

− δn
j

ν

2
(1 − ν)

(

Un
j+1 − 2Un

j + Un
j+1

)

, (4.32)

where δ = fn (θ). It can be shown, for example in � 6.11 of [57], that this is just a

reinterpretation of slope limited methods as flux limiters, hence, the two descriptions

are equivalent.

There are an infinite number of ways to write these formulae in the standard

Harten form of (4.14). The obvious choice is

Cn
i−1 = a0ν −

1

2
a0ν (1 − a0ν) δ

n
i−1/2, (4.33a)

Dn
i = −1

2
a0ν (1 − a0ν) δ

n
i+1/2, (4.33b)

where δn
i+1/2 is used as short hand for δ(θn

i+1/2). Since C > 0, written in this form

the scheme does not seem to be TV D as it will always invalidate condition (4.15b).

Sweby, [78], showed that a more useful form of the expression is

Cn
j−1 = a0ν +

1

2
a0ν (1 − a0ν)

(

δn
i+1/2

θn
j+1/2

− δn
j−1/2

)

, (4.34a)

Dn
j = 0. (4.34b)
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The TV D restrictions for this scheme, (4.15) are reduced to

0 ≤ Cn
j−1 ≤ 1. (4.35)

Assuming the CFL condition holds, this is true if

∣

∣

∣

∣

∣

δn
j+1/2

θn
j+1/2

− δn
j−1/2

∣

∣

∣

∣

∣

≤ 2. (4.36)

Since θn
j+1/2 and θn

j−1/2 are independent, this holds if both

0 ≤ δ(θ)

θ
≤ 2 and 0 ≤ δ(θ) ≤ 2 (4.37)

for all values of θ.

Figure 4.1(A) shows a diagrammatic representation of this region described by

(4.37). One of the dotted lines shows the LW method as given by (4.29), the diagram

shows that this method is only TV D when θ ≥ 1/2, therefore, if a value of θ smaller

than this naturally occurs in the numerical solution of the hyperbolic equation, oscil-

lations can be generated. The second dotted line shows another second-order scheme,

the Beam-Warming method. This uses a one-sided difference (rather than a centred-

difference, as in LW scheme) and for the linear case its flux is given by

Fj−1/2 = a0Uj−1 +
a0

2
(1 − νa0) (Uj−1 − Uj−2) . (4.38)

Again, figure 4.1(A) shows that this method is TV D as long as θ ≤ 2. Sweby

suggested taking a linear combination of these two methods to produce a second-

order method that is TV D everywhere. The resulting method exists for the region

sandwiched between these two dotted lines and is often referred to as the second-order

TV D region, this is highlighted in grey on plots (B)-(D).

There are clearly a lot of choices for limiters that lie in the TV D region, here only

three will be considered,

Minmod : δ(θ) = minmod(1, θ),

Superbee : δ(θ) = max(0,min(1, 2θ),min(2, θ)),

Woodward : δ(θ) = max(0,min((1 + θ)/2, 2, 2θ)).

(4.39)



CHAPTER 4. NUMERICAL SOLUTIONS 118

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

θ

δ

TVD Region

Lax−wendroff

Beam−Warming

(A)

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

θ

δ

Superbee

(C)

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

θ

δ

Minmod

(B)

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

θ

δ

Woodward

(D)

Figure 4.1: This figure graphically illustrates several limiters. Panel (A) shows the
general TV D region (grey shaded region) and where the second-order Lax-Wendroff
and Beam-Warming lie (dotted lines) on this plot. From here, it is clear that neither
method is TV D for all possible values of θ. The shaded region on panels (B)-(D)
highlights the second-order TV D region. The black line of panel (B),(C) and (D)
show the Minmod, Superbee and Woodward limiters respectively. All three produce
second-order TV D methods. The Minmod limiter follows the lower boundary of the
second-order TV D region, the Superbee the top boundary and the Woodward limiter
lies somewhere between the two.
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In figure 4.1 panels (B)-(D) illustrate all these limiters and show that they all lie

within the ‘2D TV D region’. As the Superbee limiter sits along the upper boundary

it leads to the least diffusive scheme, whereas the Minmod limiter gives the most

diffusion. The Woodward limiter lies between the other two and has the additional

advantage that it is continuous at the point (δ, θ) = (1, 1). Many other limiters can

be found in the literature but these basic three represent the far extremes, hence are

a sensible starting point.

4.1.6 TVD Lax-Friedrichs (TVDLF)

Applying slope limiters to one-dimensional methods can increase their order of ac-

curacy and yet keep the method TV D. This philosophy is used to construct the

Lax-Friedrichs TV D scheme, which is obtained by applying the Sweby 2D limiters

to the original LF scheme (4.20), this gives

Fj+1/2 =
1

2

(

f(UR
j+1/2) + f(UL

j+1/2) − Φ
)

, (4.40)

where UL
j+1/2 = Uj + 1

2
∆xδj, U

R
j+1/2 = Uj+1 − 1

2
∆xδj+1, ∆URL

j+1/2 = UR
j+1/2 − UL

j+1/2

and

Φ =
∆x

∆t
∆URL

j+1/2, (4.41)

is the anti-diffusive flux. This method was originally proposed by Yee [91] and has

the advantage that it does not require any knowledge about the characteristics and

hence a Riemann solver.

It should be noted that it has not been proved (nor has ever) that the resulting

scheme is TV D for the full non-linear problem. Calling these methods TV D is

motivated by the analysis in � 4.1.5 but is slightly misleading.

4.1.7 Modified TVDLF (MTVDLF)

The original TV DLF method of Yee [91] was extended and improved by Toth &

Odstrcil [82]. They introduced the Hancock predictor step to increase the temporal

accuracy and suggested that Yee’s original Φ should be multiplied by a local or global

Courant number to obtain a less diffusive scheme.
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This method produces the following flux

FMLF
j+ 1

2

=
1

2

(

f(UR
j+ 1

2

) + f(UL
j+ 1

2

) − cmax
j+ 1

2

∆x

∆t
∆URL

j+ 1
2

)

. (4.42)

There are many choices for cmax
j+1/2, if the global Courant number is used it is simply

given by

cmax
j+1/2 = cmax = max

j
(cj+1/2). (4.43)

Cockburn et al. [13] suggested the following local wave-speed was better

cj+1/2 = νmax(UR
j+1/2, U

L
j+1/2), (4.44)

whereas Barmin et al. [5] prefer to use

cj+1/2 = c(∆ULR
j+1/2). (4.45)

The later of the two is less computationally expensive. In this thesis (4.43) is used

as it is the simplest and produces good results, see � 4.4 for details of the testing.

To make the method second-order accurate in time, as well as space, the following

Hancock predictor step is implemented

U
n+ 1

2

j = Un
j − ν

2

(

f(Un
j+ 1

2

) − f(Un
j− 1

2

)
)

(4.46)

and then a full step, using this predictor half step, as follows

Un+1
j = Un

j − ν
(

F(U
n+ 1

2

j+ 1

2

) −F(U
n+ 1

2

j− 1

2

)
)

. (4.47)

4.2 Dimensional splitting

So far, shock-capturing methods for one dimensional, non-linear, hyperbolic equations

have been considered, the segregation equation, derived in � 2, is a three-dimensional

hyperbolic equation. Dimensional splitting, often called fractional stepping, is the

easiest way to generalise a one-dimensional scheme to multi-dimensions. This tech-

nique is often used (e.g. [82]) and details can now be found in many standard text-

books, including � 19.5 of [57]. In this section, the principles will be presented for two

dimensions only, but it is clear how this generalises to higher dimensions.
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Consider the following PDE

Ut + F(U)
x

+ G(U)
y

= 0, (4.48)

with the initial condition

U(x,y, tn) = Un. (4.49)

In dimensional splitting, the time step is split into to separate sub-steps. In the first

step the following PDE is solved,

Ut + F(U)x = 0 ⇒ U(n+1

2
). (4.50)

The solution gained is then used as the initial condition for this PDE

Ut + G(U)y = 0 ⇒ U(n+1), (4.51)

giving the full step solution. It will often be convenient to write this in the more

compact operator notation

Un+1 = L∆t
y L∆t

x Un. (4.52)

If the original equation is linear, this method will produce an exact solution of the

original equation. For a non-linear equation, it will still give a reasonable approxima-

tion to the result. Better approximations can be achieved by alternating the order of

application for every time-step, thus, giving

Un+2 = LxLyU
n+1 = LxLyLyLxU

n. (4.53)

Two better truly second-order accurate alternatives are

Un+1 =
1

2
[LxLy + LyLx]U

n, (4.54)

Un+1 = L
∆t
2

x L∆t
y L

∆t
2

x Un. (4.55)

The second of these having a smaller computational cost.

4.3 Boundary conditions

The above method can be used to compute the interior points of the domain, but

before the segregation equation (2.33) can be solved, a numerical representation of the
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boundary conditions needs to be developed. From the analytic solutions in chapter

3, it is apparent that there are three types of boundary condition in these type of

problems; inflow, outflow and solid walls.

4.3.1 Inflow conditions

For inflow boundaries, this is extremely straight forward as the boundary condition

at these points is always of the form

Un
i = φ(z, t) ∀i on an inflow boundary. (4.56)

Therefore, all that is required in the numerics is to set the cells on this boundary to

a pre-determined function.

4.3.2 Outflow conditions

Outflow boundary conditions are a complicated subject, as mathematically there is no

condition to be applied, so any condition used is artificial. On an outflow boundary,

the solution needs to be continued without interference with the interior. Leveque,

[57], � 7.2.1 gives a good overview of the options available, with reference to the one-

dimensional advection equation. The first option is to switch to an upwind method

for the final grid cell. Since the method used in the bulk of the domain allows waves

to propagate in both direction, this can lead to noise at the interface of this method

switch. Alternatively the flux in the cell beyond the boundary can be approximated

using a one-sided finite difference extension of the internal solution. Leveque, [57],

states this is very effected for the advection equation. Since this is precisely the form

the segregation equation takes, in x-direction, this second approach will be used in

this thesis.

Let i represent the cells on the boundary, then the flux Fi+1/2 will require informa-

tion about Ui+1. The simplest way of achieving this is to use zero-order extrapolation

of the solution in the cell beyond the boundary, i.e.

Un
i+1 = Un

i ∀i on an outflow boundary. (4.57)
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This would imply that UR
i+1/2 = Uj − 1/2∆xδ, when computing the fluxes. This

condition was originally used in the computations and was shown to lead to slight

reflection from this boundary, therefore, the following higher order one sided extension

Un
i+1 = 2Un

i − Un
i−1, (4.58)

was implemented instead. No noticeable reflection was observed with this condition.

4.3.3 Solid boundaries

For a solid boundary or free-surface, the condition that needs to be imposed is zero

flux across this interface. Since the numerical algorithm works with the flux of the

quantity under computation, this condition arises very naturally. The boundary

should be chosen such that grid cells exist with one side constructing the interface. If

the interface lies on the positive side of the grid cells, that make up its construction,

then the condition

Fn
i+1/2 = 0, (4.59a)

is imposed. If the boundary is on the negative side of the grid cells then

Fn
i−1/2 = 0, (4.59b)

where i is the boundary grid cells.

4.4 Testing of the numerical method

In this section, a numerical algorithm will be developed for solving (2.33). This will

be done by applying dimensional splitting, as outlined in � 4.2. Attention will be

restricted to the two-dimensional case, hence, it will be assumed that φ and u are

independent of y and v = 0 everywhere. Initially, u will only be considered to be a

function of z and w = 0, this is precisely the situation for which analytical solutions

were obtained in chapter 3. Therefore, the governing equation under consideration,

in conservative form, is

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂z
(−Sr [φ (1 − φ)]) = 0. (4.60)
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Applying the splitting procedure to this yields two equations

∂φ

∂t
+

∂

∂x
(φu) = 0 ≡ L̂x, (4.61a)

∂φ

∂t
+

∂

∂z
(−Sr (φ (1 − φ))) = 0 ≡ L̂z. (4.61b)

A regularly spaced mesh will be constructed and the discretised concentration

φn
ij is defined at each grid point (i, j) and at time-step n. The grid points will be

taken to range from 1 to Nx in the x-direction and from 1 to Nz in the z-direction.

The centre of each grid cell will be located at (xi, zj), where xi = (i − 1/2)∆x and

zj = (j− 1/2)∆z. Hence, ∆x = Lx/Nx and ∆z = Lz/Nz, where Lx is the length and

Lz is the height of the computational domain. Without any loss of generality, Lz can

be taken to be 1, thus Lx becomes the aspect ratio of the domain under observation.

The domain will be assumed to have solid boundaries at z = 0 and z = 1, hence,

(4.59) implies

Fn
1/2 = 0 and Fn

Nz−1/2 = 0, (4.62)

for all Nx one-dimensional problems that solve (4.61b). For the L̂x operator, the

outflow condition (4.58) is applied at i = Nx implying

F(φn
Nx+1/2) = F(2φn

Nx
− φn

Nx−1), (4.63)

where the long hand notation has been used for emphasis. The inflow condition will

be implemented by enforcing that

φn
0j = φ0, (4.64)

where φ0, in general, can be a function of both z and t. No computation will take

place in the first cell on the left, when solving the L̂x equation, as here the solution is

prescribed. It should be noted that (4.64) is an approximation to the real condition,

as the centre of the first grid cell is located at ∆x/2 not 0. This approximation gets

better as the grid is refined and it did not appear to cause any problems with the

computations.
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To test the accuracy of the results, the use of an appropriate error is required.

One sensible definition is the error per grid cell

$ =
100

NxNz

∑

ij

∣

∣

∣
φij − φexact|ij

∣

∣

∣
. (4.65)

To determine the CFL condition, it is necessary to calculate the maximum wave-

speed of the problem. In the z-direction, the wave-speed is 2φ − 1 and hence, the

maximum wave-speed is 1. In the x-direction, the wave-speed is simply u and hence

from the linear profiles under consideration (3.24), the maximum wave speed in this

direction is 2 − α, as the domain is always taken to extend from z = 0, 1. This is

always greater than the z-direction wave-speed, hence, for these problems the CFL

condition, (4.47), gives

∆t = C
∆x

2 − α
where C ≤ 1. (4.66)

4.4.1 Test case 1 : Steady-state homogeneous inflow

The first problem to be considered, is the steady-state solution from a homogeneous

inflow of material. The analytic solution to this problem is described in � 3.1. A

modified TV DLF scheme was used with a Superbee limiter and taking cmax
j+1/2 to be

the global Courant number as this is computationally the least expensive method.

The code was run on square grids with between 100 and 1000 points with a Courant

number of 1. Steady state was determined by sampling the data every 0.1 dimen-

sionless seconds and requiring that the change in φ was less than 0.1% per grid cell.

This was done for the cases of α = 0, 0.5, 1.0. Figure 4.2 shows the error norm, $, for

each of these runs. As can be seen, the error is small even for the case of 100 points,

which runs in less than 5 seconds on a desktop computer. The general trend is for the

error to decrease as the number of points is increased, but there is a slight oscillation.

This is because there was a slight variation, with points, in the exact time the steady

state was achieved. For α = 0, this occurred between t = 1.82 − 2.00, for α = 0.5

between t = 2.12 − 2.17 and for α = 1 between t = 2.13 − 2.28. The codes that ran

slightly longer appear to have a lower than expected error. Secondly, these methods
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Figure 4.2: Figure showing the percentage error norm $ against number of points
used in the the computation for test case 1. The test was preformed with 10 different
grids using between 100 and 1000 points ranging in steps of 100 and two different
Courant number 0.8 and 1.0
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have a tendency to overshoot steady-state and slowly oscillate around, then decay

towards the exact solutions. This was checked by measuring the error against time

near the steady-state and these oscillations were observed. Therefore, the phase of

this oscillation at the time steady-state was chosen to have been achieved would add

a random element to the error measurement. These two factors together explain the

occasional peak in $ at various grid cell sizes. This problem will not appear when

testing the temporal development of the flow, outlined in the next section, hence this

should provide a better test of the scheme.

Using the smaller Courant number of 0.8 gave a lower error and reduced the

size of this over-shoot. Additionally, it is computationally only 25% more expensive.

For these reasons, it seems sensible to use this lower Courant number for the more

complicated problems later on.

A similar plot to figure 4.2 was obtained in the the steady-state solution for the

normally graded case, see � 3.2 for analytical solution. The error was a little higher

in all cases by about 1%, but with a grid of 300 by 300 the error was below 3.8% for

all values of α.

4.4.2 Test case 2 : Time-dependent numerical test

Some of the plug-flow analytic solutions obtained in � 3.3 and � 3.4, will be used to

investigate the temporal accuracy of the code. Figure 4.3 shows the error for the

situation described in � 3.3.3, i.e. the chute is initially filled with homogeneously

mixed material, with φ = 0.5, and identical material is fed in from the boundary

for all time. The error in the solution is seen to oscillate with time, and for the 100

by 100 points case does seem to grow linearly until the steady-state is reached. It

should be noted that this growth of error with time was only seen on the 100 by 100

grid and was not observed on a grid with 200 by 200 cells. After t = 1, the error in

the solution quickly drops and becomes constant, then, as the number of points is

increased, the error in the final steady-state is reduced. Strangely, for this problem,

in the early time solution the error is slightly higher with 1000 points than 500. The
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Figure 4.3: Graph showing the numerical error compared to the analytic solution, in
using the numerical method. The problem and its analytical solution are described
in detail in section 3.3.3. The analytic solution reaches steady-state at t = 1. The
measure of the error $ is given by (4.65) and the error is shown for three different
grids 100 by 100, 500 by 500 and 1000 by 1000. The Superbee limiter was used for
all cases.
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reason for this increase in the temporal error could again be due to the overshoot in

the solution when using a large Courant number, this is discussed in more detail for

test case 3.

Tests were performed with some of the other solutions and similar results were

observed. The error in the steady-state solution always decreased with increasing

points and there was an oscillation in the error. In some, but not all, of the problems

the time-dependent problem was slightly worse with decreasing cell size. It should

be noted that in these situations the error was always small, i.e. below 1.5% for all

grid sizes where the effect was apparent.

In the more complicated problems the error was higher, but for all the cases with

300 points it was very hard to tell the difference between the analytical and numerical

solution when viewed in the same resolution. The numerical method is also very fast.

The run time of this code, for the problem just considered in this section, on a 2010

MHz AMD Athlon using square grids

t ≈ 1.6 × 10−6 n3 t̃, (4.67)

where n is the number of points in any one direction and t̃ is the non-dimensional

time the code is run for. This was calculated by timing the code (the actual user time

was used, not the physical time elapsed) for different length t̃ and plotting it against

n3. The formula is accurate to 1d.p. for n > 300 and t̃ > 1, but closer analysis

showed that there should also be a constant term and a term proportion to n. This

should be expected as there is an overhead in initialising the code (constant term)

and in the dimensional splitting process (proportional to n term). One implication

of this formula is that the code will run in real time on a grid with 85 points.

4.4.3 Test case 3 : Shear and time-dependence

So far, it has been shown that the numerical method is robust (as it can handle

very complicated problems without crashing), fast and stable. There is a minor

outstanding issue of the error in the time-dependent case, but this only seems to

occur in the high points limit, where the error is quite low. What remains to be done
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Figure 4.4: Above are plots of the percentage error ($) against time. These are for
the case of the inflow of homogeneous mixed material with equal volume of each type
into a chute initially filled with small particles. The separate plots show the effect of
changing the number of grid points, the limiter, the Courant number and the order
of application of the split operators, respectively. If not stated on the plot, the runs
are on a grid of 300 by 300 cells, with a Courant number of 0.8, the Superbee limiter
and changing the order of application of the operators after each step.
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is to investigate the effect of changing the limiter and operator order.

To investigate this problem, the analytical solution, outlined in appendix C, will be

used. This is taken from [35], this paper and it’s sister paper [73] extend the analytic

work presented in � 3 to time-dependent problems with shear. The exact problem to

be considered is the homogeneous inflow of material, with volume fraction φ = 0.5,

into a chute initially filled with small particles, with α = 0.5. This problem was

considered in � 3.3.3 for the α = 1 case.

Figure 4.4 shows several plots of the error. It is interesting that there is sharp

change in the error as certain shocks in the solutions are created and destroyed, which

is not surprising. This problem is well behaved in the sense that, for all time, the

error is lower with an increasing number of grid cells (see top left panel). The same

increase in accuracy is also seen as the Courant number is decreased, where the size

of the oscillations in the error drops sharply. For C ≤ 0.4, these have disappeared

all together. These oscillations could be due the solution being overshot when a

large time step is taken and may easily be the cause of the increase in error with

grid refinement in the previous problem. The top right panel shows that changing

the limiter has very little effect and that the Superbee and Minmod limiters are

slightly better than the Woodward limiter. Again, changing the order of application

of the operators has very little effect, surprisingly alternating the order is not the

best method and for t < 0.5 is actually the worst method.

From this point on, unless otherwise stated, all numerical work will take place

on grids of 300 by 300 using the Superbee limiter. The order of application of the

operators will be continued to be changed every time-step, even though there is some

evidence that always applying the x operator first leads to a lower error. Finally if

high temporal accuracy is required, a Courant number of 0.4 should be used. However

for computing the steady-state solution, a Courant number of 0.8 is more sensible

as it leads to a lower computation time. Therefore, from this point onwards, unless

stated otherwise, a Courant number of 0.8 will be used.
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4.5 Effect of weak shear

In this section, some of the time dependent analytic solutions derived in � 3.3 are

numerically investigated with a weak shear velocity profile i.e. α = 0.8. This profile

is more realistic for many observed flows and some shear is required for the ‘kinetic

sieving ’ mechanism to be active. The effect of weak shear on the problems outlined in

� 3.3.3 and � 3.3.4 will be investigated, using the numerical method outlined above on

grids with 300 by 300 points. Figure 4.5 shows the results for the case when the initial

and inflow concentrations are 50%, which are comparable to those in figure 3.10. The

solution in the uniform region determined by the initial conditions is identical to the

plug-flow solution in section � 3.3.3. The most important effect of shear is that the

transition from initial to boundary condition controlled solutions occurs at different

times at different levels in the flow. This can clearly be seen from the position of the

kinks in the shocks at t = 0.7, in the lower left panel. The top transition therefore,

intersects with the lower horizontal shock at z = 1/2 at t = 1. However, due to the

shear, it does not link up with the bottom transition, which intersects with the top

shock a short time later. This creates a third shock which has three, clearly defined

regions; a straight portion at the steady-state height of the no shear case, a transition

zone and another straight section at z = 1/2, which can be seen at t = 1.5. The

mismatch in height is swept downstream and out of the domain, so that locally, the

solution is close to steady-state at t = 2. The shear causes the mismatch interface to

steepen very slowly and it eventually breaks in finite time far downstream.

Figure 4.6 shows the results when the inflow concentration is periodic and is given

by (3.72), i.e. it varies sinusoidally about a background concentration of 50%. The

results are similar to those in figure 3.11, but the concentration contours in the inflow

region tip over with downstream distance, in response to the shear. When the two

shocks meet a triple-point is formed, which move from side to side, as well as up and

down. This introduces oscillations into the boundary controlled section of the third

shock, which are advected downstream and slowly steepen and break. Additionally

the amplitude of the oscillation in the segregation shock is noticeably lower than



CHAPTER 4. NUMERICAL SOLUTIONS 133

z

1.0

0.8

0.6

0.4

0.2

0.0

z

0.8

0.6

0.4

0.2

0.0

z

0.8

0.6

0.4

0.2

0.0
0.0 0.5 1.0 1.5 x 0.0 0.5 1.0 1.5 x 2.0

Figure 4.5: The evolution of the volume fraction of small particles, φ, as a function
of the downslope coordinate, x, and avalanche depth, z. The bulk flow is from left
to right and the normal contour scale is used. The chute is initially filled with 50%
small particles by volume and the same mixture flows in from the left. This case
corresponds to a segregation number Sr = 1 and a shearing/translating flow with
α = 0.8.
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Figure 4.6: The evolution of the volume fraction of small particles, φ, as a function
of the downslope coordinate, x, and avalanche depth, z. The bulk flow is from
left to right and the normal contour scale is used. The chute is initially filled with
50% small particles. At x = 0, a mixture of particles whose concentration varies
sinusoidally in time, with amplitude 10% about a mean background concentration of
50%, enters the chute. This case corresponds to a segregation number Sr = 1 and a
shearing/translating flow with α = 0.8.
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the amplitude by which the boundary conditions are changed. This tendency to

smooth out imperfections in the segregation shock seems to be a generic feature of

shear. Further tests showed that this effect increased with greater shear and a higher

frequency of oscillation.

4.6 Shear and normally graded inflow

In this section, the effect of slightly stronger shear is investigated on the normally

graded inflow solutions. Analytical solutions for this configuration can be found in

both � 3.2 and � 3.4.

4.6.1 A chute initially filled with normally graded material

The problem that will be considered is the chute initially being filled with material

separated at a height of 0.5 and the same normally graded material being fed in at the

inflow. This is precisely the problem considered in � 3.4.1 and a detailed mathematical

statement of the problem can be found there.

The solution for a velocity field given by α = 1/2, which has both linear shear

and basal slip, is shown in figure 4.7. The numerical solution has many similarities

with both, the two-dimensional time-dependent plug-flow solution, of � 3.4.1, and

the steady-state solutions of � 3.2. As the initial distribution is independent of the

downslope coordinate, x, the time-dependent part of the solution, which evolves from

the initial conditions, is in fact identical to plug-flow. The material that flows onto

the chute creates a steady-state region, which is identical to the solution in the upper

middle left panel of figure 3.6. Between the two regions there is a complex transition.

For t < 1/2, as the fan propagates towards the boundaries, the transition starts

parallel to the z axis and slowly tips over to the right in response to the shear. Once

the upper and lower shocks are generated the transition widens into a relaxation zone

as the solution matches up the time-dependent and steady-state shocks, which, as

opposed to plug-flow, now lie at different heights. At t = 2, the upper and lower

shocks meet and a third shock is produced, which lies at height z3 = 1/2 in the
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Figure 4.7: The numerical solution for the concentration of small particles, φ, is
shown using the normal contour scale at a series of time-steps for a chute, which was
initially filled with normally graded material separated by the line zr = 1/2. A linear
velocity profile with basal slip (α = 1/2) transports the material downslope from left
to right and normally graded material is fed onto the chute at x = 0 to replenish
the avalanche. The discontinuity height is zr = 1/2 and the segregation number is
Sr = 1.
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initially uniform region. As the transition propagates further downslope, the two

steady-state shocks meet just before t = 2.5 to produce a steady-state shock that lies

at z3 = (
√

6 − 1)/2. The third shock has a fairly linear transition region between

these two regions, which is advected downstream and out of the domain by t = 3.5.

The solution therefore reaches a local steady-state, but the mismatch persists and

eventually breaks far downstream.

4.6.2 A chute initially filled with large particles

The evolution towards the local steady-state can be markedly different. Consider

now, the alternative case in which the chute is initially filled with large particles

φ(0, x, z) = 0, 0 < z < 1, x ≥ 0, (4.68)

subject to the same boundary conditions as before. For plug-flow, the solution would

look similar to figure 3.13, except that the time-dependent region would be replaced

by a constant uniform state of large particles. When there is a velocity gradient,

the small particles are progressively sheared across the top of a region of large grains

beneath and immediately start to percolate down through the matrix as shown in

figure 4.8. By t = 0.5, a complex transition region develops, between the steady-state

solution to the left and the constant uniform state of large particles to the right,

which appears to consist of an additional unsteady shock and an expansion fan.

Once the lower characteristic reaches the base a pure region of small (blue) particles

separates out at the bottom (t = 1) and a lower finite length unsteady shock develops.

This grows in size and eventually cuts off the unsteady transition expansion between

t = 2.5 and t = 2.6, leaving the steady-state fan behind. The unsteady expansion

is eroded and disappears by t = 3, to leave a concentration jump between the large

particles above and the fines beneath. This jump is swept downstream and eventually

breaks far downslope, but a local steady-state is attained by t = 3.5.
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Figure 4.8: The numerical solution for the concentration of small particles, φ, is shown
using a contour scale at a series of time-steps for a chute. which was initially filled
with large particles. A linear velocity profile with basal slip (α = 1/2) transports the
material downslope from left to right and normally graded material is fed onto the
chute at x = 0 to replenish the avalanche. The discontinuity height is zr = 1/2 and
the segregation number is Sr = 1
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Figure 4.9: The figure shows the time-development of segregation from a chute ini-
tially filled with a homogeneous mixture with concentration 0.25. At the inflow
boundary, a homogeneous mixture of higher concentration (0.75) is fed into the do-
main. All plots (except bottom right) are constructed with 1000 by 1000 points. The
bottom two panels both show the solution at t = 4, the left panel was constructed
with 1000 by 1000 points and the right panel with 300 by 300 points. There is very
little difference between the two plots. The normal contour scale has again been used.
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4.7 Strong shear and wave breaking

As has been alluded to in the previous two sections, shear in the flow leads to the

steepening and eventually breaking, of any kinks in the segregation shock. In this

section, this problem is looked at in more detail and will be investigated using a

version of the problem discussed in � 3.3.5. The chute will be initially filled with a ho-

mogeneous mixture, with φ = 0.25. From the inflow, located at x = 0, homogeneous

mixed material with φ0 = 0.75 will be fed in.

Figure 4.9 shows the evolution of this problem. In the top right panel, a compli-

cated time dependent ‘lens’ type structure can be seen to develop, due to the fact

that the material in the chute segregates to a different height than the material being

fed in from the boundary. At t = 1.5, this ‘lens’ has become completely cut off and

the steady-state solution, as given by � 3.1, exists for all x ≤ 1. This complicated

structure is destroyed producing a very elaborate segregation shock at t = 2.05. The

second from top right panel shows the end of this ‘lens’ structure and the produc-

tion of a highly curved segregation shock. Due to the shear in the flow, this shock

begins to steepen and eventually, breaks at two different points to produce two new

propagating ‘lens’ structures (t = 2.8). At t = 3, these two lenses intersect creating

a single, large lens. This grows in size and then propagates at a constant speed.

The bottom two panels both show the structure of the solution at t = 4, the left

hand panel was computed using 1000 grid cells in each direction and right hand panel

using 300 grid cells. From this, it is clear that there is very little difference between

the two, revealing no evidence of grid dependence.



Chapter 5

Breaking zones and recirculation

In chapter 4, the formation of a travelling ‘lens’ structure has been observed in prob-

lems where waves have broken. In this chapter, this structure will be investigated

further. It is clear from the numerical work that this is formed when small particles

are sheared over large grains. This is often the case in nature, for example, within

the material flowing in an avalanche. Within the flow, initially vertical segregation

will take place, which will then be followed by lateral transport. Due to the shear it

would be expected that after a long time, the large particles are transported to the

front of the flow and all the small particles towards the back, setting up horizontal

segregation. The shear profile will try to advance the small particles along the top,

towards the front, and the small particles towards the back, along the base. This

phenomena is more generic than finite mass problems (i.e. the avalanching material

occupies a finite amount of space, in contrast to the infinite chute flow problems con-

sidered in chapter 3) and occurs in any situation were a non horizontal segregation

shock and shear are both present. The question is; what happens in a steady-state

uniform flow of this kind?

141



CHAPTER 5. BREAKING ZONES AND RECIRCULATION 142

(ξs2
,1)

(ξs1
,1)

(ξr2
, yr)(ξr1

, yr)

Figure 5.1: Schematic diagram of analytic solution, showing the four key points which
define the solution. Fans are generated from the two points on the centre line, which
fill the domain contained by the solid lines. The top/bottom solid dots shows the
generation location of the two shocks present in the ‘lens ’.
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5.1 Analytical solution

To begin, we transform to a frame of reference moving with the mean velocity ū. The

transformation is

ξ = x− ūt, τ = t. (5.1)

The segregation equation (2.35) becomes

∂φ

∂t
+ û

∂φ

∂ξ
− Sr

∂

∂z

(

φ(1 − φ)
)

= 0, (5.2)

where û = u− ū. For a steady-state to develop, the large particles which move back

relative to the mean flow must balance the particles moving forward. Therefore, there

must be a level, z = zr, where this balance occurs. This level corresponds to the point

where û = 0. The equation governing this quasi steady-state (quasi steady because

it is steady in a moving frame) is

û
∂φ

∂ξ
− Sr

∂

∂z

(

φ(1 − φ)
)

= 0. (5.3)

The similarity of (5.3) with the equation under investigation in chapter 3, i.e.

(3.2), means that it is clear that the Method of Characteristics (see � 3.1.1 for details),

for this situation, leads to

φ = φλ, on û
dz

dξ
= Sr(2φλ − 1). (5.4)

As in the steady flow cases, flux-coordinates may be defined

ŷ =

∫ z

0

û(z) dz. (5.5)

These have the property that ŷ = 0 at the free surface and at base of the avalanche,

and ŷ = ŷr < 0 at z = zr. For the linear velocity field, u = 2z, û = 2z − 1, implying

û = 0 at z = 1/2, and so yr = −1/4. For a parabolic profile given by u = 3
√
z/2,

û = 3
√
z/2 − 1, for which the latter has a zero at zr = 4/9, and, hence, yr = −4/27.

With these coordinates, the characteristic equation reduces to

∂ŷ

∂ξ
= Sr(2φ0 − 1). (5.6)
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Suppose that at steady-state the small particles occupy the region ξ < ξr1, then it

would be expected that a rarefaction wave would develop at this interface i.e. (ξr1, ŷr).

In the expansion region, the volume fraction of small particles is given by

φ =
1

2

[

1 +
1

Sr

ŷ − ŷr

ξ − ξr1

]

. (5.7)

As before, this solution is valid until the φ = 1 characteristic

ŷ = Sr(ξ − ξr1) + ŷr, (5.8)

reaches the free surface (y = 0) at

ξs1 = ξr1 − ŷr/Sr. (5.9)

When this occurs, a shock wave develops and propagates downwards. In these flux

coordinates the shock condition is

∂ŷ

∂ξ
= Sr(φ

+ + φ− − 1), (5.10)

whose form is obvious from considering the original shock condition (3.20). On the

forward side of the shock are large particles, φ+ = 0, and on the rearward side, the

expansion solution (5.7) defines φ−. Substituting these conditions into (5.10), yields

the linear ordinary differential equation

∂

∂ξ
(ŷ − ŷr) −

1

2

ŷ − ŷr

ξ − ξr1
= −Sr/2. (5.11)

Solving (5.11) subject to the condition that the shock starts from (ξs1, 0), implies

that the shock is given by

ŷ − ŷr = −Sr(ξ − ξr1) + 2
√

−ŷr

√

Sr(ξ − ξr1). (5.12)

The shock, therefore, reaches the ŷ = ŷr line at

ξr2 = ξr1 − 4ŷr/Sr, (5.13)

where another expansion develops in the return flow. This expansion is centred at

(ξr2, ŷr), with

φ =
1

2

[

1 +
1

Sr

ŷ − ŷr

ξ − ξr2

]

. (5.14)
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Figure 5.2: Steady-state spatial (ξ, z) solutions for the concentration of small particles
φ are shown for a linear (top) and square root (bottom) velocity profiles. In this
moving frame of reference the large particles enter from the bottom right and exit
through the top right side. Whilst the small particles enter through the top left side
and exit through the bottom left side. There are two shocks and two expansion waves
which redistribute the particles.
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The φ = 0 propagates downwards along the line

ŷ = −Sr(ξ − ξr2) + ŷr, (5.15)

and reaches the basal boundary, y = 0, at

ξs2 = ξr2 + ŷr/Sr. (5.16)

An upward propagating shock is generated from the boundary. Using the shock

conditions, with φ+ = 1 and φ− given by (5.14), yields the ODE

d

dξ
(ŷ − ŷr) +

1

2

ŷ − ŷr

ξr2 − ξ
= Sr/2. (5.17)

Solving this linear equation, subject to the condition that it passes through (ξs2, 0)

implies

ŷ − ŷr = −Sr(ξr2 − ξ) + 2
√

−ŷr

√

Sr(ξr2 − ξ). (5.18)

This reaches the y = yr line again at

ξ = ξr2 + 4yr/Sr = ξr1, (5.19)

i.e. it meets back at the point where the interface was assumed to start, and a closed

solution is obtained. A schematic diagram showing the key points of this solution is

illustrated in figure 5.1.

The solution, for both; the linear shear, and the square-root shear profiles, is

illustrated in figure 5.2. The structure is the same for both velocity profiles being

considered. In both cases ξr1
has been taken to be 1. The lens is a lot wider in the

linear shear case, and in section 5.3, the temporal development to this solution will

be numerically investigated.

5.2 Particle paths

Differentiating (5.1) gives,

dxµ

dt
=
dξµ

dt
+ ū, (5.20)
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Figure 5.3: Figure showing the particle paths of both the large and small particles for
the case of linear shear. As before, the blue lines represent paths of the small particles
and the red lines are the large particles. The paths are illustrated for five of each type
of particle. The small particles are taken to enter at heights z = 0.5, 0.6, 0.7, 0.8, 0.9
and 1.0, and the large particles enter at heights z = 0.0,0.1,0.2,0.3,0.4 and 0.5. This
highlights the ‘lens’ structure, shown in the top panel of 5.2 and shows how particles
filter past each other in the lens, and exit at the same side they enter.
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hence, the following results are obtained

dξs

dt
= û,

dzs

dt
= Sr(1 − φ),

dξl

dt
= û,

dzl

dt
= −Srφ. (5.21)

This is analogous to the expression (3.34) from � 3.1.7. Eliminating t in the same

manner and expressing in terms of the depth-integrated coordinates ,(5.5), reveals

dŷs

dξ
= −Sr(1 − φ),

dŷl

dξ
= Srφ. (5.22)

Initially, consider a small particle entering the chute from the left hand side at

height z0 ≥ zr. In transformed coordinates, this will correspond to a height y0, which

is simply given by applying the transform (5.5) to z0. From (5.22) it is clear that the

particle will continue to move along at this height, until it enters the upper expansion

fan by crossing the line (5.8). This occurs at

ξs
e = ξr1

+
ŷ0 − ŷr

Sr

, (5.23)

where ŷr is, again, the location of zr in depth integrated coordinates. From (5.22)

and (5.7), inside the fan, the trajectory is controlled by

dŷ

dξ
= −Sr

2

[

1 − 1

Sr

(

ŷ − ŷr

ξ − ξr1

)]

. (5.24)

This is easily solved to give

ŷ = ŷr − Sr (ξ − ξr1) + C
√

ξ − ξr1 (5.25)

and when subject to the entrance condition (ŷ, ξ) = (ŷ0, ξ
s
e) (5.25) gives

ŷ = ŷr − Sr (ξ − ξr1
) + 2

√
y0 − yr

√

Sr (ξ − ξr1), (5.26)

where (5.23) has been used to simplify the expression.

This trajectory will remain valid until the small particles cross the zero bulk

velocity line i.e. ŷ = ŷr. This happens at the point

ξs
c = ξr1

+
4

Sr

(ŷ0 − ŷr) . (5.27)

Here, the particles leave the top fan (described by (5.7)), and enters the lower fan,

whose equation is given by (5.14). This has exactly the same structure as the top fan
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with the initiation point moved to ξr2, hence, the equation of the trajectories is still

given by (5.25) with the identification ξr1 → ξr2. Applying the boundary condition

y = y0, when ξ = ξs
c , gives the particle path below the mid-plane as

ŷ = ŷr − Sr (ξ − ξr2) +
√

Sr (ξ − ξr2)
√

Sr (ξc − ξr2). (5.28)

The small particles remain on this trajectory until they exit the lower fan by crossing

the lower shock (given by (5.18)), occurring at

ξex = ξr2 −
1

Sr

(√
−yr −

√
−y0

)2
, y = y0. (5.29)

After this they enter a pure phase of their own type, and continue at a constant

height until leaving the domain. A similar expression can be obtained for the large

particles.

Similar arguments can be used to construct the particle paths for the large par-

ticles. The solution for the linear shear is drawn in figure 5.3. As can be seen from

this figure, the particles travel along at a constant height until they meet a particle

of the opposite type coming the other way. At this point they are forced up/down,

depending on whether they are large/small, into the main body of the fan. On pass-

ing the zero velocity line their horizontal direction is reversed. Eventually, they filter

past all the particles of the opposite type and after this their height again becomes

constant. Hence, they flow back out the across the boundary they entered across.

5.3 Temporal development

The numerical methods developed in chapter 4 were used to investigate the temporal

development of this ‘lens’ solution. The problem of a chute, initially filled with a

homogeneous mixture of equal volume fractions will be considered. Again a Courant

number of 0.8 will be used with the Superbee limiter. The chute was initially taken

to be filled with small particles upto the line ξ = 1.5, then the rest of the chute was

filled with large particles. The mean velocity was taken to be ū = 2z−1, which means

that the flow is stationary on the line zr = 0.5. At the end of the chute, the material
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Figure 5.4: Graphs showing the development of the ‘lens solution’ starting from a
initially horizontally segregated mixture. Sr was taken to be 1. The plots are drawn
in the centre of mass coordinates and the velocity field was taken to be the linear
shearing case, i.e. û = 2z− 1. The chute was initially taken to contain a horizontally
segregated solution with the small particles starting behind the large particles. The
code was run using a grid of 300 by 300 points and Courant number of 0.8. This
solution is seen to develop to the analytical solution discussed in the previous section.
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was recirculated back into the chute, i.e. on the left hand edge, material flowing out

below the mid-plane was fed back as the inflow condition above the mid-plane, after

being reflected about z = 0.5 (and vice versa of the right-hand boundary). This is a

very simple model of the recirculation that would occur at each end of a finite mass

of flowing material, as it is simply turned over and fed back into the flow.

Figure 5.4 shows the development of this solution. The initially vertical interface

deflects due to the shear in the flow, highlighted in the top right panel. This, then,

leads to an unstable, stratified (normally graded) solution, hence, segregation starts

to take place under this line. The shear in the flow continues to push the interface

towards the horizontal and segregation continues to take place. This, then, quickly

develops into a ‘lens’ structure (t = 1.0), which oscillates wildly around. At times

it almost returns to a horizontally segregated state, for example, t = 4.0. After a

long period, (around 50) the oscillations die down, and the solution settles down to

precisely the steady-state analytical solution obtained earlier, and shown in the top

panel of figure 5.2.

The code was run from numerous different starting conditions, including initially

vertical segregated and homogeneously mixed conditions. The same steady-state was

achieved in all cases, the only change was the time taken for this to occur. This

indicates that this ‘lens’ structure is fundamental to any problem where both shear

and particle size variations are apparent. As discussed in the introduction to this

chapter, this is almost always the case in real life flows. Therefore, the understanding

of this structure, and its development, is the first step in determining the internal

structure of many segregating industrial and geophysical flows.



Chapter 6

Three Phase Model

6.1 Three constituent segregation model

6.1.1 Mixture framework

In this chapter the two constituent theory presented in chapter 2 will be extended

to include the effect of allowing the pore space between the grains to be filled with

a non-viscous, dense fluid and an additional constant atmospheric pressure that is

applied at the free-surface. Hence, the flow will be assumed to be composed of a bi-

disperse mixture of large and small particles, but this time the interstitial pore space

is filled with a passive fluid. The large particles will be denoted by the superscript

‘l’, the small particles by ‘s’ and the passive fluid by ‘a’. All three constituents must

satisfy individual conservation laws for mass,

∂ρν

∂t
+ ∇ · (ρνuν) = 0, ν = (s, l, a), (6.1)

and momentum

∂

∂t
(ρνuν) + ∇ · (ρνuν ⊗ uν) = −∇pν + ρνg + βν, ν = (s, l, a), (6.2)

where it has been anticipated that the stress tensor will also be a hydrostatic pressure

field for the fluid phase. The convention that will be adopted means that ν represents

a quantity defined for all three constituents, i.e. ν = (s, l, a) and the constituent letter
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µ will be used for granular only properties i.e. µ = s, l. Since, there are three different

constituents, the sum of the internal drags, (1.37), takes the more complicated form

βl + βs + βa = 0. (6.3)

The bulk density, ρ, and bulk pressure, p, are defined by the sum of the partial

quantities over all constituents

ρ = ρl + ρs + ρa, p = pl + ps + pa. (6.4)

Each constituent occupies a volume fraction Φν per unit mixture volume, and by

definition these sum to unity

Φl + Φs + Φa = 1. (6.5)

It is useful to work with the volume fraction of large and small particles per unit

granular volume rather than per unit mixture volume. Since, the volume fraction of

grains per unit mixture is

Φg = Φl + Φs, (6.6)

the volume fractions of large and small particles per unit granular volume are

φµ = Φµ/Φg, µ = l, s, (6.7)

which also sum to unity

φl + φs = 1. (6.8)

The relationship between intrinsic and partial pressure can theoretically take any

general form, the exact form will be discussed later, where the same idea as in chapter

2, will be exploited.

6.1.2 The particle-size segregation model

As the particles avalanche downslope and rearrange themselves during the segregation

process, there are small changes in the local volume fraction of the interstitial fluid.

For simplicity, the theory presented here assumes that these variations are small
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enough to be neglected and that the volume fraction of granular material, and, hence,

the volume fraction of the background fluid, is constant

Φg = const ⇒ Φa = const. (6.9)

The large and small particles are assumed to have the same constant intrinsic density,

ρg∗, whilst the passive fluid is assumed to have a constant density, ρa∗, whose value

is, in general, different to that of the particles

ρl∗ = ρs∗ = ρg∗ = const, ρa∗ = const. (6.10)

These assumptions imply that the bulk density is constant

ρ = Φgρg∗ + Φaρa∗ = const, (6.11)

which is a reasonable first approximation in many granular free-surface flows [70].

Equation (6.1) now implies that the fluid velocity field is incompressible ∇ · ua = 0.

The same coordinate system, as used in chapter 2, will also be adopted here,

and is illustrated in figure 2.1. Following the same development as before, firstly it

is assumed that the normal acceleration terms are negligible, the bulk momentum

balance, obtained by summing (6.2) over all constituents, reduces to

dp

dz
= −ρg cos ζ, (6.12)

in the normal direction. Since the right-hand side of (6.12) is constant, the bulk

momentum balance may be integrated through the avalanche depth h, subject to the

boundary condition that the pressure is atmospheric at the free-surface, p(h) = patm,

to show that the bulk pressure is isostatic

p = patm + ρg(h− z) cos ζ. (6.13)

As demonstrated at the end of chapter 2, the model is crucially dependent on the

interaction forces between the constituents and the way in which the bulk pressure is

shared out between them. The interstitial fluid is assumed to play a passive role in

the theory, interacting only by the surface buoyancy forces that they exert upon the
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particles. In standard mixture theory, the overlapping of constituents implies that

explicit surface forces are lost. They can, however, be reintroduced by assuming an

interaction drag of the form

βa = pa∗∇Φa, (6.14)

which combines with the pressure gradient in the momentum balance to yield a

buoyancy force Φa∇pa∗. It should be pointed out that if the fluid was allowed to

flow, it would apply a drag to the granular phase (i.e. the small and large particles

combined) proportional to the difference in velocities and the viscosity of the fluid,

but in this flow regime these terms will be negligible. A detailed treatment of the

problem of a slow fluid moving through a porous matrix can be found in � 1.5.1 and

the drag for this situation is given by (1.45). Since it has been assumed that the fluid

has zero viscosity, the velocity dependent term has been neglected. The partial and

intrinsic pressures are related by a linear volume fraction scaling

pa = Φapa∗. (6.15)

Substituting (6.14) and (6.15) into the normal component of (6.2) and assuming that

the normal acceleration is negligible implies

∂pa∗

∂z
= −ρa∗g cos ζ. (6.16)

This may also be integrated through the avalanche depth h, subject to the bound-

ary condition that the pressure is atmospheric at the free-surface, to show that the

intrinsic fluid pressure is hydrostatic

pa∗ = patm + ρa∗g(h− z) cos ζ. (6.17)

The fluid pressure is transmitted through the entire matrix by surface pressure in-

teraction forces. It follows that the remaining overburden pressure due to particle-

particle contacts is

pg∗ = p− pa∗, (6.18)

or using (6.13) and (6.17)

pg∗ = (ρ− ρa∗)g(h− z) cos ζ. (6.19)
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The partial pressure in the grains, therefore, consists of a pressure due to the

surrounding fluid, plus a share of the overburden pressure, which will be taken in the

same form as before,

pµ = Φµpa∗ + fµpg∗, µ = l, s (6.20)

where the factor fµ determines the relative proportion of the overburden pressure

carried by constituents µ = l, s, (see chapter 2). Note, the linear volume fraction

scaling Φν for the fluid pressure ensures that the particles obey Archimedes’ principle.

The drag due to the inter-particle friction, as the particles rub past one another,

will take the same form as before, but will now have an additional term, due to

the fluid, which can be thought of as the reaction to (6.14). Hence, the drag of the

granular constituents will be of the form

βµ = pa∗∇Φµ + pg∗∇fµ − ρµc(uµ − u), µ = l, s, (6.21)

and this time u is the barycentric granular velocity

u = φlul + φsus. (6.22)

The first two terms on the right-hand-side of (6.22) combine with the partial pressure

gradient term in the momentum balance (6.2) to yield intrinsic rather than partial

pressure gradients, in the same way as Darcy’s law for fluid flow through porous

materials. The third term provides the resistance to relative motion. Note, that

the internal interaction forces (6.14) and (6.22) and the pressure relations (6.17)

and (6.19) have been constructed in such a way that they automatically satisfy the

summation conditions (1.37) and (1.40).

The large and small velocities in the cross- and down-slope direction are assumed

to be the same as the bulk component, i.e. as in (2.18). An equation for the percola-

tion velocities in the normal direction is obtained by substituting the partial/intrinsic

pressure law (6.21), the interaction drag (6.21) and the pressure relations (6.13) and

(6.17), into the normal component of (6.2) to give

φµwµ = φµw + (fµ − φµ)(ρ̂g/c) cos ζ, µ = l, s, (6.23)
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where the relative density difference is given by

ρ̂ =
ρg∗ − ρa∗

ρg∗ . (6.24)

A comparison with the binary mixture theory of chapter 2 shows that the percolation

equation (6.24) contains an additional factor ρ̂ to account for the presence of the

interstitial fluid. The simple two-constituent theory of chapter 2 can be recovered

by assuming that the density of the interstitial fluid, ρa∗, equals zero, so that ρ̂ = 1.

Physically, the addition of the passive fluid creates a buoyancy force on all the grains,

which reduces the contact forces between them. In particular, if the density of the

fluid is matched to the density of the particles to create a neutrally buoyant suspension

with ρ̂ = 0, then (6.23) predicts that there will be no segregation due to kinetic

sieving. This is in agreement with experimental observations of [85], which will be

discussed in � 6.2.

The final elements of the segregation model are the non-linear pressure scalings,

fµ, which determine how the overburden pressure, pg∗, is shared between the large

and small particles. The same forms as in chapter 2 will be assumed, i.e. those given

by equation (2.23). Substitution of these results into (6.23) gives

wl − w = +qφs,

ws − w = −qφl,
(6.25)

where the mean segregation velocity is

q = (B/c)ρ̂g cos ζ. (6.26)

An equation for the volume fraction of small particles is obtained by substituting

(6.25) into the mass balance (6.1) to give

∂φs

∂t
+

∂

∂x
(φsu) +

∂

∂y
(φsv) +

∂

∂z
(φsw) − ∂

∂z
(qφsφl) = 0. (6.27)

These are similar to the expressions derived in chapter 2, except the relative density

difference, ρ̂, now enters the segregation velocity (6.26). If ρ̂ > 0, the small particles

percolate down at a rate proportional to the volume fraction of large particles, until

100% concentration of small particles is reached. Meanwhile, the large particles move
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up until they also reach 100% concentration. The particles, therefore, segregate into

inversely graded layers as anticipated. A key prediction of this extended theory

is that if the particles are neutrally buoyant, i.e. ρ̂ = 0, then no kinetic sieving

will occur. Furthermore, if the relative density difference is negative, ρ̂ < 0, the

particles are buoyant and the direction of segregation is reversed. The small particles

will, therefore, percolate upwards, and the large grains downwards, to form normally

graded layers.

6.1.3 The non-dimensional segregation equation

The equation will be non-dimensionalised using the scalings in (2.32). Substituting

these scalings into (6.27), and dropping the tildes on the avalanche variables and the

superscript s, for simplicity, the non-dimensional segregation equation for the small

particles becomes

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂y
(φv) +

∂

∂z
(φw) − Sr

∂

∂z

(

φ(1 − φ)
)

= 0, (6.28)

where the non-dimensional segregation number is given by

Sr =
LBρ̂g cos ζ

cHU
. (6.29)

It clear that this is exactly the same equation as (2.33) with a slightly modified

definition of the non-dimensional segregation number (6.29), compared to (2.34).

This implies that, all the analytical and numerical solutions obtained in the previous

two chapters are still valid for the three phase case.

6.2 Comparison with experiments

In � 3.1.5 it was shown that the exact solutions were in good agreement with the

dry granular segregation experiments of [72] and [85]. Experiments with liquid

particle mixtures were also performed by Vallance and Savage [85]. They used a

bi-disperse mixture of 1.44 mm large and 0.99 mm small glass particles of density

ρg∗ = 2.49 g/cm3, which were mixed in a water and a water-ethanol mixture, whose
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Liquid Viscosity Fluid density Relative density

(centipoise) ρa∗(g/cm3) difference ρ̂

1) Water 1.0 1.00 0.59
2) Water-ethanol mixture 3.7 0.94 0.62

Table 6.1: Summary of the properties of the different interstitial fluids used in the
liquid-particle segregation experiments of [85].

properties are summarised in table 6.1. The mass flux was regulated to generate a

steady uniform flow of depth 0.9cm to 1.5 cm on slopes ranging from 22◦ to 12.3◦,

which developed a uniform solids fraction once the initial flow front had propagated

through the system. Splits were taken at three different levels in the flows to de-

termine the degree of segregation at four downstream stations. They found that

segregation took place, but that it was not as “dramatic as in the dry granular flows”

and they summarized that the presence of a viscous fluid inhibited kinetic sieving.

Curiously, they found that the segregation was slightly weaker in water than in the

water-ethanol mixture, which was 3.7 times more viscous. This contradicted their

initial hypothesis that it was due to viscosity and they suggested that this might

instead be due to the density contrast between the particles and the fluid. In their

experimental setup the fluid moves with the same velocity as the barycentric granular

velocity, therefore, from the argument used to justify the form of (6.14), the viscosity

of the fluid should play no role in the segregation distance. Hence, the theory pre-

sented in this thesis confirms the latter hypothesis. From chapter 2, the segregation

distance is xp = 1/Sr. It follows that the ratio of the segregation distances is

xp1

xp2
=
Sr2

Sr1
=
ρ̂2

ρ̂1
' 1.04, (6.30)

where the subscript 1 is used for water and the subscript 2 for the water-ethanol

mixture. Hence, the segregation distance in water is 4% longer than in the slightly less

dense water ethanol mixture, as observed. The buoyancy induced by the interstitial

fluid is, therefore, more important than the effects of viscosity in these high solids

fraction experiments. Vallance & Savage [85] also investigated segregation in neutrally

buoyant fluids. However, they concluded that “there is very little evidence of size
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segregation in flows where the fluid and the particles have exactly the same density”,

as the downstream concentrations of small particles stayed at the inflow concentration

to within the level of accuracy of the experiments. This is also consistent with

the model derived here. When the particles and the fluid have the same density,

the relative density difference, ρ̂ = 0, and the segregation length therefore tend to

infinity. As far as the author is aware, no experiments have been performed with

buoyant particles to date, but the theory predicts that the direction of segregation

will reverse to create normally graded layers.



Chapter 7

Experimental Work

The main thrust of the thesis has been to develop a theoretical model of particle

size segregation in shallow granular free-surface flows. A numerical method was then

developed to compute solutions to this model. Towards the end of this thesis some

simple preliminary experiments were preformed with the aim of verifying the theory.

These experiment and their results are briefly reviewed in this chapter.

7.1 Measuring the Densities of Granular Material

In the experiments contained in this section four different materials will be used: sand,

glass of two different sizes and 100’s and 1000’s (sugar particles). The properties

of these materials need to be determined. The density was calculated by filling a

measuring cylinder with 100 ml of water, to which a known mass of material was

added and the increase in the fluid volume was then recorded. This process was

continued until the granular material was no longer saturated. This experiment

was repeated several times for each material. For each data set a graph of increase

in volume against mass added was plotted and the gradient used to determine the

density.

As the cylinder began to fill it was shaken to repack the material so that more

could be added. This was not possible with the sugar as it started to dissolve due to

the agitation. This was apparent due to the change in the colour of the water and
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Material Density Diameter
(in grams/milli litre) (in mm)

Sugar 1.2401 ± 0.0022 1.5165 ± 0.1093
Sand 2.6187 ± 0.0433

Glass (Coarse) 2.4913 ± 0.0069 0.7180 ± 0.0861
Glass (fine) 2.4697 ± 0.0061

Table 7.1: Table showing the measured densities and sizes of the materials used in
laboratory experiments

a slight curve in the density verses added mass graphs, indicating that some of the

mass was not contributing to a volume increase.

The results of the measurements are summarised in table 7.1. The two different

types of glass vary slightly in density with the coarse glass being 0.8% denser. The

small variation of the glass densities do not lie within one standard deviation of each

other and is likely to be to due to production differences between the two different

batches of glass. The sand was found to be 5.1%/6.0% denser than the coarse/fine

glass respectivly. Whereas the sugar particles are only 49.8%/50.2% the density of

the coarse/fine glass respectivly.

7.2 Measuring the Particle Size Distribution

For the larger materials (i.e. the sugar particles and the coarse glass) the size was

measured using an micrometer. This has a range of 0-25 mm in gradations of 0.01

mm. For both sets of particles a sample of material was removed and from this

sample 40 particles were selected at random. The experimentally determined mean

and standard deviation are summarised in table 7.1. From this it is clear that the

ratio of the mean diameters of these two particles is 2.11, which corresponds to a

volume ratio of 9.42.

Figure 7.1 shows the distribution in sizes of both the sugar and the coarse glass

particles. From here it is evident that there is very little variation in particle sizes and

the distributions do not overlap. The interquartile range for the glass/sugar particles

are 0.132 mm/0.07 mm respectively, illustrating a higher variation in size is present
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Figure 7.1: Graph showing the measured size distribution for both the coarse glass
(blue dots) and the sugar particles (red dots). The sugar particles where found to
have a mean of 1.52 mm with a standard deviation of 0.11 mm, where as the glass
has a mean of 0.72 mm with a standard deviation of 0.09 mm
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in the glass particles. This larger variation in size is also highlighted by the fact that

the glass standard deviation is a higher percentage of its mean value than the sugar.

7.3 Segregation in Chute Flows

The sugar and course glass were used to reproduce the experimental results of Savage

& Lun [72]. As indicated by the results in � 7.1 the glass is twice the density of the

sugar particles, which will obviously aid the segregation process. This sugar was used

because it is cheap and easy to obtain in many different colours. The idea was to

film the flow through the side-walls and use image processing techniques to obtain

more detailed information about the segregation. Granular chute flows slip at the

sidewall and, consequently, show very weak variation across the chute, provided that

the flow velocity does not exceed 5 ms−1 (a speed that is, in fact, very hard to achieve

in small scale experiments). This has been confirmed by a series of Particle Image

Velocimetry measurements at the surface, base and sidewalls of a mono-disperse chute

flow, [25]. In addition, by making surface and sidewall particle tracking measurements

and considering the global mass flux, Courrech du Pont et al., [24], have shown that

the velocity profile with depth at the centre of the flow is self-similar to the wall

profile.

A perspex chute that was 5.1 cm wide and 148 cm long was used. Segregation

was easy to observe without any need to roughen the base of the flow. The aim was

to use a combination of splitter plates and this new method of filming through the

side wall to check the methods are consistent and the results match. If this was the

case, then it was intended to use the new method with two different types of glass.

This was not possible in the time available, but it is hoped this will be able to be

done in the near future as this would give great insight into the problem. The code

was developed and a series of videos of strongly segregating flows were produced.

In figure 7.2, a selection of stills from a slightly different set of experiments are

shown. Rather than connecting splitter plates at the end of the chute, a fixed end was

inserted. When the material reaches the end it collides with this and generates a shock
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Figure 7.2: A series of shots from experiments of a mixture of sugar and course glass
down an inclined plane. The chute is made of perspex and it is 5.1 cm wide and 148
cm long with an incline of 26 degrees to the horizontal. The end of the chute was
closed and hence a shock wave is generated when the material reaches the bottom.
This shock propagates up the chute until reaching the hopper. As the shock passes,
the depth of the flow is seen to increase in thickness. The images on the left hand-side
show the material flowing before the bottom has been reached and generated a shock
wave. The images on the right are for the final deposit once the flow has come to rest.
The top panels are for a gate height (initial depth) of 5 cm and the bottom panels 3
cm. The material used is a 50 % by volume fraction of sugar (red) and course glass
(white), the properties of this material are summerized in table 7.1. The screws from
the base of the chute into the side walls are 18 cm apart.
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wave that propagates back up the chute until reaching the hopper. In both the final

deposit and flowing shots, it is possible to determine three regions, one of purely sugar

(red) particles, another of glass (white) particles and a mixed region between. In the

lower panel (3 cm case) it is clear that full segregation has taken place immediately

after the first screw and from this point onwards the red particles are found to lie on

top of the white particles. For the 5cm case (top panels), full segregation occurs just

after end of the picture. This is in line with the linear increase in segregation length,

with depth, predicted by the dimensionless parameter Sr i.e. (2.34). This is by no

means conclusive and considerably more experimental work needs to performed to

test this and other aspects of the model. Additionally by watching the movies in full,

the boundaries of the different domains are seen to move slightly with time. This

is due to small a variation φ at the inflow point, and was the main motivation for

considering the effect of time dependent inflow in both chapters 3 and 4.

This freezing of the deposit, after the shock wave has passed, is what leads to the

stratified deposits often observed in geophysical flows [62, 28, 11]. These occur when

periodic avalanching of material takes place, each burst of material adds an extra set

of stripes to the surface and the deposit is built-up. Far from the initialisation point,

the deposit consists of consecutive stripes of different size material, as observed in

geological flows. A theory for the build-up of these stratification patterns can be found

in [33, 34], where it is assumed that the material segregates immediately on entering

the avalanching layer. By coupling this with the model of segregation presented in

chapter 2 the full problem, including the prediction of the pattern near the source,

could now be accomplished.

A close inspection of the images in figure 7.2 show that the flow does strain (thin)

slightly as it leaves the hopper. This occurs when the angle of inclination of the chute

is different to the angle of friction of the material under consideration. Numerical

simulations were performed that took account of this straining effect and it was shown

that it did not alter the segregation length.

It is hoped that at sometime in the near future this technique will be fully devel-

oped and applied to these flows. Additionally, it would be interesting to investigate
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Figure 7.3: Above are a sequence of stills from a video of a mixture of sand and fine
glass flowing down a rough incline, whose propeties are summerised in table 7.1. The
sand accounts for 14% of the material by volume. The flow is from left to right. The
chute is 1.2 metres long and 0.6 metres wide and was roughenend by glueing the sand
to its surface. It was inclined at an angle of 30 degrees to the horziontal.

the case of normally graded inflow condition and see if these results match with the

predictions contained in this thesis.

7.4 Fingering Instability

Additional to the chute flow experiments discussed in the previous section, provisional

experiments were preformed on a wider chute (1.2 metres) with a mixture of sand and

the fine glass. The aim of this was to gain an understanding of the key ingredients

in the phenomenon of fingering (see [67, 68]). Providing insight into how the theory

presented in this thesis could be coupled with the avalanche models (see section � 1.2),

to fully describe this problem. The coupled problem would allow the study of feed-

back from the segregation process to the bulk flow, which would be done by allowing
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the friction coefficient to depend of the volume fraction of the individual constituents.

It has been found that only a very small percentage of the rougher large grained

sand was required to produce strong fingering effects. It was not possible to develop

these experiments further, but in figure 7.3 a series of images with 14% sand mixture

can be seen. Here, structures very similar to ones observed in many different types

of geophysical deposites are observed [62, 28, 11]. In figure 7.3 a uniform front is

seen to break down into serveral fingers, which continue to subdivide further. In the

final image (bottom right) it is very clear that there is segregation occuring within

each individual finger. The orange sand is seen to have moved to the outer edge, and

hence, forms a channel for the finer white glass. The glass pushes the slower moving

sand from behind, helping to construct and extend the channels. These channels

have the feedback effect of confining the glass and reducing lateral spreading, hence

creating vastly increased run-out distances.

This experiment was repeated a number of times and the phenomenon was found

to be very robust and easy to reproduce. The exact pattern was highly dependent on

the initial conditions and method of trigging, but the general features were always the

same. To form the pattern, a small amount of sand was required and the maximum

number of fingers were produced with glass rich flows.



Chapter 8

Conclusions

This thesis begins by using a binary mixture theory to derive a simple kinetic sieving

model for the segregation of small and large particles in shallow granular avalanches.

The model reduces to a single first-order quasi-linear conservation equation (2.25) for

the volume fraction of small particles. In order to solve it, the bulk velocity field in a

shallow three-dimensional, incompressible, granular free-surface flow, must either be

prescribed, or computed using existing avalanche models (e.g. [41, 55, 26, 70, 71, 40,

38]. A significant advantage of this theory is that the segregation velocity is explicitly

dependent on gravity. This sets an orientation for the direction of segregation, and

ensures that there is no segregation in the absence of gravity.

Exact steady-state concentration solutions have been derived for general steady

uniform velocity fields, by using a concentration jump condition (3.18), and a coor-

dinate mapping (3.10). For homogeneous inflow, all solutions consist of three shocks

that separate the inflowing mixture from pure phases of the large and small particles.

Sufficiently far downstream complete segregation occurs, and an inversely-graded

layer is obtained, with the large particles separated from the small ones beneath by a

concentration jump. These solutions are in close agreement with Savage & Lun’s [72]

original laboratory experiments, as well as those of Vallance & Savage [85]. Exact

steady-state solutions have been constructed for a discontinuous, normally graded in-

flow condition with general steady uniform velocity fields. These show the formation

of expansion fans, concentration shocks, and inversely-graded, completely segregated
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layers, sufficiently far downstream. The distance for complete segregation to occur

is inversely proportional to the segregation number, Sr, and is dependent on the in-

flow discontinuity height, zr. This is in marked contrast to the homogeneous inflow

solutions, which were only dependent on Sr.

The model developed in chapter 2 was then extended to include the effect of a

non-viscous pore fluid, again, using the framework of mixture theory. This allows

buoyancy effects to be incorporated into the final segregation equation (6.27), and

represents a significant extension of the simple two-phase theory of chapter 2. As the

density of the interstitial fluid is increased, the relative density difference, ρ̂, decreases,

therefore, Sr decreases and complete segregation occurs further downstream. If the

density of the fluid and the grains match, then segregation by kinetic sieving is

inhibited altogether. This is in agreement with the experiments of Vallance & Savage

[85], but it should be noted that segregation in other, more energetic, systems may

occur in the absence of gravity, due to spatial gradients in the energy of the granular

velocity fluctuations (e.g. [59, 52]). If the relative density difference, ρ̂, changes

sign, such that, the particles are buoyant, the direction of segregation is reversed and

normally graded layers will be formed, sufficiently far downstream.

Fully time-dependent solutions have also been constructed for the plug-flow regime,

by exploiting the decoupling of material columns as they are advected downstream.

These solutions yield considerable insight into segregation in geophysical flows, where

there is strong slip at the base.

The shock-capturing modified-TVDLF method can be used to compute solu-

tions to the dimensionless segregation equation (2.33) with any incompressible three-

dimensional velocity field, and for general initial and boundary conditions. This has

been used to compute the evolution of the small particle concentration, with strong

shear, in two space dimensions. Many of the flow features can be explained with the

insight gained from some simple exact solutions for plug-flow, which exploit the decou-

pling of material columns, in the absence of downslope velocity gradients through the

avalanche depth. Essentially, the solutions consist of a downstream region, where the

uniformity of the initial conditions implies that the solution is exactly that predicted
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by plug flow, and a steady-state upstream region. The two of which are separated

by an evolving transition zone that propagates downslope with increasing time. The

dynamics of the transition regions are extremely complex, with the development of

unsteady propagating shocks and expansion fans. It will, therefore, be of great use

in calculating numerical solutions to more general problems in the future. However,

the system is suitably robust to suggest that the segregation equation (2.33) may

be coupled to existing models for dry granular free-surface flows, to compute the

development of the particle size distribution, and allow feedback onto the flow. In

particular, the inclusion of a passive fluid now allows the model to be incorporated

into water saturated, debris-flow models, such as those of Iverson [48] and Iverson &

Denlinger [46].

A small number of experiments was carried out on both the coupling with the

bulk flow, and testing the simple analytic solutions for homogeneous inflow. The

experiments were qualitative in their nature and can be used as the ground-work to

produce more sophisticated quantitative experiments in the near future. The results

that were obtained are consistent both with the original experiments of Savage &

Lun [72], and the analytical results.

Finally, the wave breaking problem was investigated by considering a finite mass of

material flowing down a chute, with a very simple velocity profile. This investigation

led to a discovery of an analytic, stable ‘lens’ solution, which appears in many of the

numerical results of chapter 4. This solution consists of both, two expansion fans,

and two curved shocks, and gives some insight into the structure of geological debris

flows, where a similar concentration profile is often observed.

The original model with homogeneous solutions has been published in [39] and the

extended model and normal-graded inflow solutions can be found in [80]. Extended

time-dependent analytic solutions can be found in [73] and [35].
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Appendix A

Derivations and comment on

Mohr-Coulomb type avalanche

models

In this appendix, the two dimensional Savage-Hutter equations will be derived. These

and the shallow water models, were discussed in � 1.2. In � A.1, the Mohr-Coulomb

analysis, which leads to the definition of the Earth-pressure coefficient, can be found.

This Earth-pressure coefficient represents the only major difference between the two

sets of avalanche models. In the shallow-water type models, the coefficient is taken

to be unity, and in the Savage-Hutter models, it takes the values given by (A.3).

A.1 Mohr-Coulomb yield criterion

It will be assumed that the granular material acts like an ideal Coulomb material,

which means the rate of shear stress is proportional to the normal stress. This leads

to the Coulomb yield criteria

S = N tan Φ, (A.1)

where S is the shear stress, N is the normal stress, and Φ is the angle of friction.

Here µ = tanΦ, where µ is the coefficient of friction of the material. Defining δ to

be the basal angle of friction, it is clear straight away, that this is the angle at which
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Shear Stress

Normal Stress

Passive stress state Active stress state

p0δ
Φ

Figure A.1: Mohr diagram showing Coulomb yield criterion, bed friction angle, and
active and passive stress conditions

a straight line would intersect the Mohr-Coulomb circle.

In a granular material, the top surface need not be horizontal. The angle of

repose of the material is the maximum angle between the slope of the material and

the horizontal. For a non-slipping material the angle of repose is equal to the internal

angle of friction. From this, it is possible to relate the stresses normal and parallel

to the chute, in the following way

pxx = kact/passpzz. (A.2)

These quantities are shown on a Mohr-Circler in figure A.1, from this diagram using

geometrical arguments it can be shown that

k =
kact

∂u
∂x
> 0

kpass
∂u
∂x

≤ 0







= 2 sec2 Φ
[

µ
(

1 ∓ cos2 Φ sec2 δ
)1/2
]

− 1. (A.3)

The active stress state exists if the granular material is being accelerated (elongated),

i.e. ∂u/∂x ≥ 0, and the passive state if ∂u/∂x < 0 .
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A.2 The two dimensional Savage-Hutter theory

In this section, the two-dimensional Savage-Hutter equations for granular flow will

be derived. All the problems presented in this thesis will be two-dimensional. A full

three-dimensional version of the theory can be found in [71]. It will be assumed that

the continuum hypothesis holds. Balancing mass and momentum, the following is

obtained

∇ · u = 0, (A.4a)

ρ
∂u

∂t
= −∇ · p + ρg, (A.4b)

in which, ρ is the constant density, u is the velocity, p is the pressure tensor and g

is the gravitational acceleration of the material. The boundary condition at the free

surface, Fs = z − h(x, t) ≡ 0, is

∂Fs

∂t
+ ∇Fs · u = 0,

p.n = 0,







at Fs(x, t) = 0. (A.5)

In (A.5), n is a unit normal vector from the surface. The first of these conditions is

a statement that Fs is a material surface, i.e. any material on the surface remains on

the surface, and the second condition states that there is no stress normal to the free

surface. At the base of the material Fb = z ≡ 0, hence,

u.n = 0, (A.6)

applies. Here, it has been assumed that there is a solid flat boundary, located at z = 0,

which will hold for all problems considered in this thesis. (A.6) is the statement of

impermeability of the solid boundary.

Postulating a Coulomb-type friction law, the following relation applies for the

shear stress

S = − [n.p − n (n.p.n)] . (A.7)

The normal stress, N , is related to S as follows,

S = −sgn(u)N tanΦ, (A.8)
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where sgn(u) = u/ |u| and Φ is the angle of friction. Clearly, at the base of the

material Φ = δ , where δ is the dynamic angle of friction of the granular material.

Using (3.5), (3.4) and (3.3) together, the following boundary condition is produced

n.p − n (n.p.n) = −sgn(u) (n.p.n) tan δ at z = 0. (A.9)

Imposing the discussed coordinate system, see figure 2.1, on (A.4) yields

∂u

∂x
+
∂w

∂z
= 0, (A.10a)

ρ

{

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

}

= ρg sin ξ − ∂pxx

∂x
− ∂pxz

∂z
, (A.10b)

ρ

{

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

}

= −ρg cos ξ − ∂pxx

∂x
− ∂pzz

∂z
. (A.10c)

Before proceeding it is helpful to non-dimensionalise the equations, to this end

introduce the normal avalanche scaling

x = Lx̃, z = Hz̃,

(u, v) =
√

gL(ũ, ṽ), w = (H
√

gL/L)w̃, t = (L/
√

gL)t̃,

pxx = (ρg cos ξH)p̃xx, pzz = (ρg cos ξH)p̃zz, pxz = (ρg sin ξH)p̃xz (A.11)

Here ˜ indicates a dimensionless variable, and inserting this into (A.10) gives the

following non-dimensional version

∂u

∂x
+
∂w

∂z
= 0, (A.12a)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= sin ξ

(

1 − ∂pxz

∂z

)

− ε cos ξ
∂pxx

∂x
, (A.12b)

ε

{

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

}

= − cos ξ

(

1 − ∂pxx

∂z

)

− ε sin ξ
∂pxz

∂x
, (A.12c)

with ε = H/L . In the shallow depth limit, (A.12c) reduces to

1 =
∂pzz

∂z
, (A.13)

which is easily integrated to give

pzz = h− z. (A.14)
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Here, use of the boundary condition (A.5) has been made. This same simplification

cannot be made to the x-momentum equation, since the resulting equations are too

simple to model avalanche motions correctly. This pressure field is compatible with

the pressure in the segregation model (see (2.11)), which means it will be possible,

at a later date, to couple the two models together.

Adding u, multiplying (A.12a) by (A.12b), and then integrating w.r.t to z from

0 to h , produces

∫ h

z=0

{

∂u

∂t
+ 2u

∂u

∂x
+ u

∂w

∂z
+ w

∂u

∂z

}

dz = ε cos ξ

∫ h

z=0

∂pxx

∂x
dz − sin ξ

{

[pxz]
h
z=0 + h

}

.

(A.15)

Clearly, the left hand side can be simplified to give the following form of (A.15),

∫ h

z=0

{

∂u

∂t
+
∂u2

∂x

}

dz+[uw]hz=0 = ε cos ξ

∫ h

z=0

∂pxx

∂x
dz−sin ξ

{

[pxz]
h
z=0 + h

}

. (A.16)

Using Leibniz’s rule to move the derivatives out of the integrands and remembering

h = h(x, t), reveals

{

∂

∂t

∫ h

z=0

u dy +
∂

∂x

∫ h

z=0

u2 dy −
[

u

(

∂h

∂t
+ u

∂h

∂x
− w

)]

z=h

− [uw]z=0

}

=

sin ξ
(

h− [pxz]
h
z=0

)

− ε cos ξ

{

∂

∂x

∫ h

z=0

pxx dy −
[

pxx
∂h

∂x

]

z=h

}

. (A.17)

Writing the boundary conditions, (A.5) and (A.6), in terms of the coordinate system

being used here, and non-dimensionalising, subject to the scaling (A.11), gives

∂h

∂t
+ u

∂h

∂x
− w = 0 at z = h(x, t), (A.18a)

w = 0 at z = 0. (A.18b)

Substituting this result into (A.17) produces

{

∂

∂t

∫ h

z=0

u dz +
∂

∂x

∫ h

z=0

u2 dz

}

=

sin ξ
(

h−
[

ph
xz

]

z=0

)

− ε cos ξ

{

∂

∂x

∫ h

z=0

pxx dz −
[

pxx
∂h

∂x

]

z=h

}

. (A.19)

Writing the stress condition, (A.5), in terms of the non-dimensional coordinates gives

−ε cos ξpxx
∂h

∂x
+ sin ξpxz = 0,

−ε sin ξpxz
∂h

∂x
+ cos ξpxz = 0.











at z = h(x, t). (A.20)
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Equating terms of order 1 implies pxz = pzz = 0, hence now (A.2) implies pxx = 0 .

So now (A.19) becomes

{

∂

∂t

∫ h

z=0

u dz +
∂

∂x

∫ h

z=0

u2 dz

}

= sin ξ
(

h− [pxz]
h
z=0

)

− ε cos ξ

{

∂

∂x

∫ h

z=0

pxx dz

}

.

(A.21)

Now define the transverse averages in the following way

ūh =

∫ h

z=0

u dz , h ¯pxx =

∫ h

z=0

pxx dz , ū2h =

∫ h

z=0

u2 dz = α1ūh. (A.22)

Obviously, α1 would be 1 if the velocity profile was uniform, therefore, it can be

considered as a measure of the deviation of the profile from a linear state. It is worth

noting that, for a parabolic velocity profile (with zero basal velocity), α1 turns out to

be 6/5, therefore, α = 1 may be a significant approximation. Under this assumption,

and using the transverse averages, (A.21) becomes

∂

∂t
(hū) +

∂

∂x

(

hū2
)

+ ε cos ξ
∂

∂x
(h ¯pxx) = sin ξh+ sin ξ [p̄xz]z=0 . (A.23)

Using the shallowness assumption, (A.9) can be written as

pxz|z=0 = −sgn(u)pzz tan δ cot ξ +O (ε) (A.24)

and using (A.2) again gives

∂

∂t
(hū) +

∂

∂x

(

hū2
)

+ εk cos ξ
∂

∂x
(h ¯pxx) = sin ξh− sgn(u) cos ξ tan δp̄zz|z=0. (A.25)

Integrating (A.12a) from 0 to h, and using the kinematics boundary condition, gives

∂h

∂t
+

∂

∂x
(hu) = 0. (A.26)

Writing back in terms of the dimensional variables gives

∂h

∂t
+

∂

∂x
(hu) = 0, (A.27a)

∂

∂t
(hu) +

∂

∂x

(

hu2
)

+
∂

∂x

(

kg cos ξh2

2

)

= hgD, (A.27b)

where D is the driving force and is given by

D = cos ξ (tan ξ − sgn(u) tan δ) . (A.28)



Appendix B

Exact Form of the function Ks(η)

In this section, the full form of the function Ks is discussed, when it is expressed

in physical variables. Ks is the function which in the Savage & Lun theory relates

the small particles percolation velocities to their volume fraction and other physical

quantities. From the method of characteristics, it follows that

Ks =
γ ∂

∂η
(−ρsqNs)
(

∂ρs

∂η

) . (B.1)

The full expression is obtained simply by substituting expressions for qNS
and ρs into

this formula, (B.1). The algebra is lengthy and tedious, as most of the terms depend

on η in some way. The final form will be expressed in terms of physical quantities.

With this in mind, it is convenient to make the following definitions; let σ = Ds/Dl,

as before, be the ratio of the diameters of the small to large particles, M be the total

number of voids, N be the total number of particles, kAV , be the ratio of the largest

sphere that will fit into a void to the actual area of the void and, kLT , a dimensionless

measure of the average particle diameter to average layer thickness. After some work,

the following result is obtained

Ks(η) =
4

π

M

N
γk2

LT

∂II

∂η
/
∂I

∂η
, (B.2)

where

I =
A7

A6
, (B.3a)

II =
[A2 exp(A3) − A4 exp(A5)]

A1A
2
6

. (B.3b)
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and

A1 =
(1 + ησ)2 (1 + ησ3)

(1 + η) η
, (B.4a)

A2 = Ē − Em + 1
(1 + η)σ

1 + ησ
, (B.4b)

A3 = − [(1 + η)σ/ (1 + ησ)] − Em

Ē − Em

, (B.4c)

A4 = Ē − Em + 1 +
1 + η

1 + ησ
, (B.4d)

A5 = − [(1 + η) / (1 + ησ)] − Em

Ē − Em

, (B.4e)

A6 =
(1 + η) (1 + ησ2)

(1 + ησ)2
+

Ē

kAV
+
M

N
, (B.4f)

A7 =
(1 + η)2 η

(1 + ησ)3 . (B.4g)

B.1 Limit as η → 0

In the dilute limit of η → 0, it can be shown that the function Ks takes the simplified

form of

Ks = − −qNs

Dl ( du/ dz)
, (B.5)

which is just a dimensionless net percolation of small particles. Expanding this in

terms of physical variables gives

Ks = −− 4

π

M

N

k2
LT

1 +
(

Ē2/kAV

)

(M/N)

(

(

2 + Ē − Em

)

exp

[

− 1 − Em

E − Em

]

−
(

σĒ − Em + 1
)

exp

[

− σ − Em

E − Em

]

)

. (B.6)

From this form, it is clear this is a constant and only depends on the physical prop-

erties of the particles and the flow.



Appendix C

A time dependent analytic solution

with shear

In this section, the problem of the flow of homogeneous material, with volume fraction

φ0, into a chute filled with small particles, will be considered. The steady-state version

of this problem can be found in � 3, and a time-dependent analytical solution for the

α = 1 case is derived in � 3.3.3. This material can be found in [35], along with a

selection of other time-dependent solution with α 6= 1.

C.1 Review of the non-time-dependent case

Before getting involved in the details of the time-dependent problem, it is instructive

to review the steady-state case for this setup. As derived a few times before, the

generalised shock relation can be written as

u
ds

dx
= Sr

(

φ+ + φ− − 1
)

, (C.1)

where s = s(z) is the height of the shock. It will be Assumed the velocity field has

the following form

u = α + 2(1 − α)z. (C.2)

This form is chosen because it will give the same volume flux for all values of α,

therefore, α is just a non-dimensional measure of the shearing rate. α = 1 corresponds
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to plug flow and α = 0 corresponds to pure linear shear.

Integrating (C.1) gives

αz + (1 − α) z2 = Sr

(

φ+ + φ− − 1
)

x + C. (C.3)

The inflow condition, which will be applied at x = 0, is φ = φ0 for all z.

C.1.1 Top Shock Propagation

For the top shock the conditions φ+ = 0 and φ− = φ0, must hold, and it is generated

from the point x = 0 and z = 1. This implies the constant is C = 1, and this shock

is given by the equation,

z =















−α+
√

α2+4(1−Sr(1−φ0)x)(1−α)

2(1−α)
: α 6= 1

1 − Sr (1 − φ0) x : α = 1

(C.4)

The positive branch is taken as it exists within the domain under consideration.

C.1.2 Bottom Shock Propagation

Whereas, for the bottom shock φ+ = φ0 and φ− = 1. This shock originates from the

point x = 0 and z = 0, which implies that C = 0 and the second shock is given by

z =















−α+
√

α2+4Srφ0x(1−α)

2(1−α)
α 6= 1

z = Srφ0x α = 1

(C.5)

C.1.3 Full Segregation Point

When these two shocks intersect, a third (segregation) shock will be formed. Its

location is given by

x =
1

Sr
, (C.6a)

z =















−α+
√

α2+4φ0(1−α)

2(1−α)
α 6= 1

φ0 α = 1

. (C.6b)
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C.2 Time Dependent Case

The fully time-dependent version of this problem will now be considered. Hence, the

solution to the following equation

φt + (φu)x − Sr (φ (1 − φ))z = 0, (C.7)

will be sought. The same steps as the time-independent case will be taken, hence,

firstly, a shock relation needs to be obtained. The same structure, as the steady-state

case is anticipated; this is predicted to be one shock generated from the top and one

from the bottom and a final third segregation shock.

C.2.1 Deriving the Shock Relation

In this case, it will be convenient to integrate (C.7) w.r.t. x, and to assume that

u = u(z) only, giving

∂

∂t

∫ L1

L2

φ dx+ [φu]L2

L1
− ∂

∂z

∫ L2

L1

Srφ (1 − φ) dx = 0. (C.8)

Assuming there is a jump (shock) located at x = X̂(z, t), from φ+ to φ−, (C.8)

becomes

∂

∂t

[

∫ X̂

L1

φ dx+

∫ L2

X̂

φ dx

]

+ [φu]L2

L1
,

− ∂

∂z

[

∫ X̂

L1

(φ (1 − φ)) dx +

∫ L2

X̂

(φ (1 − φ)) dx

]

= 0. (C.9)

Applying Leibniz’s rule to this problem, reveals

∫ L2

L1

∂φ

∂t
dx− [φ]+− X̂t + [φu]L2

L1
−
∫ L2

L1

∂

∂z
(φ (1 − φ)) dx + [Srφ (1 − φ)]+− X̂z (C.10)

Letting L1 → L2 produces the following result, for the shock development

[φ]+−

(

u− X̂t

)

+ Sr [φ (1 − φ)]+− X̂z = 0, (C.11)

which when rearranged, in a more useful form, states

u(z) = X̂t −
Sr [φ (1 − φ)]+− X̂z

[φ]+−
. (C.12)
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This, clearly, reduces back to the steady-state condition (C.1) if it is assumed X̂

is independent of time. The solution to (C.12) represents planes in x and t, which

describes the full temporal and spatial development of shocks. Now that the shock

relation has been determined, attention will be given to establishing the development

of the shock generated at the top boundary.

C.2.2 Top Boundary

To generate characteristics that propagate into the domain, it has to be assumed that

the shock generated from the top boundary is independent of time. Additionally, this

is clearly the case in the numerical simulations that have been performed. So, the

conditions to be applied on the top boundary are

φ+ = 0, φ− = φ0, X̂ 6= fn (x) , (C.13)

with the obvious boundary condition x = 0 when z = 0.

From now on, for notation convenience, in the following analysis x will be used as

a short-hand for X̂. Substituting these results into (C.12), and recalling (C.2), then

−Sr (1 − φ0)
dx

dz
= α + 2 (1 − α) z, (C.14)

is obtained. Integrating up this expression and applying the boundary condition gives

x =
1 − αz − (1 − α) z2

Sr (1 − φ0)
, (C.15)

which is exactly the same expression as the steady-state top shock.

C.2.3 Bottom Boundary

The bottom boundary shock is considerably more complicated, as it is fully time-

dependent. On the bottom boundary φ+ = φ0, φ
− = 1, with the boundary/initial

conditions

x(0, t) = 0, x(z, 0) = 0. (C.16)

Under conditions (C.16), equation (C.12) reduces down to

xt + Srφ0xz = U(z). (C.17)
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This equation will be solved via the method of characteristics, see � 3.1.1 for details.

Solution Via Method of Characteristics

Since the shock location x is a function of both z, t from � 3.1.1 the following equation

must hold

dx

dr
=

dt

dr

∂x

∂t
+

dx

dr

∂x

∂z
, (C.18)

where r is a characteristic coordinate. From direct comparison with (C.17), the

following is quite clear

dt

dr
= 1 ,

dz

dr
= Srφ0. (C.19)

Hence, it follows that t = r + A, where A is a constant, and

λ = Srφ0t− z. (C.20)

Substituting these results into the shock relation,(C.17), reveals the expression

dx

dt
= u(z) = u(Srφ0t− λ). (C.21)

Recalling (C.2), this equation can be expressed in the more useful form of

dx

dt
= α + 2(1 − α) [Srφ0t− λ] (C.22)

Integrating up, and substituting back in for λ, reveals the result

x = αt− Srφ0(1 − α)t2 + 2(1 − α)tz + h(λ). (C.23)

This is the general form of the bottom shock but to determine h(λ) the initial and

boundary conditions must be applied.

Initial Conditions on the Shock

The initial condition states that x(z, 0) = 0, which implies h = 0. Now, this is true

when λ = −z. Since z runs from 0 to 1, then,

h = 0 1 ≤ λ < 0. (C.24)

One interpretation of this result is that when −1 ≤ λ < 0, the bottom shock is

controlled by the initial conditions.
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Boundary Condition on the Shock

The boundary condition states that x(0, t) = 0, implying λ = Srφ0t, then since the

problem is defined for t ≥ 0, this means this condition applies for all positive λ.

This defines the values of λ for which the lower shock is controlled by the boundary

conditions.

Substituting these results into (C.23), gives

h(Srφ0t) = −αt+ Srφ0(1 − α)t2, (C.25)

and it will be convenient to define ζ = Srφ0t. After some simple rearrangement, the

following can be shown

h(ξ) =
1

Srφ0

[

−αξ + (1 − α)ξ2
]

(C.26)

A note on this section. Here h is an unknown function, therefore, it is convenient,

and it may be necessary, to write the definition and description in terms of the same

variables, e.g. you would not write f(x) = u2 and then note the relationship between

u and x somewhere else.

Once this function has been found for this ‘boundary condition’, it will be known

for all values of λ. So far, the value h, for the case when λ = ξ, has been found, but

this function is now fixed for all values of λ. So this function can be substituted back

into (C.23), with the use of the definition of λ gives

x = αt− Srφ0(1 − α2
t ) + 2(1 − α)tz +

1

Srφ0

[

−α [Srφ0t− z] + (1 − α) [Srφ0t− z]2
]

,

(C.27)

which can be simplified down to

x =
αz + (1 − α)z2

Srφ0

. (C.28)

This is exactly the steady-state form of the bottom shock, which was derived previ-

ously, but it is additionally known to only be valid for λ ≥ 0 or in terms of physical

variables

t ≥ z

Srφ0

(C.29)
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It is a simple matter to confirm that the solutions agree at the point λ = 1. Recall

that, the initial condition controlling time-dependent part of the shock had a lower

limit. It can be shown that, this condition is weaker than t ≥ 0, therefore, it is always

satisfied, since this whole problem is only defined for positive time.

Summary

In summary, the bottom shock is given by

x =















αt− Srφ0(1 − α)t2 + 2(1 − α)tz 0 ≤ t ≤ z
Srφ0

, (a)

αz+(1−α)z2

Srφ0
t ≥ z

Srφ0
. (b)

(C.30)

The point, where the steady state part of the shock meets the time-dependent part,

is controlled by

xt = αt+ Srφ0(1 − α)t2, (C.31a)

z = Srφ0t. (C.31b)

This point will be referred to as the transition point of the lower shock, as it represents

the location behind which the shock has achieved its steady-state configuration.

C.2.4 Triple Point

In general, the top and bottom shocks will meet at a point. Here, they will form a

third segregation shock, hence, this is a triple point of the flow. Initially, the triple

point will be a function of time and will be defined by the intersection of (C.30)(a)

with (C.15). Hence, the solution is given by the root of the following quadratic,

(1 − α)z2 + [α + 2Srt(1 − φ0)(1 − α)] z + Sr(1 − φ0)
[

αt− Srφ0(1 − α)t2
]

− 1 = 0.

(C.32)

This shock becomes steady at the point where the steady bottom shock, (C.30)(b),

intersects the top shock, (C.15). This could be viewed in an alternative way, i.e. where

the transition point of the bottom shock and the triple point are one and the same.

It is left to show that this steady triple point solution is given by

z =
−α +

√

α2 + 4φ0(1 − α)

2(1 − α)
, (C.33a)
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x =
1

Sr

. (C.33b)

The easiest way to calculate the time at which the triple point becomes steady is

to equate (C.31b) with the z location of the steady triple point, this implies

t =
−α +

√

α2 + 4(1 − α)φ0

2(1 − α)Srφ0
. (C.34)

This can be simplified to the following result

t =
2
√
φ0

2Srφ0

2Srφ0 =
1

Sr

√
φ0

. (C.35)

C.2.5 The Final Shock

All that remains to do, to complete the solution, is to calculate what happens to

the third shock which emanates from this triple point. Hence this shock is subject

to the boundary condition that it starts from the point (xtrip, ztrip). The chute is

considered to be filled initially with small particles, which imposes the condition that

x = 0, z = 1 at t = 0.

Before the triple point becomes steady, the starting point will be time-dependent.

This, final shock, is a segregation shock separating large from small material, hence,

for the third shock φ+ = 0 and φ−−1. Inserting this information into (C.12), reveals

that this shocks development is governed by the following o.d.e.

xt = u(z), (C.36)

which is easily integrated up to give

x = u(z)t+ f(z). (C.37)

The initial condition leads to the result f(1) = 0. Applying the boundary condition

gives,

xtrip = u(ztrip)t+ f(ztrip). (C.38)

By numerically solving the quadratic, (C.33), it is possible to express xtrip and ztrip

in terms of z and t and, hence, plot the solution. It should be noted that, this would

give the time-dependent part of the final shock, after the transition point has reached
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the triple point a steady section of this shock is produced. The expression for this

section of solution is simply obtained from (C.33) and (C.35), hence completing the

full structure of the solution.


