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DYNAMICS OF LAMINAR TRIPLE-FLAMELET STRUCTURES
IN NON-PREMIXED TURBULENT COMBUSTION*

J.W. DOLD, L.J. HARTLEY, AND D. GREEN}

Abstract. In the spirit of laminar-flamelet modelling of non-premixed turbulent combustion, a
diffusion flamelet is studied. However, the flamelet is also taken to end at a finite position. Such an
end of a diffusion flame exhibits fuel-rich and fuel-lean premixed elements as well as the diffusion
flame-sheet itself—a structure that is known as a iriple-flame and which has the property of being
able to propagate. A counterflow geometry with shear becomes the most relevant situation in which
to picture ends of diffusion flames in a turbulent flow. In an equidiffusive system, the speed of
propagation of the end-point is demonstrated to be positive only for relatively limited values of
the strain or scalar dissipation rate and becomes large and negative towards the higher finite value
at which a diffusion flame would extinguish uniformly. The implications of these findings for the
behaviour of turbulent diffusion flames are discussed.

1. INTRODUCTION.

_ This article is intended to summarise a number of ideas that show how properties
of two-dimensional triple-flame structures can have implications for the dynamical role
of propagating or receding flame sheets in non-uniform and non-premixed (possibly
turbulent) combustion. A more detailed discussion appears elsewhere [1].

The burning of a fuel and an oxidant under conditions in which they are initially
separated is typically characterised by the existence of thin diffusion flames at which
fuel and oxidant are converted into reaction products in stoichiometric proportions
[2]. This simple picture reduces the description of such combustion to the analysis of
only reactionless diffusive processes in which any diffusion flame appears in the form
of a (possibly moving) boundary condition [3].

The thickness of the diffusion flame is governed, essentially, by the local Damkohler
number of the chemistry, which measures the ratio of a characteristic time-scale for
diffusion #4 in the combustion setup to a characteristic time-scale for chemical changes
t.. The first noticeable result of reducing the Damkdohler number is to broaden the
flame structure [4]. In complex chemical schemes, involving many reaction steps,
this can become very important with the time-scales for some individual reaction
steps becoming so long that intermediate chemical products and some pollutants
may be able to ‘escape’ from the otherwise thin flame. The flame becomes a source
for non-equilibrium products, a fact that may have sometimes useful and sometimes
unpleasant implications. Steady flames behaving in this way can be analysed asymp-
totically or numerically in a conceptually straightforward way, as for example in
references [5]-{7].

The kind of mixing rates at which non-equilibrium effects become significant in
combustible systems is probably achieved most readily in turbulent flows. A turbulent
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diffusion flame, however, is very difficult to analyse mathematically and numerically.
Not only is a wide range of mixing rates generated by the turbulence, but these
fluctuate rapidly and chaotically both in position and time. One.approach that has
met with some success is based on the hypothesis that the flame burns in the form of
locally quasi-steady ‘laminar-flamelets’ at any moment in the evolution. Reviews of
this type of approach applied to diffusion flames are available in references [8,9].

Briefly, this allows one to use more straightforward steady analyses to calculate
(possibly multiple) solutions for flame structures in any conceivable locally laminar
flow consideration that might be produced by the turbulence. It is most natural to
express such solutions in terms of a mixture fraction parameter 7, or any similar pa-
rameter that varies monotonically across any flame between (say) zero in the oxidising
atmosphere and one at the source of fuel. This family of laminar flame solutions is
then assumed to describe the instantaneous response of the chemistry to the turbulent
flow at any moment, thus divorcing the detailed calculation of the chemistry from the
calculation of the turbulence,

The most useful way of expressing the resulting interaction between flow and chem-
istry may then be posed in the form of a statistical description [10]. Accordingly, if
f(Z, g) is a vector of chemical attributes f (such as temperature and concentra-
tions) calculated as a function of Z for the vector of local flow attributes g € D
(such as strain-rate and vorticity) and if P(Z, g; r, t) is the joint probability density
of encountering the flow properties g and mixture fraction Z at any point 7 and
time £, then the expected (or mean) values of f can be estimated by

M fo.0)= [[£(2,9)P(Z, 97, 1) dg iz

in which the integration is taken over the entire domain of (Z, g), namely [0, 1] x D.

This approach works moderately well in describing weakly turbulent diffusion
flames [8,9] where Damkohler numbers are sufficiently large to ensure a rapid transient
response of the chemistry to any changes in the flow properties at any point, and where
laminar flamelet solutions f(Z, g) are unique. However, conceptual difficulties arise
in those parts of the domain of g where nonlinear chemical effects can lead to multiple
(or even potentially oscillatory) solutions [5,11]. Not only does the choice of solution
in the expression (1) become a problem, but questions of stability and significant
transient effects, as g crosses solution boundaries, have to be addressed. A simple
one dimensional description of laminar flamelets f(Z, g) ceases to be acceptable and
dynamical aspects can no longer be ignored.

A typical way in which multiplicity can be encountered in diffusion flames may be
thought of in terms of so-called ‘ignition’ and ‘extinction’ limits. These are found if
the chemistry is modelled using a single step temperature-sensitive reaction [5] and
would provide a qualitatively correct description for many more complicated chemical
schemes. A sketch of the situation appears in figure 1. At one extreme, large values
of g € Dg C D would give rise to Damkohler numbers that are too small for
significant chemical change to be possible—only a cold or ‘extinguished’ solution can
then describe the chemistry. However as g is reduced across the boundary dDg, a
turning point bifurcation is found to a second unstable intermediate range of solutions
representing a regime of ‘partially premixed’ combustion {3].
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Figure 1. Typical multiple branches of solution, showing the domains of extinguished,

E, and burning, B, solutions as well as the intermediate ‘partially mixed’ branch,
P.

This boundary is usually referred to as an ‘ignition limit’ because any cold initial
conditions in the domain g € D\Dg would necessarily be unsteady and would evolve
towards a hot ‘burning’ solution via some self-ignition or reaction runaway process
[12]-[14]. It must be said, however, that the transient time-scale for this ignition
process is typically very long. Under normal room-temperature conditions it may be
of the order of decades, so that unless fuel and oxidant streams are initially very hot
this one-dimensional reaction runaway transient is unlikely to be significant in real
turbulent diffusion flames.

On the other hand, the hot diffusion flame solution is found to persist throughout
a larger domain g € Dy D D\ Dg. In this case the boundary, 8D marks a
second turning point bifurcation to the intermediate branch of partially premixed
solutions. The latter branch, and in fact all three types of solution, exist throughout
the non-empty domain Dp = DN Dg. Since only the cold solution can be found
in D\ Dp, the boundary dDg marks an ‘extinction limit.” If g enters this range,
any hot solution extinguishes quickly enough for this particular transition to play
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a potentially major role in turbulent non-premixed combustion. For example, its
effects could range between causing some degree of incomplete burning and making
the entire flame go out [15].

The most important implication of this extinction boundary is that the function
f(Z, g) may sometimes need to be assigned cold or ‘extinguished’ values in equation
(1) if there is any possibility, however remote, of values of g entering the extinction
domain D\ Dg. Essentially, such solutions would represent ‘holes’ in diffusion flames
[3,16] the edges of which have the most noteworthy feature of marking boundaries
between cold regions where fuel and oxidant can mix without reacting and regions
where diffusion flames consume any reactants. Such boundaries typically involve
fuel-rich and fuel-lean premixed flames as well as the diffusion flame itself.

Some studies have been made into these structures, which have become known as
‘triple-flames’ [16]-[23]. A photograph of such a flame is reproduced in figure 2. Unlike
any relatively passive diffusion flame, such flame formations are able to propagate,
which means that a dynamic behaviour must be considered in describing holes in
diffusion flames or, in particular, their edges. As Williams points out {3, p. 409], this
dynamic is clearly very important in ascertaining the role of such holes in turbulent
non-premixed combustion.

The main purpose of this paper is to describe the way in which a two dimensional
laminar triple-flamelet can be used to augment the simple one-dimensional flamelet
F(Z, g). In particular, both positive and negative speeds of propagation of triple-
flamelets can be encountered—a negative propagation speed meaning simply that an
extinction front advances itself into the diffusion flame [25]. A simple model example
is considered in order to reveal some of the essential underlying flame structures that
lead to either positive or negative propagation. It should be noted that the model
is open to the generalisation of including stronger thermal expansion effects, non-
unit Lewis numbers (different diffusivities of heat and reactants) and more complex
chemical schemes. This is a potential area of study that is still new and that is
currently being actively investigated. At this stage, it is worth pointing out that
surprising effects may be anticipated in varying, for example, the Lewis number [25]-
[27].

Having demonstrated the existence of such triple-flamelet solutions using the sim-
ple model, their more general implications for the dynamic behaviour of holes in
strained diffusion flames are considered. Some conclusions are reached about the way
in which this information would need to be incorporated into any probabilistic model
for describing turbulent diffusion flames.

2. MODEL.
2.1 Reactive-Diffusive System. If it is assumed that a single-step chemical
reaction F'4+ X — 2P takes place to combine one fuel molecule F with one oxidant
molecule X in producing the product P, then a suitable low Mach number model
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Figure 2. A triple flame propagating in a non-uniform mixture of methane and air,
showing a fuel-rich premixed flame above, fuel-lean flame below, and a trailing diffu-
sion flame—DBritish Crown Copyright, reproduced from [17] by kind permission of H.
Phillips, Health and Safety Executive, Buxton, U.X.

for the evolution of fuel, oxidant and temperature is

péa -V. (PDavcoe) = —Wa(ch)(PcX)k
(2) pCpT — V - (AVT) = Q(pcr ) (pox )k

where kT = ti exp(—T4/T)

0
in which the dot notation signifies a Lagrangian or particle-following differential op-
erator (for example ér = dcp /0t + u - V). Also, W, denotes the molecular
weight, ¢, is the mass-fraction and D, is the diffusion coefficient of the species
a € {F, X}; the specific heat at constant pressure is Cp, thermal conductivity is
A and @ represents the molar heat of reaction. The constant T4 is an Arrhenius
activation temperature and #;' is a molecular frequency factor of the reaction. If the
rate ‘constant’ k(T} is to be a sensitive function of temperature, as it is in many re-
alistic combustion reactions, then the activation temperature must be large, Ty > T,
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for all temperatures of interest.

In order to simplify the analysis as much as possible, the quantities Cp, A, pD,
and @ will all be treated as constant. Moreover, a constant density assumption
will be invoked. For gaseous combustion, this is only strictly justifiable in the limit
of small heat release, () <« CpT, but it does considerably simplify the analysis by
focussing attention mainly on the primary reactive, diffusive and convective effects.
As such, the important qualitative features of the relevant diffusion and triple flames
(or flamelets) are retained without the added complexity of velocity and chemical
interactions. For the purpose of modelling these flames, a divergence free velocity,
V - u =0, will simply be specified. The model can be extended to include density
and pressure changes, with an analogous treatment to that presented below, simply
by adding a suitable equation of state and a momentum equation.

A ‘conserved scalar’ is any linear combination of quantities, such as atoms or
total energy, that are neither created nor destroyed by chemical changes. As a result
their consideration can provide some additional simplification of the model. For this
purpose, the reaction-rate terms in equations (2) can be eliminated so as to identify
a mixture fraction Z and specific enthalpies Hr and Hy associated with the fuel
and oxidant streams, respectively, as follows:

7 Z(C_F_&(_)/(ﬂ _CX_O) : =£X_o/(ﬂ m)
S=\wr W, wr T Wy S= e | \We T W)

Hr=Quz +Cp(T~Tx)  and  Hx = QuE +Cr(T — Tro).

(3)

With ¢y and cx having the respective values czq and ¢y in their own originally
separate streams, and zero in the alternative streams, the mixture fraction Z is thus
defined to vary between 0 and 1. The mixture is stoichiometric, containing one fuel
molecule to every oxidant molecule, at the value Z = S. The temperatures in the
original fuel and oxidant streams are taken to be Try and Txo, respectively.

Because Z, Hr and Hx are not linearly independent, it becomes convenient to
pose the problem in terms of (say) Z, Hr and T. The model equations then take
the form

(Dx — Dr)/Q
epol Wr + exo/Wx

Hp — DpV2Hgp = (k — Dp) VH(CpT)

Z - DxV?*Z = V(CpT — Hy)

(4)

T — kT = %Fqﬂk(:r) {Hp — Cp(T = Txo)} %
P
o -y vas- (3 32)

in which & represents the thermal diffusivity, K = A/(pCp). These equations make
it clear that non-chemical source terms can still exist for the conserved scalars Z,
Hp and Hy if the diffusivities Dr, Dx and k are not all equal.

Equidiffusive Adiabatic Model: For simplicity and for illustrative purposes, we
will not consider this more general case here [25], and instead restrict attention to
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cases in which mass and heat are equidiffusive, Dy = Dx = &. Oaly the fundamental
chemical source term in the temperature equation then survives.

The equations for Z and Hp are then identical. Over most of a turbulent flow, the
initial and boundary conditions for Z and Hr may also be considered to be similar—
this may require assuming either ‘distant’ or insulating impermeable boundaries at
which Z and Hg would both satisfy Neurmann conditions. At any rate, it becomes
reasonable to expect that Hr and Z would become linearly related, so that

c
(3) Hp = [Q% + Cp(Tro — Txo)] Z.
F
Taking this adiabatic relation to hold, and also taking the temperatures Txo and
Tro to both equal Tp, the model can now be redrafted into a straightforward and
considerably simplified form.

Since cr and ¢y are non-negative, the temperature must be bounded above by
Ts = To + QScro/(WrCp). Defining a dimensionless temperature T that varies
between 0 and 1, and referring time, space and velocity scales to #., r. and wu.,
such that

- ﬂ4
T = Ty + (Ts — Ty)T t, =
6) ot (Ts —T) pcroWx + cxoWr)k(Ts)
Te = (K,tc)l/z and U = 7 fte

the model equations become

(7) . g
Zi+a-VZ-V'Z=0

ot §F — 9 = 412 — STI[1— Z — (1 — §)F] exp (%)
where B=aTly/Ts with o= (Ts—T5)/Ts.

Because T4 >» T, the ‘Zeldovich number’ 8 can be considered to be large, § > 1.
This provides an extremely useful key to analysing these model equations asymp-
totically [5]. At the stoichiometric value § of Z, the temperature T reaches its
strict upper bound of unity if and only if all fuel and oxidant are consumed by the
reaction—both square brackets in the equation for 7' then being zero.

2.2 Triple-Flamelet Model. Let us now consider the moving surface in space
{Z =S} defined as {r | Z(r,t) = S}. Since the exponential reaction-rate term
in equations (7) is significant (for 8 > 1) only if 1 — T is small, any quasi-steady
diffusion flame must lie in a small neighbourhood about this surface, with T > T, =
1-0(67!) on {Z=S5}. The constant T.(3,S) may be thought of as any temperature
just below the critical temperature for extinction of a uniform fully-steady diffusion
flame [5], or any convenient lower temperature. Defining another moving surface
[T=T) as {r | T(r,t) = T.}, any non-empty intersection {Z =S} N {T=7.}
would then represent at least one path in {Z =5} across which the diffusion flame
must come to an end. Equivalently, it would represent the union of all of the edges
of all of the holes in all of the diffusion flames.
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In order to examine the local behaviour of any point on the edge of one of these
holes, it is natural to select orthogonal moving coordinates, (say) y normal to {Z=
S}, with y increasing as Z increases, z tangent to {Z=S}n{T'=7T.}, and =z
increasing into the diffusion flame. The axes of z, y and z would generally rotate
as well as translate as they follow the movement of the surface {Z=9} and the edge
of the hole.

A laminar triple-flamelet model can then be constructed by invoking a locally
quasi-steady slowly-varying approximation. Accordingly, one would expect to find
that solutions take on the functional forms, Z = Z(y) and T = T(s,y), after
neglecting any transients and any nonlocal behaviour (including curvature effects) at
large values of z, y, z and ¢. This amounts to having predominantly low-frequency
components [8] in the turbulent velocity field u(r, t)—measured in relation to a
relatively fast chemical time—for which the Z and 7' profiles would remain closely
associated with a stable manifold around converging streamlines. In this context, the
behaviour of the end of the diffusion flame {Z=8} N {T'=T.} is then governed by
convection due to the flow as well as possible propagation of the end of the flame
along the stoichiometric surface Z = S.

The principal surviving influences in the flow-field now lead to the following equa-
tions for Z and T :

(Yo —y)Zy = Zy,

®) (V+ie+#)T+5(yo— )Ty = Tee + Ty +
- ; BT -1)
+B8Z2 - ST||[1-Z - (1 -8)T|exp| -

#1771 2~ 1 = )] exp (AT
where & > 0 is the converging strain-rate in the flow from the normal direction
y, V is the propagation speed relative to the gas velocity at ¢ =y = 0, i >
0 is the diverging strain-rate (stretch) in the direction of propagation, and —7 is
the tangential rate of shear in that direction. The stagnation position y = yqo is
determined by the condition that Z = 5 at y = 0.

Without curvature effects or with relatively weak diffusion, any real solution for Z
is only stable if & is positive and 0 < ji < &—requiring that there must be no inward
convection {rom within the surface {Z=S}. All other linear velocity components
relate either to changes in the z direction or to convection (including rotation) of the
axes. They therefore play no role in this local two-dimensional model. In general, a
typical turbulent flow field would tend to generate local values of &, ji and 7 that
should be of a similar order of magnitude at any point and time.

It should be possible to consider higher order velocity components, curvature of
the stoichiometric surface and even slow velocity changes, but the dominant influ-
ence on the nature of the end of the diffusion flame would normally be contained in
these leading order local flow attributes. Significant improvements to the straight-
forward two-dimensional sub-model (8) should be based primarily upon an improved
understanding of the behaviour of Z, and in particular the surface {Z=5} in more
complicated or curved geometries and flow fields. Some numerical investigations of
this type have been carried out, as in reference {28] for example, but a greater theo-
retical understanding is still being sought.
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This particular representation of the laminar triple-flamelet model arises from the
scalings and non-dimensionalisation selected in equations (6) and (7). Any linear
rescaling would produce a completely equivalent model. For instance, a rescaling
that uses the flow-field to provide a reference velocity (rather than u,) could be made
to replace o by unity and S* by a more familiar [5] Damkohler number Da « o~%
However, the model equations (8) are more suitable for the present discussion because
they retain a more direct connection with the basic properties of the flow-field. In
this &, @ and 7 may vary substantially, and the scalings (6) are chosen only in
anticipation of something interesting happening at order one values of &, fi and 7.

The relevant solution for Z in the model (8) can be written in terms of the

complementary error function
Z= -;-erfc(wf&/Q (yo — y))

giving  %(Z,6) = Z,* = (5/2x) exp (~5(y — v0)?)

(9)

where ¥ = Z,* represents a ‘scalar dissipation rate’ [10] that is directly proportional
to the normal strain-rate & at any fixed value of Z. The condition Z(y) = S now
determines yo(S) so that x has the separable form y = Gh(Z; S). Eliminating y
in favour of Z as a new independent variable now vields the single equation

(‘? +ﬂ$ +‘T-y)Tm = Tz:c +)~(TZZ +

+PZ-5T)[1-2-(1-5)T]exp (%)

(10)

which needs to be solved subject to the boundary conditions

T(co, Z) =min{Z/S, (1~ Z)/(1 - 8)} — O(87Y),

o )~ mindZ]5, - 2 D
(~o0, Z) = 0(B% "), T(z,0)=T(z,1)=0 and T(0,8) =T,

in which the functional form T = T'(z, Z) is assumed. This steady two-dimensional
triple-flame problem can now be studied in the useful asymptotic limit 8 — oo.

3. TRIPLE-FLAME BEHAVIOUR.

Equation (9) shows that the stratification gradient Z, of the mixture varies in
proportion to the square root of & (or X). Thus, since it is primarily Z, that
influences the structure and propagation speed of any triple-flame [22], one finds that
different regimes of behaviour can be found for different ranges of values of & > 0.
The full range of behaviour of triple flames, arising from the equidiffusive model that
has just been presented, is discussed in the following sections.

3.1 Forwards Propagation. For sufficiently small values of & (along with
f and 7), the stratification of the mixture can become so weak that the fuel-
rich and fuel-lean premixed flames in the triple-flame structure become almost one-
dimensional. The leading end of the triple-flame then resembles a plane one-dimensional
flame-front propagating into a uniform near-stoichiometric mixture. This regime



92

arises for values of strain-rate in the range & = o(f~') < 1 and has been anal-
ysed in terms of weakly-curved flame fronts [21,22).

Infact &, fi and 7 are small enough in this regime for their role in the equations
to be neglected except in so far as they determine the gradient Z, = §/2 at y = 0.
The equation governing the behaviour of temperature can then be rewritten in the

model form
1 (T -1)

(72 {7 i 7 — g4 i 7 pT—1

4 (TX —Txx — TYY)N— B [Z - ST] [1 —~Z— (1- S’)T] exp (1 . 1))
where X=Vz and Y=Vy

with  Z=S+BY/B+O0(B/B*) : B=8x,/V
where ¥, = X%(S,5). The problem thus reduces to one already studied in refer-
ences [21]-23].
One finds that the propagation speed of the triple-flame is close to the maximum

adiabatic laminar flame speed that can be attained by adjusting the value of Z in a

uniform mixture. With the scalings defined in equations (6), the propagation speed
V is found [22] to be of the order of 4/ and to vary in the manner

(13) V/B'* = Vy — ViB + ,BVEB + O(B?)

for B « 1. In this, V5, Vi and V, are order one constants that depend only on
chemical parameters (most particularly, on the value of S).

For increased strain rates in the range & = O(67!) « 1, or B = O(1), the
premixed flames lose their almost planar character, and one has to take into account
an essentially two dimensional nature of the preheating regions of these flames. Nev-
ertheless, the thin chemically active ‘reaction zones’ of the premixed flames are still
found to extend over values of y that are comparable with the thickness of the pre-
heating regions. For the constant density model (7), this type of behaviour has been
analysed [23] using an appropriate Green’s function to express the problem in the
form of an integral equation. Numerical solutions reveal that V remains positive
and of the order of B2 as & increases, although V/BY? decreases monotonically
as B (or &) is increased. For the sample case § = 1, this variation is reproduced
in figure 3.

3.2 Positive and Negative Propagation Speed. As & is increased further,
the reaction zones associated with the premixed parts of the triple-flame structure
move closer and closer to the diffusion flame until, for & = O(1), their extent in y
becomes very small compared with the extent of any region of preheating. A brief
examination of this regime of behaviour has been carried out [16] and is discussed in
some more detail below. In terms of an asymptotic analysis, the solution structure
can be divided into several matching parts.

Chemically-Frozen Region: Since the reaction is only really significant where
T =1-0(871), an outer asymptotic problem as 8 — oo can be identified in terms
of the asymptotic form 7 ~ To(z,Z) < 1, the domain of which must exclude the line

4 =S for all x > 0 where a distribution of chemical heat sources is to be found.
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Figure 3. Propagation speed of a symmetric triple-flame (having S = %) when & =
O(B1), reproduced from [23].

This leads to the equation and boundary conditions
(V + fiz + 7y)To, = Toos + X Tozz

(14) with  Tp(oo, Z) = min{Z/3, (1 — Z2)/(1 = S)}, To(—o0,Z) =0

To(z,0) = To(z,1) =0, and To(z,85)=1 for z>0.

It may be noted that only the asymptotic analysis of this outer region would need to
be modified if the small heat release assumption were to be dropped.

Because of the presence of the line source ending at © = 0 and Z = § or
y = 0, the solution to the problem (14) inevitably involves a square-root singularity

at (z,Z) =(0,5) of the form
Ty~ 1 - K(r —2)2 = Re {1 + VZiK (= +iy)"/?}
with r= (2% + yz)”2 ~ (2 +(2 - 9)/%s)

An isometric diagram showing the shape of the solution To(z, y), including its sin-

(15)

1/2

gular nature near z =y = 0, is presented in figure 4. The constant K would form
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part of any solution obtained for Tp, and would need also to tie in (or match) with a
corresponding square-root behaviour found by considering an ‘inner region’ in which
significant chemical activity takes place.

el Al iy

i

Figure 4. An isometric diagram of the outer temperature solution in the case & =1,

V=1 and ji =7 =0 over the range z € [~1.5, 1.5] with y € [-1.5, 1.5].

Premixed Flame-Sheet: The chemical activity in the neighbourhood of Z = §
is initiated by the premixed flame-sheets of a triple-flame. Defining the rescaled
variables ( = (Z — S)f and £ = mﬁ)&/z, these can be considered to follow a path,
£ +1( = W({) (for any suitable parametric variable £) at which it is convenient
to identify a real-valued local normal coordinate 5 € R, defined by ¢ +i( = W +
iWen /B where Ws is the complex tangential direction W'(€)/|W'(£)]. The local
asymptotic temperature structure T ~ 1 — 8~ 1¢o(n, () is then found to be described
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by
Rsbom = 590 -+ ] [(1 — 5) do — Clexp(—o)
o = [ed]T =0t=2 [ 1$y+010-5)7-dem(-nay
( 6) To(¢,5)
Wlth PO(C: S)= max {_%a -].é—S}

after using the boundary condition that the reaction-rate term must tend to zero
behind the flames. This shows that the function Q(¢, §) determines a jump condition
in the gradient of T' across the flame-path, namely [|(T¢, T})|]F ~ (B71/%:)1 Q0.

In the ‘preheating’ region of this flame, it follows that it is appropriate to identify
the asymptotic structure T ~ 1 — (B /5% )2®(¢, ¢), which satisfies the equation
and matching requirements
an Qe + Qe =0,

with ®=0 and &,—i®;=—WsQ(, S) on {+:i(=W().

Because the temperature perturbation ® is a harmonic function of ¢ + i¢ it can
thus be shown that the flame-path W(£) must satisfy the nonlinear principal value
integral equation

(18)  Qm{W (O}, §)= = f2@Em{W(7)}, $)n {——_W (7")"5_(3%/(6)

In this, integration is taken over a clockwise contour consisting of the entire flame-

} (W)l dy.

path, for all values of the parameter £. One flame-path solution of this equation is
shown in figure 5 for the symmetric case § = %

It is interesting to note that equation (18) has a universal character that depends
only on the reaction-zone jump-condition function (¢, S) and the requirement that
relatively small overall temperature changes take place along the reaction-sheet. A
similar equation may therefore apply, even for systems involving complicated chemical
processes, as soon as a suitable function {) can be determined. All of the effects of
thermal expansion, changes in thermal conductivity etc. are significant only in the
outer domain so that a similar analysis of the inner domain may still be found even
if these effects were to be included fully in the model.

In general, the flame path £+i¢ = W{({) appears to be unique for a given reaction
function 2. At large values of £ +i( one must also find that

(19)  @¢=id = o § QUm(W), $) e ~ I (e i)

which mimics the square-root singular behaviour (15) of the outer problem. In the
symmetric case, 5= %, the value of the constant L(2) is found to be L = 0.7945.

Matching and Propagation Speed: The constant L thus depends only on the
structure of the reaction function Q(¢, 5). Matching of the result (19) with the
singular part (15) of the solution of the outer problem requires that

(20) K =L/¢*
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Figure 5. Premixed flame paths (shown as a solid curve) and the diffusion flame path
(shown dashed) in the symmetric case § = % The z and y axes are scaled equally

to reveal the actual physical shape of the triple-flame structure.

which thus fixes the allowed value of K(&, 7, ji, V, §) for a given set of the flow
attributes &, £ and 7 and the stoichiometric constant S. In general, the outer
problem only yields a suitable value of K for ‘eigenvalue’ combinations of the argu-
ments of K so that, in particular, the propagation speed V becomes a function of
the form V = V{5, 7, i, 9).

Considering (say) the case with § = % and i = 7 =0, the speed of propagation
can thus be thought of as being determined by fixed contour values of L = K )22/ 1
in the domain of (V, &). For illustration, some numerically calculated contours of
this type are presented in figure 6 in which the dotted curve represents the contour
of L = 0.7945. As a result, this reveals the way in which the propagation speed
V varies with & for § = 1. Qualitatively similar results are found for different

2
chemical parameters.

More generally, the propagation speed V is found to be positive for all small
enough values of &, 7 and £ (as described previously), but it also becomes zero
for a particular combination & = &y(%,,S5). Larger values of & result in negative



Figure 6. Contours of fixed values of L = Kx!/* over a part of the domain of (V, 7)
in the case having i =% =0 and §=1.

propagation-speeds—that is, the end of the diffusion-flame recedes rather than ad-
vances and a front of extinction propagates into the diffusion flame-sheet. In order to
understand the reason for this, it is necessary only to recognise that points near an end
of a diffusion flame (or any hot surface in a cooler atmosphere) are typically subjected
to much greater heat losses than points in any interior section. Unless chemical and
thermodiffusive effects are able to compensate for these increased losses, an unsteady
cooling (and hence extinction) of the chemical activity at the end point would ensue.
The end of the diffusion flame is thus moved further into the flame and can continue
to move as a wave of chemical extinction.

3.3 Fast Propagation of an Extinction Front. For strain rates that are in-
creased still further, a point is eventually reached at which no steady uniform diffusion
flame can be sustained [5]. Chemical and thermodiffusive effects become unable to
overcome heat losses at any position in a diffusion flame, not only near an end point,
so that the entire flame extinguishes. In terms of the flow attributes g, this happens
when g enters the extinction domain D \ Pp by crossing the boundary 8Dg.

Since a steady uniform diffusion flame is in effect a function of y only, the only
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component of g that plays a significant role in determining the extinction boundary
0Dp is the converging strain-rate ¢. In terms of the dimensionless equidiffusive
model equation (10), a uniform diffusion flame extinguishes at the relatively large
critical strain-rate & = 6.(8, S) = O(B), as demonstrated below. For & > &,, no
two-dimensional triple-flame solution can exist that satisfies the boundary conditions
(11) primarily because the assumption of a steady uniform diffusion flame behind the
triple flame (represented by the condition at z = +00) cannot be sustained.

As a result, triple flame solutions for T and V do not exist for & > .. For
values of the strain rate in the range 1 € & < ., = O(8), with & and 7 assuming
similar orders of magnitude, the equidiffusive model leads to a large negative speed
of propagation. In particular, as & increases towards &., the propagation speed V
approaches a finite negative limit, For lower values of & in the range & = 0(5,), one
finds that V = —~O(B%?). Since this velocity is much greater than the typical range
of values hypothesised for i and ¥, one still finds that the behaviour of the thermal
and chemical field is only significantly influenced by the single component & of the
vector of flow attributes g.

In order to investigate these assertions, one needs to examine the structure of the
end of a diffusion flamelet for strain and shear rates &, & and 7 of the same order
of magnitude as B> 1. This can be done by defining -

(21) D=8/%, x5./5, A=f/(V*D) and z=-\VD/#

along with the asymptotic form T ~ 1 — 8716(), ¢). The equation satisfied by the
temperature perturbation 8 is then

(22) Br + Aby s+ Ogc = D[SO + (] [(1 = )8 — (] exp(—8).

Interestingly, —X adopts the role of a time coordinate in this equation in the limit as
A tends to zero or V? tends to infinity. Physically, even though the downstream heat
loss term A4,y is crucial in bringing about any extinction of the chemical reaction,
its value becomes small when —V is large. The situation then represents the gradual
cooling of gases as they are rapidly convected past a region of chemical extinction.
Appropriate boundary conditions for this problem are most usefully posed in terms
of a function 8(¢; D) that is defined to satisfy the equation and boundary condition

e = D(S8 + () (1~ $)0 — ¢) exp(-F)

(23) N
with F=To((, S)+0(1) as ¢ — %oo.

Solutions of this problem are only found to exist for D > D.(S) = O(1), or equiv-
alently & < &, = O(B) from the definition (21) of D. Moreover, for D > D,
two solutions are found representing either a hot diffusion flame or a cooler ‘partially
premixed’ flame [5]. Of these, we select the stable hotter solution, corresponding to
lower values of . Once such a solution has been found, the boundary conditions for
# can be stated in the form

(A, ) ~0(¢; D) as A— oo andfor ( — Zoo,

(24) f(—co, () =c0 and 6(0,0)=4..



99

where 8, > 8(0; D.) representing the temperature at the stoichiometric surface in
a uniform diffusion flame at the critical strain-rate for extinction, or any convenient
larger value corresponding to 7T,. The last of these conditions mainly serves to
eliminate any translational invariance in the problem.

Clearly, appropriate solutions for #(A, ) are only possible in the range D > D,
and then only for particular values of the parameter A = A(D). These order one
values of A reveal that the ‘propagation’ speed V would now be negative and of the
order of magnitude V = —O(#%?) as indicated earlier. Moreover, as D decreases
towards D, the steady diffusion flame solution (represented by 4 at \ = 00) is more
easily extinguished by smaller heat losses Af,. Infact, one finds that A decreases to
a finite critical value A.(S), as D — D,, at which a turning point bifurcation arises
to an unphysical branch of solutions that have corresponding unstable diffusion-flame
solutions of (23) at their burnt boundaries. This shows that V — V, = —O(ﬂ372)
as & — &,

Since the scalings (21) ensure that 6y, does not vanish in this limit, this makes
it clear that one should expect A to decrease towards zero, showing that ¥V — —oo
as & — &,

3.4 Range of Propagation Speeds. Writing V; and o(r, ¢) for the dimen-
sional values of the maximum laminar flame speed {obtainable by varying Z) and
of the converging strain-rate, respectively, the general behaviour of the dimensional
triple-flame propagation speed V can be summarised as follows. With o, denot-
ing the critical strain-rate for extinction of a uniform diffusion flame (corresponding
to &), the propagation speed V depends almost exclusively on o in the ranges
o> o /8 and o <€ a./B.

In both of these ranges, this finding depends on assuming that other velocity-field
components, such as the (dimensional) shear-rate 7 and the diverging strain-rate p
in the direction and plane of triple-flame propagation, are similar in magnitude to the
normal strain-rate o. Although the magnitudes of these components are likely to
be strongly correlated, this need not exclusively be the case in a turbulent flow. For
relatively strong rates of shear and vorticity that produce flow velocity components
as large as V in the domain of a triple-flame these effects could not be ignored.
However, the propagation speed V would still be considerably more sensitive to
changes in & than to changes in these other quantities. In the range, ¢ = O(0./8),
fiow velocities caused by o, ¢ and 7 are all similar in magnitude to typical values
of the propagation speed V that might be encountered. Thus V is likely to be
comparably sensitive to all of these flow properties.

In the smaller range, particularly when ¢ = O(o./3?), V is found to be positive
and of the order of Vi, approaching Vi as (%c/o, decreases towards zero. If the
model were to be extended to include thermal expansion, then V would approach
a larger value than Vi in this limit [17] because of the Landau effect [29, p. 487].
In the larger range, o./8 < o < g, it is found that V becomes relatively large
and negative (corresponding to a receding flame), being of the order of magnitude
V = —0O(BV.). Moreover, as ¢ approaches the critical value o, the speed V
decreases to a negative lower limit V, = -0(#V1) < 0.
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In the intermediate range, o = O(o./8), the propagation speed becomes relatively
small in magnitude, now falling into the range V = O(V/8Y/?). As described above,
it is now also found to be affected significantly by other flow attributes such as u
and 7. Most significantly, it is in this range that V changes sign at some value of
o = g9 = O(o./B) that depends on the other flow attributes as well, of course, as
on the properties of the chemical reaction, g = go(y, 7; S). A qualitative sketch of
the variation of V' with o is presented in figure 7.

V/vg
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o
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Figure 7. Qualitative sketch of the overall variation of the propagation speed of an
equidiffusive triple-flame with changes in flow strain-rate at constant density.

4. ‘HoLEs’ IN TURBULENT DIFFUSION FLAMES.

The inclusion of findings such as these in a description of turbulent diffusion flames
is not a straightforward task and the following discussion only provides a number of
preliminary ideas. The main intention is to reveal the essential mechanisms that
might cause part of a mixing surface to be burning and part to be extinguished in a
turbulent diffusion flame.

Modelling such a process must include several significant components that may
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be discussed in terms of a particular realisation. For this purpose one may consider
the stoichiometric surface § = {Z = 5} to be a known function of time, and the
vector of flow attributes g to be a corresponding known continuous function of space
and time. Even though a triple-flame may not actually exist at the point 7 at a
time ¢, the propagation speed that such a flame would have at that point V is then
also a known function of space and time provided g € Pg. Qutside this domain
a diffusion flame cannot exist and V is undefined. Within the surface S one can
therefore envisage contours of constant V that change with time, as does the surface
itself. For the purpose of discussion it is convenient also to identify the domain of
flow attributes g € D'C Dy in which propagation speeds would be positive V > 0
at least in the equidiffusive case.

Let us now suppose that a diffusion flame exists throughout some part of § in
which a local minimum value of V decreases towards V, until, at some moment,
a contour of V = V., < 0 appears. ‘Inside’ this contour V becomes undefined as
values of g cross the extinction boundary dDp. A brief extinction transient must
then ensue, causing a hole (represented by H C §) to appear in the diffusion flame.
Once this happens, and a triple-flamelet forms around the edges of the hole 9H, it is
straightforward to show that the area H of the hole within the stoichioretric surface
grows for a time according to the formula

(25) %:f/cr]dm—fvczs.
H 9H

The area integral in this expression arises from the stretching of the stoichiometric
surface as a result of the converging normal flow strain-rate while the line integral
around the entire boundary of the hole arises from the propagation of the edge of the
bole in the form of a triple-flame.

Recalling that V is initially very large and negative (in comparison to the magni-
tude of local convective effects) this shows that the diffusion flame pops like a balloon
as soon as local flow attributes become intense enough to cause an extinction at some
point. The hole H grows rapidly in size (relative to the underlying surface S) until
its edges approach a countour at which V = 0 (assuming that such a contour exists).
Subsequent changes would tend to involve some dynamical variations in the position
of the edge of the hole §H as it is convected within the stoichiometric surface, ap-
proximately following the movement of the contour ¥V = 0. The hole will not be able
to close up again until the contour of V =0 collapses and disappears.

There is, consequently, some hysteresis in the behaviour of holes in diffusion flames.
To come into existence, the flow attributes g must cross the extinction boundary
0Dpg, and leave the domain Pg at least briefly in some small part of the stoichio-
metric surface §. However, once a hole has formed, it can only close up again if
values of g decrease so as to produce positive propagation speeds (by entering the
smaller domain of values g € D' C Dp) uniformly throughout the domain of the
hole ‘H. To clarify the dynamical aspects of this hysteresis it now becomes useful to
identify three distinct (moving) parts of the surface §. These can be denoted by S*
where V > 0, by & where where V. <V < 0 and by Sz where V is undefined
and no diffusion flame can persist. Boundaries between these regions are S, = $'NS™

and S, = 8 NSg, there being no boundary between S *and Sg.
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A diffusion flame can then exist only throughout the domain 87 = §'US™ and is
therefore punctured wherever and whenever the domain Sg appears, rapidly forming
a hole H. However, this hole can only close up again to re-establish the diffusion
flame if HNS™ becomes empty. Generalising H to represent the set of all non-burning
parts of the surface &, this would tend to suggest that a significant correlation may
exist between the domain of holes H and all isolated parts of &~ within which either
a region of extinction Sg has previously appeared at some time during its existence
or within which no flame existed when the isolated region was first formed. The union
of all such regions may be denoted by Sz C &~

Ignoring all rapid transients, one should then find that the non-burning part of
the surface would at least be given by

(26) H 2 Sk

to a reasonable degree of approximation. As soon as any region of Sg appears in
the surface &, the entire isolated part of &~ that surrounds S, must be added to
Sm. Also, if a part of 8™ appears (through changes in g) either within or in contact
with the non-burning domain H, then this must be added to 87, emphasising the
presence of a hysteresis by the fact that parts of $~ may be burning or non-burning
depending on their origins and history. In an evolving system, these conditions may
be considered to provide an adequate definition of Sp. It follows that the non-
burning domain H depends not only on the negative propagation domain &~ but on
the topology of &~ and on the history of appearances both of the extinction domain
Sg and of the domain &7 itself within the stoichiometric surface.

Although V > 0 in the domain &% it is only possible to say that a flame will
tend to propagate and fill the domain S* where such a flame already exists either
within or on the boundaries of isolated parts of §* At one extreme, there may be
no burning at all so that H = &. More generally a contour of V = 0, surrounding
a part of 8%, may appear entirely within an extinguished or non-burning part of &.
Also, the evolving surface S need not conserve its connectedness and a non-burning
region may become isolated from the rest of § and subsequently enter the domain S*
as values of g change. In such cases, isolated parts of HNS™, can only be re-ignited
by making contact with the burning part of the stoichiometric surface B = S\ H—
ignoring any relatively slow self-ignition transient as g crosses the ignition boundary
0Dg. In an evolving system, a non-burning part of S* may be correlated with a set
8% to which all isolated regions of S* that form entirely within H are added, and
from which any isolated region is removed as soon as any part of its boundary meets
a burning diffusion flame, that is SHNB becomes non-empty.

Again ignoring transients, one would find
(27) H~SHUSHE

to a moderate degree of approximation. Since the contrast between the magnitude
of V and the appropriate convective effects arising from g is not as marked in D*
as it is in the rest of the domain Dg, this result is not as good an approximation
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as the inequality (26). Slower positive than negative propagation in a comparatively
smaller domain of values of ¢ ensures that transient effects are more significant in
causing deviations from equation (27) in the domain §* Moreover, some positive
propagation is required for a triple-flamelet to keep pace with the stretching of the
surface § by the normal strain-rate ¢ indicated in equation (25). Nevertheless,
equation (27) should provide a moderately good overall approximation, especially if
changes in g happen fairly slowly, although it is likely to underestimate the non-
burning surface H.

Determining statistical estimates for Sy and Sz is a complicated task requiring
specification of more sophisticated probabilities than appear in equation (1). This is
particularly true in relating regions of propagation properties with the history of such
regions. Recalling that S is generally a surface of changing topology, connections be-
tween burning and non-burning parts of S* can be established as the surface contorts
and different parts of it reconnect. This adds an important ‘eddy diffusivity’ element
to the turbulent flame behaviour that can enhance an overall propagation between
mostly burning and mostly unburning parts of the surface. It has been postulated
that percolation theory could play a role in determining the overall effectiveness of
such connections in maintaining combustion [15]. Ways of improving the ideas intro-
duced here and incorporating them into reasonable statistical models are currently
under investigation.

5. CONCLUSIONS.

The behaviour of a triple-flame, connecting a burning diffusion flame with a region
of non-burning, is found to vary considerably as a result of imposed velocity or other
conditions. At least for the equidiffusive model studied here the triple flame can have
positive and negative flame speeds. Close to conditions which would cause an infinite
diffusion flame to extinguish uniformly the triple-flame (and so the end of a diffusion
flame) can recede very rapidly.

The detailed study of the behaviour of such flames is relatively new and can involve
an infricate asymptotic structure. There is still a great deal to be done in examining
problems with more complex chemical schemes as well as different diffusivities and
significant chemical and thermal expansion. The outline given here introduces some
of these more general aspects but concentrates on the simplest equidiffusive case,
illustrating some of the main principles involved.

In a variable flow-field the propagation properties of the triple-flame, as well as
extinction conditions for an established diffusion flame, introduce a complex dynam-
ical problem that governs the relationship between burning and non-burning regions
in the flow. A hysteresis between conditions for extinction and conditions for re-
establishment of a flame demand statistical examinations that must include a de-
scription of the history of an evolution as well as reconnections in a topologically
changing surface at which burning can take place.

Thus, in modelling non-premixed turbulent combustion, this article illustrates
the richness and complexity one can find both in the description of the ends of any
diffusion flames and in the dynamical behaviour they introduce to the combustion.
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Using more complex triple-flame models is likely to lead to yet further intricacies in
analysing dynamical triple-flame structures.
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