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Abstract

We consider the problem of optimal scaling of the proposal variance for multidimensional Random
walk Metropolis (RWM) algorithms. It is well known, for a wide range of continuous target densities,
that the optimal scaling of the proposal variance leads to an average acceptance rate of 0.234. There-
fore a natural question is, do similar results hold for target densities which have discontinuities? In
the current work, we answer in the affirmative for a class of spherically constrained target densities.
Even though the acceptance probability is more complicated than for continuous target densities, the

optimal scaling of the proposal variance again leads to an average acceptance rate of 0.234.

AMS 2000 subject classification. Primary 60F05; secondary 65C05.

Keywords: Random walk Metropolis algorithm, Markov chain Monte Carlo, optimal scaling, spherical

distributions.

1 Introduction

The Random walk Metropolis (RWM) algorithm is one of the most widely used Markov chain Monte Carlo
(MCMC) algorithms. The RWM algorithms popularity is due to the fact that it is easy to implement
and its generic nature. Therefore it is often seen as the default MCMC algorithm when more model

specific algorithms do not readily present themselves. However the RWM algorithms generic nature can
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be its downfall and it is important that the proposal variance is carefully chosen to construct an efficient
algorithm. If the proposal variance is too small, then the RWM algorithm converges slowly since all of
the increments are small. Alternatively, if the proposal variance is too large, the RWM will reject too

high a proportion of proposed moves.

The question of optimal scaling of RWM algorithms for d-dimensional target distributions has received
considerable attention. A number of heuristic, ‘rules of thumb’ have been proposed, see Besag and
Green (1993) and Besag et al. (1995). However, in Roberts et al. (1997) theoretical guidelines were
obtained by considering a sequence of d-dimensional target distributions as d — oo. These guidelines
although asymptotic have been shown to be practically useful for relatively low dimensions such as d = 10.
Moreover the guidelines provided by Roberts et al. (1997) are easy to implement and summed up in the

following statement from Roberts et al. (1997), page 113.

Tune the proposal variance so that the average acceptance rate is roughly 1/4. (1.1)

In Roberts et al. (1997), iid product densities were considered. Subsequent papers have shown that (1.1)
holds in a range of situations, see Breyer and Roberts (2000), Roberts and Rosenthal (2001), Neal and
Roberts (2006) and Bédard (2007). All these papers consider continuous target densities. Therefore the
following question is posed; does (1.1) hold for discontinuous target densities? A partial answer is given
in this paper, in that, we show that (1.1) holds when the target distribution is subjected to a global
(spherical) constraint on the components. In a subsequent paper, Neal et al. (2007), we show that (1.1)
does not hold for target distributions with local discontinuities, that is, where the discontinuities are

given in terms of individual components as opposed to a global condition.

The paper is structured as follows. In Section 2, the target distribution to be considered is introduced.
In Section 3, RWM on the d-dimensional uniform hypersphere is considered. In particular, we focus on
the limiting behaviour of movements both in the radial component of the hypersphere and individual
components. The analysis is similar to Roberts et al. (1997), thus allowing for direct comparisons with
the results there in. However, variation in the radial component, and hence the acceptance probability,
leads to more involved arguments than those required in Roberts et al. (1997). In Section 4, extending
the results of Section 3 to more general target distributions is discussed. This begins with a detailed com-
parison with Roberts et al. (1997) and is followed by analysis of constrained Gaussian random variables
for which explicit results can be derived. In Section 5, a simulation study is presented to demonstrate the

general applicability of the results given in the previous sections. Also some limitations of the rule (1.1)



are discussed with examples of densities where the addition of the spherical constraint to the density leads
to an average acceptance probability of 0.234 being sub-optimal. Finally, in Section 6 a brief summary

of the results is given.

2 Target densities

For d > 1, we consider the optimal scaling of the proposal variance for target distributions of the form:

10, flz) i 2500 a2 <1,

0 otherwise.

ma(x?) o (2.1)

The spherical constraint is chosen so that in the limit, as d — oo, each of the components of X% ~ m4(-)
have non-trivial marginal distributions. Note that without the spherical constraint (2.1) is the product

density considered in Roberts et al. (1997).

In Section 3, we consider the d-dimensional uniform hypersphere, that is, the special case of (2.1) where
f(z) =1 (z € R). The behaviour of the RWM algorithm in this case is indicative of the RWM behaviour
for more general target densities. In Section 4, we let f(-) ~ N(0, A) for A > 0, with the d-dimensional uni-
form hypersphere as the special limiting case when A — co. Complications encountered when considering

more general choices of f(-) are also discussed in Section 4.

The RWM algorithm is described below. For ¢ > 0 and ¢ > 1, let Z;; be independent and identically

distributed according to Z ~ N(0,1). Ford>1,1<i<d,t>0and >0, let o4 = l/\/a and
Ytﬁ-l,i = Xtd,i +0aZti-

Then if 52?:1(1/&1@)2 < 1, we accept the proposed move with probability 1 A H?:l f(}/ﬂ_“)/f(Xfll)

If the move is accepted, we set X¢, ;| = Yf_H. Otherwise, we reject the move and set Xf_H = X¢.

The stationary distribution of X¢ is given by (2.1). Each of the components of X¢ are identically
distributed and exchangeable. Therefore we shall focus on the first two components X_‘fl and X.‘fQ. In
particular, we show that the movements in the first two components are asymptotically independent.
For t > 0, let RY = (é ZL(X&)Q)% denote the (normalised) radius. A key point to note is that for
the uniform hypersphere and the constrained Gaussian distribution the acceptance probability is totally
determined by the radius of Ygﬂ. Therefore in both cases we begin by studying the behaviour of the

radial component before analysing X _‘fl and X_‘ilg in detail.



3 Hypersphere

In this section we consider the uniform hypersphere case, that is,

1 i a2<,
ma(x?) o 221 T S (3.1)
0 otherwise.

Movements in the radial component are analysed in Section 3.1 with the analysis of (X ,”fl, X fo) presented

in Section 3.2.

3.1 Radial Component

For large d, the majority of the mass of the hypersphere is located close to the surface (radius equal to
1). Under stationarity, R4 has cumulative distribution function Fy(r) = ¢ (0 < r < 1). Therefore rather
than consider the asymptotic behaviour of R{ as d — oo, it will be convenient to consider B¢ = —dlog R,

where for all d > 1, B ~ Exp(1).

Fix [ > 0. We shall assume that [ is fixed for the remainder of this section. For ¢ > 0, let the Markov

chain B have the following transition kernel,

B —Z; ifBi—Z >0
By = (3.2)
B, otherwise,
where Z; ~ N (%, 12). The Markov chain {B;} is a random walk on the positive half line with station-
ary distribution Exp(1). Geometric ergodicity of {B;} is easily verified using a Foster-Lyapunov drift
condition. The proof is similar to that given in Meyn and Tweedie (1993), Section 16.1.3, pages 3945,

and hence, the details are omitted.

Before showing that B is the limiting process of B? we introduce some preliminary results. Let

d
B(x) = 5 log (5 (x?>2) .

(3

Then for a,~ > 0, let
Féa,'y) _ {Xd; 112.3‘<Xd |x;i| < da} N {Xd;o < Bd(xd) < ~vlog d}

We then have the following trivial result which will enable us, for & > 0 and v > 1, to restrict attention

to X4 € Féa’y).



Lemma 3.1 For alla« >0 and v > 1,

dP(XE ¢ Fi*) 50 d— o (3.3)

Proof. Fix a > 0 and v > 1. Note that
dP(X¢ ¢ F{*7) < dP(max |X§,| > d*) + dP(5Y(X?) > ylog d). (3.4)

The components of X are exchangeable, and so, the first term on the righthandside of (3.4) is bounded

as follows

1<i

AP(max [X{,| > d°) < dPP(XE,| > d). (3.5)

Therefore since ngl has probability density function,

D(d/241) (=2 (V/d=22)?"?
7a/2(Vd)d ( r((d71)/2i1) ) —Vd<z<Vd

0 otherwise,

ga(z) =

it is straightforward to show that the righthandside of (3.5) converges to 0 as d — oc.

The latter term on the righthandside of (3.4) converges to 0 as d — oo, since for all t > 0, B4(X%) ~

Exp(1). 0

Lemma 3.2 For all0 < a < i, ¥y>1,keNandt >0, ifo € F(EOW), then
I & P& L, ba
ﬁé&,ﬂt@*‘ﬁ%%,i: i +e  asd— oo, (3.6)

where Z; ~ N(12/2,12) and for any 6§ < 1 — 4o, d®¢! 250 as d — oo.

Proof. Let X{ =wic F éa’v). We prove the result for ¢ = 1, the general result follows similarly.

Let 6 € R. Then since maxi<j<q |w§i| < de,

d 2 d 2
E exp 10 od Zw}iZu + % Z Z12-,j = H E [exp (ZG {adw}iZu + %Zi]}>:|
j=1

Jj=1



F(gav’)’)

Note that since w? € , we have that

vlogd 1 d
d\2
1-2 y gajg (w§)” <

Therefore it follows from (3.7) that

where for any § < 1 — 4o, d°¢§ 5 0 as d — oco. O

Lemmas 3.1 and 3.2 are stronger than are required for analysing the radial component but are needed for
the analysis of the individual components in Section 3.2. We now turn our attention to the main results

for the radial component.

Theorem 3.3 For allb e RT and T € N,

BB =b-2 Br|By=b asd— . (3.8)

Proof. We prove the result for 7= 1. The result for general T' € N follows straightforwardly since B¢

and B. are Markovian.

Ford>1andt>1, let
d
1
Stdﬂ log (3 Z YgH i) 2) )
=1

then

d e ad
Bth: Sgy i SE ;>0
B#  otherwise.

Firstly, note that

zd:(Yf%f = (Xg + ﬁzg)T (Xg i ﬁzg>

= d(R})?+ QL(zg)Txd + v

Zd TZd
@)

S

d
l
= dRP+2—=> X§Zoi+ = ZZOZ
\/E =1
By Lemma 3.2,

d
2 2
d{exp<‘asf+l>‘exp(‘335>} = 2 () - AR’

L, 27, asd— oo (3.9)



For all t > 0,
250 as d — o0,

2 2
’d{exp <ES,§1+1> — exp (8321)} +2(8¢, — Bf)

and so, by Billingsley (1968), Theorem 4.1,

—(S¢, — B L7, asd— oo

Therefore for all b > 0,

SE Bl =b-255,4|Bi=b asd— oo, (3.10)

where
Syy1 =B, — Z;. (3.11)
Since Z; is continuous, (3.8) follows from (3.10) and (3.11). O

Theorem 3.3 shows that the radial component mixes in O(1) iterations. However, for studying the

movement in individual components we shall require the following result.
Lemma 3.4 For any 3 >0, v > 1 and for all by € [0,~log d],

Bﬁiﬁ]IBS’ =by L B~ Exzp(1) asd— . (3.12)

Proof. Fix 3,¢ >0,v>1,¢ € RT and let C = [0,(].

Let Wy = minj<;<4{ B¢ € C}. Then since B? has negative drift, it is trivial to show that

P(Wy > [d°/2]) =0 asd— oo. (3.13)

Since {B;} is geometrically ergodic, there exists T' € N such that

{Br|By € C} — Blpy < % (3.14)
see Meyn and Tweedie (1993) page 354, Theorem 15.0.1. However, for all b € C and x € R,
|P(BY < z|BS = b) — P(B < z)]
< |P(BL < 2B =b) —P(Br < x|By = b)| + |[P(Br < z|By = b) — P(B < )| (3.15)

By (3.8) and (3.14), respectively, the two terms on the righthandside of (3.15) are bounded by €/2 for

all sufficiently large d. Therefore since [d°/2] — oo as d — oo, it follows that for all sufficiently large d,



[dP/2] > T, and so, by the Markov property

Bl 1y |BE =0 B asd— . (3.16)

The lemma follows from (3.13) and (3.16). O
3.2 Individual Components

We are now in position to consider the movement in any of the components. Since the components are

exchangeable but not independent we shall focus upon components 1 and 2.

For t 0 and d > 1, let Uf = (X, 1, Xy )

Theorem 3.5 For all d > 1, let X4 be distributed according to my(-), where for x* € R?,

1 if iy (@92 <1,
Wd(Xd) - f d 2171( 2) = (317)
0 otherwise.
Then, as d — oo,
Ul=U asd— o,
where U. = (U.1,U.2), Up; ~ N(0,1) (i =1,2) and U satisfies the Langevin SDE
1/2 s(0)

with s(1) = 212®(—1/2). (Note that ® and ¢ denote the cdf and pdf of a standard normal random variable,

respectively.)

Thus the limiting process U is a bivariate Ornstein-Uhlenbeck process with independent components
and each component having stationary distribution N(0,1). Hence in the limit as d — oo any pair of
components are (asymptotically) independent. Furthermore, the statement of Theorem 3.5 is essentially
identical to the statement of Roberts et al. (1997), Theorem 1.1. In particular, the speed measure of
the diffusion is of the same form. Thus letting a4(l) denote the 74(-) average acceptance rate of the

d-dimensional RWM, we have the following Corollary which mirrors Roberts et al. (1997), Corollary 1.2.

Corollary 3.6

lim ag(l) = a(l) = 20 (5) .

d— o0 2

s(l) is mazimised by [ = 2.38 with a(l) = 0.234.



We proceed by introducing the notation and results needed to prove Theorem 3.5. Fix 0 < o, 8,7 < 1—16
and v > 1 with a 4+ § < 7. For t > 0, let W fkf, where k7 = [d7]. Thus the W*" processes are

the X4 processes observed at time-points 0, k7, 2k7, . . ..

Let G7, be the (discrete-time) generator of W%, and let V € C2° (the space of infinitely differentiable

functions on compact support) be an arbitrary test function of the first two components only. Thus

aV(w)

4R [V(WET) - V(W)W = w]

= AR V(X)) - VXE)XE = w]
k31

= T YRV - VKX = w)
=0
kij—1

:leZE

The generator G of the two-dimensional Ornstein-Uhlenbeck process described in Theorem 3.5, for an

V(Y ) - V(X)) {1 A ((L;j;;)} Xd = wd] (3.19)

arbitrary test function V' € C2°, is given by
2
1 32 w; 8

GV =s(l ——V -V . 3.20
(w1, wz) = s( );{281012 (w1, ws) > D, (w1, w3) (3.20)
By Ethier and Kurtz (1986), Chapter 4, Corollary 8.7 and Lemma 3.1, we can restrict attention to
X¢eF Cgaﬁ). (i.e. X¢ stays close to the boundary of the hypersphere, and none of the components are

excessively large.) The aim will therefore be to show that,
sup  |GaV(w?) — GV (wy,wp)| — 0 asd — oo. (3.21)

wdeFd(f%"/)

Before proving (3.21) rigorously we give an outline of the arguments used in the proof. The acceptance
probability is a function of the radius which mixes in O(1) iterations. On the other hand, any single
component mixes in O(d) iterations. Thus the acceptance probability is mixing much faster than any
of the individual components. Therefore for any 0 < § < «, the radial component has ‘forgotten’ its
starting value after [d”] iterations (see Lemma 3.4), whereas any given component barely moves in [d’]

iterations. Furthermore, over [d°] iterations approximately aq()[d”] proposed moves will be accepted.

For b > 0 and uy,us € R, let

h(b, w1, ) = ;ZQ: {@ G {b - —}) SZQV(M,W) - %uiqb (% {b - g}) %V(ul,uz)}  (3.22)

i=1

o~



Lemma 3.7 For all wé € Fé"‘ﬁ)}
Y4 1
E [(V(Y?) - V(Xg)) {1 A M}‘ Xg = Wd:| = Eh(bd7’w1,w2) + 0(d—5/4)

where by = —% log (é DO wf)

Therefore there exists K < oo such that for all d > 1 and w? € Féa’v),

ma(Y)
ma(X§)

dE {(V(Yf) —- V(X)) {1 A H Xd = wd] < Kd*.

Proof. Let 12
. d
1 if {é 21:1(}/1{{1‘)2} <1,

0 otherwise.

Therefore, letting Y¢ = (Yi, Y2, ..., V),

Ag(YY) =

ma(X§)

E {(V(Yf) — V(X)) {1 p (Y1) }’ Xd = wd}
E[(V(Y{) - V(X)) Aa(Y)X] = w]

, (3.23)

(3.24)

= Bypyg [(VIYD) = VX)) Bya [Aa(Y)XE = w, vit, V1% = ]

Concentrating first on the inner expectation. Note that for 1 < i < d, Yld,i = w;

ZLi ~ N(O, 1) ThU.S7

Eya [Aad(YD)|XE =w, Z1 1 = 21, Z1 5 = 23]
L
P (‘ Z(Yffi)Q <1|X§=wh Y = wy + 0421, Y5 = wy + 0d22>

d

i=1

d d
P (d(Rg)2 + 204 <w1z1 + wozo + Zwizl,z) + 02 (z% + 22+ Z ZIQZ> <d| X

=3 =3

d d
P (d — 2bg + o(d_3/4) + 204 (wlzl + wozo + Z wiZl,i> + 03 (zf + z% + Z Zf
i=3 =3

Therefore by Lemma 3.2, (3.7)

=3 =3

d d
P (d — 2bg + o(d™3*) + 204 <w1z1 + wazg + Zwizl,i> + 035 (Z% + 25 + Z Z121> <d

2

=P (Zl +eq < bg — o(d™3*) — og(wy 21 + waza) + %(z% + z%))

/°° fea(2)® (% {bd - g —og(wiz1 +weze) —x + 0(d‘3/4)}) de

? 2
i) <% {bd - %}) - %Ud(unm + w222)¢ (% {bd - %}) +o(d¥),

10

+ 04721, where

)
)Sd

Xg = Wd> .

(3.25)

Xg = Wd>

(3.26)



using a Taylor series expansion.

Also by Taylor’s Theorem,

V(YY) - V(X)

_ %( 881V( )+22(9%2V(wd)>

+— 2 & V( 4y + z2ﬁV(wd)+z z iV(wd) + o(d™>/%) (3.27)
2d 6 2 w3 122 9wy we ' '

Therefore it follows from (3.26) and (3.27) that

w1W2

R L

+ﬁ 22—2V(wd)+z2£V(wd)+zz o V(w? d=s/*
(45 o . w>)+o< )}
1
1

(i ) s e S ]
- %h(bd,wl,w2)+o(d’5/4), (3.28)

and (3.23) is proved.

Finally (3.24) follows straightforwardly from (3.28) since V € C° and for w? € Fggam, |ws |, |we| < d*.
U

Lemma 3.8 For any w? ¢ chow) and for any sequence of positive integers {cq} such that [d°] < cq <
[d7],

dE

(V(Ygd+1) V(ng)) {1 A er(Yigﬁl)}' Xd=w ] / (b, wy,ws)e " db.

Proof. Fix the sequence {cq} such that for all d > 1, [d°] < ¢q < [d®]. By Lemma 3.7, for w? € Féoﬂ),

dE (VY1) - V(XE)) Aa(YE | )Xd = wi]

d [ R U OV - VO X, = 0] ) = 0) | 72 ol

/ Oo{ [ thatvatat) ) + ola ) (a dwd,bdmd):b)dud} < (blw) db, (3.29)

where f¢ (-[w?) and g¢ (-|w?) denote the pdfs of B and X¢

d
Ccq? N

respectively, given that X¢ = w

11



For any € > 0 and |u; — wy], |ug — wa| < O(d™°), it follows by Taylor’s Theorem that
h(bg(u?),u1,us) = h(bg(u?),wy,ws) + O(d™°).
For any ¢ > 1, by the triangle inequality,

ca
d d
X4 = X8, <oad 1Zl.

Cd,’i
J=1

Let € = % — 27. By Markov’s inequality,
Cd
dP O'dz |Zj;|>d €] -0 asd— oo.
j=1
Therefore by (3.30) and (3.31), it follows from (3.29) that

i [(V(deH) o V(ng))Ad(Ygd-‘rl”Xg = Wd]

/ h(b,wy, w) f2 (blw?) db + 84,
0

where §4 — 0 as d — oo.

/OOO {/{hd(awl,wz) + O(d=) }ge, (0 |w?, by(u?) = b) dud} 4 (blw) db

(3.30)

(3.31)

(3.32)

By Lemma 3.4, for all w? € FCEO"V), B¢ X = w L, B asd — oco. Furthermore, for all wy,ws € R,

h(-, w1, ws) is bounded. Therefore the righthand-side of (3.32) converges to
/ h(b, w1, ws) f(b) db:/ h(b,wi,ws)e™db  as d — oo
0 0

and the lemma is proved.

Lemma 3.9

2
°° by — L0 iy Wi |
/O h(b, wy,w)e db—s(l)2{2awgV(wz) QGin(wl) :

i=1

Proof. The lemma follows straightforwardly since

/ e b (I-’ — f) db = 2® <—£>
0 I 2 2

and

as required.

12



Proof of Theorem 3.5. By Ethier and Kurtz (1986), Chapter 4, Corollary 8.7 to prove the theorem it

is sufficient to show that,

sup  |GLV(wd) — GV (w1, ws)] = 0  as d — oco.
w’iEF[ga"Y)

It follows trivially from Corollary 3.8 and Lemma 3.9, that for all w? € Féa"Y),

Giv(w) = d'E [V(Wf’T)—V(WS’T)IWS’T = w|
[@°)
= d'” TZIE X)) = V(XT)XG = w]
[d7]
+dT YT E[V(XY,) - VIXDIXE = wi]. (3.33)
i=[dP]+1

Since @ + 3 < 7, the first term on the righthand-side of (3.33) converges to 0 as d — oo by (3.24). The

second term converges to GV (w1, wsz) as d — oo by Lemmas 3.8 and 3.9.

Since CS° separates points (see Ethier and Kurtz (1986), page 113), the theorem follows from (3.33) by
Ethier and Kurtz (1986), Chapter 4, Corollary 8.7 provided the compact containment condition holds for
{U4}. This is easily verified using the proof of Neal and Roberts (2006), Theorem 3.1 O

4 Constrained Gaussian distributions

4.1 Introduction

In Section 3, we have considered the special case where 74(+) is uniformly distributed over the d-
dimensional hypersphere with radius v/d. We shall in this section consider extensions of the results
of Section 3. However, we begin by comparing the results obtained so far with previous analysis in

Roberts et al. (1997) giving reasons for restricting attention to constrained Gaussian random variables.

The acceptance probability for the d-dimensional hypersphere is totally determined by the radial com-
ponent which mixes in O(1) iterations. In Roberts et al. (1997) it was shown that for independent and
identically distributed product densities m4(x?) = H?,l f(xl) where f() = exp(g(~)) is the pdf of X,
the acceptance probability of a move is determined by -+ 27 5,9 (2;)? and -1 ZZ 59" (x;). Further-
more, under stationarity, subject to mild moment conditions upon ¢'(-) and ¢”(-), 7; Zi:2 g (X:.0)?
and ﬁ Z?:Q g"(X¢,;) are essentially constant for all ¢ > 0. That is, with sufficiently high probability
for large d, the acceptance probability is contained within (@(fl\/f/Q) —€q, D(—IVI/2) + ed> where

13



I =FE¢[¢'(X)?] and ¢4 — 0 as d — oo. Thus attention in Roberts et al. (1997) can be restricted to the
movement of individual components. Therefore the movement in the radial component of the hypersphere

is a complication not encountered in Roberts et al. (1997).

For more general target densities than the hypersphere the acceptance probability is more complicated
than a 0-1 indicator. In particular, for m4(-) given by (2.1), (the constrained version of Roberts et

al. (1997) (1.1)),

ma(Y9) fth)
1/\ W(jd(x;) == 1{(1 1Z(Yd )2<1} {1/\1_[ f(l'll) }

=1

= 0325, 22 ,—0ax 292 i+o(d*1/4)>0}

{1 A exp (crng VARE ong" VAR —|—0(d1/4)>} (4.1)

i=1
with X¢ = x? and by = —g log (3°;(z¢)?). Therefore (4.1) is a hybrid of the acceptance probability of

Section 3 and Roberts et al. (1997), and the joint distribution of

(ade th UdZZEZ,Ung th+ dzg// ZEZ)

needs to be studied. In Roberts et al. (1997), it is shown that - Z?:z g'(X:.:)? ~ I, but such arguments
do not readily extend to the current target density due to the dependencies in the components of X¢

induced by the constraint.

Progress can be made when f(z) = \/QITA exp(—=z2/2)\) (x € R), i.e. f(-) ~ N(0, ). In this case

o2
<0—de Zyi+ -2 ZZ“,Ung N Z0i + 7 Z " Zﬁ) =Q%1,1/\)
where

Qi (= —Udzx Zm+—dZZf,
Thus the acceptance probability is determined by Q¢ and BY = 7‘21 log (Zl(X;iz)z)

Without any constraint, if X7, Xs,... are independent and identically distributed according to X ~
N(0,\), then

1 a.s.
EZXZ?'—M\ as d — oo. (4.2)

Therefore with the constraint there are three cases to consider A < 1, A =1 and A > 1. For A < 1, the

constraint % S0 X 2 < 1 is redundant, and so, Roberts et al. (1997), Theorem 1.1 holds. Furthermore,
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the constraint is redundant for any Y ~ f(-) for which E[Y?] < 1. Thus we restrict attention to the cases
where the constraint is important. In particular, we shall focus on A > 1 where the results mirror those
of the hypersphere. Note that the hypersphere is the limiting case as A — oo. Finally, the case A =1 is
more intricate with a different scaling of the radial component. In particular, the mixing of the (scaled)
radial component is O(d) and the methodology required for dealing with this is very different to that

used here. As a consequence, we shall consider the case A = 1 elsewhere.

4.2 Radial component

The analysis is very similar to section 3.1, and so, only an outline of the argument is given.

For t > 0, let the Markov chain B have transition kernel,

B B, — Z; with probability 1 A exp (—Zt/)\) if B, —Z; >0
1 =
B; otherwise.

where Z, ~ N(1?/2,1%). Tt is straightforward by studying the balance equation to show that B; has
stationary distribution Exp(uy) where py = % The geometric ergodicity of {B;} can be easily verified

using Foster-Lyapunov drift criteria, as for the uniform hypersphere in Section 3.1.

Theorem 4.1 For all b > 0,
BB =b-2 Bi|By=b asd— oo. (4.3)
For any 8> 0, v > 1/ux and for all by € [0,~log d],
B[ddB]|Bg b2 By~ Exp(py) asd— oc. (4.4)
Proof. The proofs of (4.3) and (4.4) are essentially identical to the proofs of Theorem 3.3 and Lemma
3.4, respectively, and therefore the details are omitted. O

We conclude our brief analysis of the radial component by noting that in the conditions of Theorem 4.1,
v > 1/py replaces v > 1 for the hypersphere. This is necessary for (3.3) to hold for the constrained Gaus-
sian. We can then utilise the sets {F éaﬁ)} as before when considering the movements of the individual

components.

4.3 Individual Components

Fort >0 and d > 1, let Ud = (X[ddt]’17 X@t]72). Theorem 4.2 is virtually identical to Theorem 3.5.
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Theorem 4.2 Suppose that there exists A\ > 1 such that f(-) ~ N(0,\). For all d > 1, let X3 be

distributed according to wa(-) (2.1), where for x? € RY,
Ul=U asd— oo,

where U. = (Uy..,Us.), Uy, ~ N(0,1) (i = 1,2) and Uy,. and Us,. are independent Ornstein-Uhlenbeck

processes with U; o ~ N(0,1) (i =1,2) and U satisfies the Langevin SDE
1/2 s(1)
with s(1) = 212®(—1/2).

The proof of Theorem 4.2 is similar to the proof of Theorem 3.5. Whilst some of the calculations are a
little more involved, the essentials of the proof are the same. Therefore we give an outline of the proof

only highlighting the salient points.

Proposition 4.3 For any ¢ € R and for Z ~ N(u,0?),

E 1z {1 Aexp(=2)}] = @ (=£) +exp ("; - u) {<I> (c;“ + a> ~ao(o- g)} (4.6)

and for ¢ >0,

E [1(z<e) exp(~2); Z > 0] = exp (%2 - u) {<I> (% + o—> ~a(o- g)} : (4.7)

Lemma 4.4 For any)\>1andf0ng:xd,
Eoo [1na™YD] g (D) e (LB [t L) g (L
vi- ma(xd) | T 2) TP TN I X2 X2
2
l2,u>\ 1 bd l l
3 oamzew (<55 ) o (T3 3)

+§ {fI) (bl—d+§é> @(%é)}}w(d?’/‘*), (4.8)

where by = —% log (é Z?:l(x;‘i)2)'
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Proof. Note that

Ey- [1 A Wd(Y%)]

ﬂd(xd)

1 oq _

= E {1{bd+o(d3/4)+Qf+gd(mz1+m222)<0} {1 N exp (XQil — T(xlzl + z222) + o(d 3/4)) H
1 _

= E |:1{—bd+o(d3/4)+Q’f+ad(xlz1+x2z2)§0} {1 N exp <_XQil + O(d 3/4)> }:l

gd 1 _
—7(3?121 + w229)E |:1{—bd+o(d—3/4)+Q‘11+ad(1121+w2zQ)§0} exp (_XQii +o(d 3/4)> ; QY > O]

Fo(d=3/4). (4.9)

The second equality follows by differentiating

1 .
1 Aexp <XQ‘11 — %(zlzl + X929) + 0(d3/4))

with respect to z; and z9, see Breyer and Roberts (2000) page 192.
The lemma follows by applying Proposition 4.3 to (4.9). O

Let V(-) € C2 be an arbitrary test function of the first two components only. For b > 0, A > 1 and

ug, Uz € R, let

ho(b, w1, us)

e (D58 ol ed D)o e

2
B 2o\ (1. (b 1 I\ 1 b1l Lol
J— 2 . _— —_ — — N — — — R — — R —
l;mauiv(“““”ew( 2~ A){l¢(z )\ 2>+>\{q)(l+>\ 2) (I)()\ 2)}}

Then Lemma 4.5 follows from Lemma 4.4. The proof is identical to Lemma 3.7, and so, the details are

omitted.

Lemma 4.5 For any A > 1 and for X3 =w? € Fa(,am,

E (V(Yil) - V(Xg)) {1 A Zzg;g;}’xg = Wd} — éhk(bdawl,uﬁ) + O(d_5/4).

Corollary 4.6 follows immediately from Lemma 4.5 by straightforward but tedious integration, c.f. Lemma

3.7, Corollary 3.8 and Lemma 3.9.
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Corollary 4.6 For any w¢ € F;aﬁ) and for any sequence of positive integers {cq} such that [d°] < cq <
[a*],

Yd S)
V(YL ) -V(XI)NLA ”(—dd“) Xd=wi| — / ha(b, wi, wa)pae 0 db,  (4.11)
) ﬂ-d(XCd) 0

where

/OO B (b, w1, wo)ppe M0 db = S(Z)Z liV(w) _ w9 Viwg) ¢ - (4.12)
o Ty P 2 Ow? ’ 2 Ow; ¢

Proof of Theorem 4.2. The theorem follows immediately from Corollary 4.6. The details of the proof

are identical to the proof of Theorem 3.5.

5 Simulation Study

As noted in Section 4.1, it is difficult to prove results for general f(-). Therefore a simulation study was
conducted to see to what extent (1.1) holds for general choices of f(-). Since Roberts et al. (1997) results
only hold for continuous f(-), we restrict attention to continuous f(-). We follow Roberts and Rosenthal
(1998) and Neal and Roberts (2006) in measuring the speed/efficiency of the algorithm in terms of the
first-order efficiency. That is, for a multidimensional Markov chain X with first component X', say, the
first-order efficiency is defined to be E[(X},; — X})?], where X, is assumed to be stationary. Throughout
the simulation study we take d = 50 (similar results were obtained for d = 20 and d = 100) and all
estimates are based on runs of n = 250000 iterations after a burn-in of 1000 iterations. We estimate
E[(X{, — X2)?] by £ 3" (X} — X} 1)? and the acceptance rate is estimated by L+ 3" | 1rx,2x, ,}-

We then plot acceptance rate against first-order efficiency.

A range of choices of f(-) were considered. The results presented are from four such choices of f(-) which

are indicative of more general behaviour. The distributions considered are:-

f(x) < (1+2?/5)?° (v€R) (5.1)
f(z) o exp(—0.5(z —0.5)?) (z€R) (5.2)
f(x) o« exp(—0.5(z—2)?) (v €R) (5.3)
f(z) o exp(—8(z —0.5)?) +exp(—8(z +0.5)?) (z €R) (5.4)

The constrained Gaussian distributions of Section 4 have the properties that f(-) is unimodal and sym-

metric about its mean with mean 0. Of the chosen distributions, (5.1) is a standard t5 distribution which
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has both these properties, (5.2) and (5.3) which are N(0.5,1) and N (2, 1), respectively, are unimodal and
symmetric about their means but have non-zero mean and (5.4) which is a mixture of N(0.5,(0.25)?)
and N(—0.5,(0.25)?) is symmetric about its mean of 0 but is not unimodal. The results are presented in

Figure 1 along with simulations from the uniform hypersphere (Section 3) for comparison.

First order Eficiency
0055 000 005
\ \ \

0010
|

0005
|

0000
|

Acceptance rate

Figure 1: First-order efficiency E[(X},; — X})?], as a function of overall acceptance rates for:- a)
Uniform Hypersphere, Section 3, (circles); b) t5-distribution, (5.1), (squares); ¢) N(0.5,1), (5.2),

(diamonds); d) N(2,1), (5.3), (stars); e) Mixture of Normals, (5.4), (triangles).

From Figure 1 it can be seen that the optimal acceptance rate for all the distributions except the N(2,1)
is the same as for the uniform hypersphere. That is, the optimal acceptance rate is 0.234. For N(2,1)
a lower acceptance rate was observed of approximately 0.182. This suggests that the results of Section
4 extend to densities, f(-) for which the modal value(s) lies between -1 and 1 but fails when the modal

value(s) of the density f(-) lie outside this range. This was supported by a study of
f(x) o exp(—0.5(z —2)?) +exp(—0.5(z +2)?) (z €R), (5.5)

a mixture of N(—2,1) and N(2,1) distributions, where the optimal acceptance rate was observed to be

approximately 0.164.

Finally, the plots in figure 1 of all the distributions except (5.3) are very similar but on different scales.
We define relative first-order efficiency as the first-order efficiency for | divided by the first-order efficiency
for [ where [ is the optimal choice of I (¢f. Corollary 3.6). Thus relative first-order efficiency takes values
between 0 and 1 and represents the loss in efficiency from choosing suboptimal I. Therefore in Figure 2

we plot the estimated relative first-order efficiency against acceptance rate for the distributions plotted
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in Figure 1. The plots for all the distributions except (5.3) are indistinguishable. For the N(2,1) and
the mixture of Normals distribution, (5.5), the relative efficiency for an acceptance rate of 0.234 are
approximately 0.96 and 0.94, respectively, suggesting that tuning the acceptance rate to 0.234 gives very

good results in general.

10
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Figure 2: Relative first-order efficiency dE[(X} ; — X})?], as a function of overall acceptance rates for:-
a) Uniform Hypersphere, Section 3, (circles); b) ts-distribution, (5.1), (squares); ¢) N(0.5,1), (5.2),
(diamonds); d) N(2,1), (5.3), (stars); e) Mixture of Normals, (5.4), (triangles).

6 Summary

This paper has shown that the optimal scaling results of Roberts et al. (1997) extend to Gaussian
distributions with a global (spherical) constraint. A simulation study has shown that the 0.234 rule is
applicable more generally for a variety of distributions under the spherical constraint. However, as seen
by densities (5.3) and (5.5) not all the results of Roberts et al. (1997) carry over to a spherical constraint.

On the other hand, the tuning rule given by (1.1) still performs well.

The radial constraint is the key feature in these results. In particular, for the hypercube, Neal et al. (2007),
rather different limiting results are observed. The major difference between the hypercube (the non-
zero density is constrained to x¢ € [0,1]%) and the hypersphere (the non-zero density is constrained
to d~! > x? < 1), is that in the former case the discontinuity is local, depending upon individual
components, whilst in the latter case the discontinuity is global, depending upon a function of all the

components. In particular, the global constraint leads to continuous (Gaussian) limits for the distributions
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of the individual components.

In order to derive analytic results it has been necessary to restrict attention to constrained Gaussian
distributions. For A > 1 and f(-) ~ N(0,\), the limiting behaviour of individual components are
independent of A. However, the limiting behaviour of the radial component is dependent upon A. As
previously mentioned, the case A < 1 is not of great interest since the constraint is essentially redundant.

For the case A = 1, the statement of Theorem 4.2 holds but a very different proof is required.

Finally, the method of proof employed here can be used for other optimal scaling results where the
acceptance probability is non-constant but is mixing at a much faster rate than the movement in individual
components. This has been observed to be the case for the hypercube model studied in Neal et al. (2007)

and for certain classes of non-IID target densities studied in Bédard (2006).
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