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ANALYSIS OF THERMAL RUNAWAY IN THE IGNITION PROCESS*

J. W. DOLDY

Abstract. The evolution of a thermal runaway event is studied from the time a self-sustained temperature
growth first sets in to the time deflagration flames begin to emerge. Proper modeling of the effect of conduction
on the distribution of temperature growth reveals that it enhances the overall rate of release of chemical
energy. It is shown that this contributes to the likelihood of substantial pressure increases being produced
at some stage, and a criterion is identified for this to happen. In the absence of such pressure effects, the
results are valid over a wide range of degrees of supercriticality, from marginal cases to cases in which
conductive heat losses start off being very small indeed.

Key words. combustion, supercritical, unsteady, thermal runaway, ignition, bifurcation, ignition kernel,
hot spot, Arrhenius kinetics

AMS(MOS) subject classifications. 35K57, 41A60, 76R99, 80A20

1. Introduction. Heat conduction can play an important role in the progress of
thermal runaway and, in understanding this role, it is important to properly characterize
its effects. Let us consider a nonuniform thermal evolution in a reacting combustible
gas with large activation energy. If heat losses are sufficient then conduction can act
to keep the temperature permanently in check. Situations of this nature have been
extensively studied since the early work of Frank-Kamenetskii [1], [2] (see Zeldovich
et al. [3]). However, if heat losses become inadequate (when conditions are said to
be “supercritical””) conduction fails to remove heat as fast as the reaction produces it;
an unsteady growth in temperature becomes inevitable. Typically, a relatively hot
kernel of self-heating reactants is formed [4]-[10] in which the exponentially nonlinear
dependence of the rate of heat production on temperature leads to a vigorous and
progressive acceleration of the peak temperature growth. The way in which any spatial
variation in the temperature develops is primarily influenced by a combination of
conduction and the nonlinear variation of reaction rate with temperature.

Since the hottest parts of a mixture tend to react and produce heat fastest, the
temperature growth rate tends to be biased toward points with higher temperatures.
Consequently, temperature differences tend to grow and the spatial region in which
the reaction rate keeps pace with its maximum value tends to shrink as time proceeds.
Just as heat conduction normally acts to spread out any such concentration of tem-
perature, its effect in the evolving ignition kernel is to work against this focusing of
temperature growth. Previous work has shown [8] that, once thermal runaway has
begun, conduction acts to counter this focusing effect only by reducing the rate at
which the peak temperature region becomes more and more localised. Along with this,
conduction acts to progressively diminish its own importance as thermal runaway
proceeds. A byproduct is that, in the core of the reacting region, the thermal growth
is found to occupy more space than would be predicted without conduction; the overall
rate of release of chemical energy is substantially increased. Thus while conduction
may normally be thought of as working to inhibit thermal runaway, it also brings about
an increase in the power released by an evolving ignition kernel.
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Until recently, an alternative picture was proposed for describing thermal runaway
[5]-[9], in which the relative effect of conduction to that of the reaction would not
diminish as time proceeds (see footnote 1). Attempts to numerically obtain such
solutions failed [8], [9] and rigorous analysis has now proven that these solutions do
not exist in a wide range of situations [11]. This is interesting because these conjectured
solutions take the form that might be expected from a self-similarity analysis of the
governing equations based on dimensional arguments [6]. The true picture is brought
about by a fully nonlinear interaction between conductive effects and the growth of
the reaction rate with temperature [8].

In this paper a complete asymptotic solution is presented for thermal runaway,
from its early stage (already presented in [8]) to a stage when deflagration flames can
be described. This might be said to mark the completion of an ignition process; an
unsteady transition has taken place from a relatively cold, slowly reacting state to a
state in which hot flames begin to propagate.

It is noted that expansion velocities reach overall maximum values in the final
stages of thermal runaway. It is conjectured that this velocity could form a large enough
fraction of the speed of sound for the modeling, which is based on assuming low
Mach-number flows, to break down. Under these conditions it may be possible to
observe a transition from near-constant pressure behaviour to near-constant density
with significant increases in absolute pressure [12]. This is more likely to happen in
highly supercritical cases for which diffusion plays a small part right from the start of
thermal runaway.

2. Model.

2.1. Low Mach number equations. In order to capture the most essential properties
of a combustible gaseous mixture in the simplest mathematical model, we assume that
a single exothermic one-step chemical reaction, veF +vxX - vpP, occurs between ve
molecules of a “fuel” F and vy molecules of an “oxidant” X to produce vp molecules
of the product P. It is also simplest to consider dilute gaseous mixtures (consisting
mostly of some chemically neutral component) so that, for instance, the mean molecular
weight W and specific heat at constant pressure C, can realistically be taken to stay
more or less constant. As soon as a suitable set of fixed reference values for the various
gas properties is identified, the system of equations governing the progress of the
reaction can be expressed in a nondimensional form. This procedure is described in
the following paragraphs (where the superscript # is used to indicate the dimensional
value of a quantity).

The symbols T¥, ?¥, A¥, and 5} will be used to denote appropriately chosen
typical values of the absolute temperature, absolute pressure, thermal conductivity,
and coefficient of dynamic viscosity, respectively. The thermal equation of state for
an ideal gas then identifies a typical value for the density, namely pJ = Y W/(R* T?)
where R* is the universal gas constant. A typical value for the thermal diffusivity is
given by £¥ =AF/(p¥ C}). If we assume that Fick’s law is adequate for describing the
diffusion of mass, then there must be a single typical value 9 for the diffusion
coefficient. The Prandtl and Lewis numbers, which we take to be constant and compar-
able with unity in value for most gases, are then given by Pr=n7/(p’£ *) and (in its
classical definition) Le= 27 /£7, respectively.

If t¥ is selected to be a measure of the time it takes for ignition to occur, then it
becomes possible to define a typical thermal diffusion velocity uf=*/t5H"?* and a
typical diffusion length r¥ = u*t* = (#¥t¥)"/?. In situations where diffusive phenomena
(including thermal conduction) are anticipated to be the most significant processes
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governing the transport of heat and matter, u} and r¥ should be suitable reference
values against which to measure gas flow velocities and distances.

To be realistic, it is important to note that because relatively few molecular
collisions actually result in a chemical change, the appropriate timescale for the
chemistry is inevitably much longer than the mean molecular collision time. Thus in
any chemical reaction, the ratio of the time taken for the rate of reaction to evolve
and change by an order-one amount, to the mean molecular collision time, is always
a large number. This ratio is sometimes known [20] as the von Kdrmdn number K4,
an appropriate typical value that can be identified as Kd.=tF2?/4F, after noting
that £¥/2** is a measure of the typical mean molecular collision time where o is a
typical sound speed. A suitable expression for <F is X =(yP¥/p¥)/?=
((y=1)CxT¥)'"?, where vy is the ratio of principal specific heats (most usefully
calculated under conditions of fixed chemical composition). The resulting typical
diffusional Mach number M, defined as the ratio M =u’/2¥=Ka."? is then an
important parameter in combustible systems primarily because it is invariably small.

In situations where diffusion is the main transport mechanism, actual gas velocities
are similar in magnitude to u} so that the gas-low Mach number is also of the order
of M. Under such circumstances, local pressures do not, in general, change very
dramatically from the average system value; variations from 2} are typically of the
order of p¥ul¥? or yM*®¥, although we should perhaps recognize that if acoustic, or
gas-dynamical, pressure changes were to play a significant part then these would best
be measured in units of p¥ a2 ¥u¥ or yM®} on a fast timescale of order r¥/aF or MtF.

The rate of progress & * of the chemical reaction can be taken to satisfy Arrhenius
kinetics:

(2.1) R = (p™cr)" (p* cx) XF*(T*) ¢ 5" /(K T

in which E* is the molar activation energy of the reaction, and for the chemical species
K, ¢, denotes the mass fraction of the species at a point; the function F*(T*) is a
pre-exponential frequency factor with the dimensions of density to the power 1 —vg —vx
divided by time. It is not necessary to actually specify F*(T*) for the analysis below
to remain valid. In units of mass per unit volume per unit time, the rate of production
of a chemical species is given by —v, W, &* (when « represents either F or X and W,
is the molecular weight of the species «) or by vp,WpR ¥ for the product species P.

If we define the dimensionless activation energy as 6 = E*/(R* TY) it transpires
that a useful form for the time ¢} is

(2.2) 12 =pICyTIe’/[60pWpQ* (pI Gr)" (p! €x)*F*(T?)]

in which the constants € and éx are chosen to be of the same order of magnitude
as the values of ¢ and cx before substantial chemical changes occur, and Q¥ is the
chemical energy per unit mass released by the reaction. The nondimensional activation
energy 6 is generally found to have a large value and, in common with much successful
combustion modeling of single step reactions, this property will be exploited here to
solve the governing equations using asymptotic techniques.

By continuing to use the subscript « to denote either F or X, the equations that
describe the system can now be written in the following dimensionless forms [13], [14]:

Species:

(23) P(yutu' -Vy.—LeV-(p'D'Vy.)=—R"/(6);
Energy:
A4)p'(Ti+u' -VT)=V-AVT)=R'/0+(y—1)M*{p,+u’ - Vp'—Pr n'[S']:[Vu']};
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Continuity:

(2.5) pitV-(p'u’)=0;
Momentum:

(2.6) plut+(u' - V)u]+Vp' =PrV - (9'[S']);
Gas Equation of State:

2.7 p'T' =1+yM?p’;

where

(2.8) R'=(p'yE)"r(p'yx)*F(T') ?07V/T

(2.9) [S1=[Vu'1+[Vu']" =3V - u)[I]

(in which [I] is the unit tensor).

The nondimensional values of the coordinates and various gas properties appearing
in these equations are defined such that r=r*/r¥, t=t*/t¥, w'=u*/u}, T'=T*/ T¥,
p'=p*/pl, yi=0/ b, L=vpWpQ* 6. /(0 WC;TY), M'=A*/A%, 9'=D*/ P},
n'=n"/nl, p'=(P*—PI)/(pZul®), and F(T')=F*(T'T?)/F*(T?¥), with V rep-
resenting the gradient operator in terms of the dimensionless coordinate r. The constants
{. are nondimensional measures of the amount of chemical heat release (or temperature
rise), which is potentially available in the concentrations of the reactants.

A useful alternative form of the continuity equation can be derived by first using
the thermal equation of state (2.7) to eliminate p;+ u’ - Vp', and then using the resulting
equation to eliminate T; from the energy equation (2.4). This gives

(210) M’pi+V-(p'T'w'—=A'VT)=R'/0+(y—1)M*{u’ - Vp'+Pr n'[S']:[Vu']}.

When we use these equations, the fact that the diffusional Mach number M is
small can now be seen to have some useful consequences for the modeling. If it is
formally assumed that all of the dependent variables (represented by f') behave in the
asymptotic manner f'(r, t; M) =f(r, t)+ O(M?) as M tends to zero, then the asymptotic
forms (unprimed) of the dependent variables will satisfy equations (2.3)-(2.10) with
the primes and the terms containing M omitted.

The asymptotic form of (2.10), namely

(2.11) V-(u—AVT)=2R/6,

is of particular interest since it establishes a relationship between the divergence of
the flow and, in essence, thermal expansion effects associated with either thermal
conduction or chemical heating. The momentum equation (2.6)—with the primes
omitted—then helps to determine the weak pressure gradients, Vp, which are required
to drive any velocity changes.

A limitation in the asymptotic modeling is also revealed by equations (2.6) and
(2.11) as soon as it is noticed that these equations are unable to describe acoustic
interactions between pressure and velocity. As indicated earlier, different pressure and
timescales could be used to admit a description of an acoustic field, but this aspect is
not of particular importance here. Attention is concentrated specifically on the wide
class of cases in which acoustic interactions remain of minor importance during the
various stages of ignition. A distinguished limit is discussed later (see (6.26)) under
which gasdynamic interactions would become significant; some analysis of the
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consequent behaviour, as well as the wave field produced by thermal expansion in an
ignition kernel, is presented elsewhere [12].

Under conditions of symmetry and nonrotation, (2.11) takes the form r~"[r"(u —
AT,)],=R/6 where u and r are now the radial components of velocity and position,
respectively. The number n depends solely on the geometry of the situation being
considered, taking the values: zero for variation in only one Cartesian dimension, with
planar symmetry about r=0; one for cylindrical symmetry; and two for spherical
symmetry. Because u must now satisfy the condition u(0, t) =0, the equation can be
integrated to give

(2.12) u= AT,+§

with

(2.13) v=r"" J r"Rar.
0

Thus the quantity v/ 6 represents the component of velocity, which is due entirely to
thermal expansion brought about by the chemical heating term &/ 6. Equation (2.12)
shows that velocity consists solely of thermal conductive and chemical heating induced
expansion effects.

Using this result to eliminate u from the convective terms of the appropriate
symmetric forms of the species and energy equations, we obtain

R
(2.14) Ve + [§+).T,— Le T(p@),]y,‘,—Le Dr(r'ye), = _Tog
and
v niom R
(2.15) T+ 5+AT,— A T, —TAr "(r"T,), = T—o-.

These equations show that a considerable simplification will result if A, p@, and Le
are modeled (not unrealistically) such that A =p% =T and Le=1. Further sim-
plification follows through identifying the conserved scalars (quantities not consumed
by the reaction),

(2.16) Y. =y.+(T-1)/¢{..

Sufficient equations with which to describe the behavior of Y, Yy, and T can
now be written in as follows:

(2.17) YK,+§ Y, = T2( Y, +2 YK,)
r
and
TR
(2.18) T+21 =24 T2<T,,+2 T,)
0 0 r
where
1 T-1\ |1 T-1\ |
2.19 R=|—{Yr——m — Yy ——— E(T) e®0-1/T).
219) [T(" ;F)] [T(" ;x)] (T)e

A combination of the asymptotic forms of the continuity, energy, and momentum
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equations can also be used to derive the following form of the momentum equation:
(220)  Tp,+3nuTT,/r+ 67" (v, +uv,) = Pr— 1) T{n[r "(r"u),], + n,(u, —nu/r)}

in which an obvious further simplification follows if the Prandtl number takes the
value 3. With (2.12) this serves to uniquely determine the velocity u and pressure
gradient p, in terms of the species and temperature solutions of equations (2.17)-(2.19).

2.2. Conditions for ignition. Studies have shown [1]-[10] that when equations of
this type are used, a rapid thermal runaway through self-heating will always occur
provided sufficient fuel and oxidant are available at some initial instant, and heat
losses are small enough. The result can only be the generation of some kind of vigorous
combustion. Such an ignition process takes place in a small region located about some
position r=7(0) in a short space of time close to some time ¢ = f(8). Selecting the
nondimensionalization such that T is initially within order ™' of unity, we have that
7 and f are typically found to adopt order-one values on the scalings of space and
time shown in (2.3)-(2.20). This is in accordance with t} being a measure of the
dimensional induction time. First, we will discuss some necessary conditions associated
with the occurrence of ignition.

Since we are mainly concerned with analysing a very localized and very rapid
thermal runaway process, it is sufficient for the purposes of this paper to assume that
Yr and Yy are known to vary as follows:

(2.21) Y.(r,t)= Y. +O(r—F)+0(t-1).

In a uniformly premixed system, for instance, Yy and Yx would satisfy this condition
exactly. Otherwise, derivatives of Yy and Yy with respect to r and ¢ are generally of
order one at the ignition event [10]. Hence changes in these quantities can be ignored
when variations in R and ¢ from the values 7 and 7 are small, as is the case in the
relatively small ignition region.

The thermal runaway process is characterized by a localized self-heating, which
progressively and dramatically accelerates under the exponential influence of the
Arrhenius reaction-rate law. The growth of any such temperature peak only slows
down again when yr or yx approaches zero. From (2.16) and (2.19) it can be seen
that this occurs when T = T,,(r, t) — O(6~") where

T ={1+{FYF1 gFYF§§XYX’
T+ Y, IxYx=IrYr

When 7 and 1 characterize the first attainment of this fastest stage of the reaction,
the condition that ignition occurs leads to the requirement that

(2.23) T H=1+£Y.—-0(87")

with T(r, f) bounded above by its maximum value T(7, ) at r = 7 (by definition). The
subscript L denotes the locally lean reactant at the ignition event. More generally, if
R denotes the rich reactant at a time and place then L and R are defined such that
LY (r, t) < {rYr(r, t). In the case of stoichiometry (that is, {Yr = {xYx) the choice
is arbitrary.

We should remark here that the discussion of the model for thermal runaway has
not yet included any specification of boundary and initial conditions that may give
rise to it. A great deal of analysis has been carried out characterizing steady or
quasi-steady solutions associated with the equations above, under a variety of condi-
tions [3]. These solutions generally show bifurcations that indicate, for example, that

(2.22)
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no steady slowly-reacting solution can exist in ranges of parameters (associated with
the boundary conditions) beyond critical values where the steady solutions experience
turning points. Under such “supercritical”’ conditions, temperatures cannot indefinitely
remain near any relatively cold initial values, and ignition must ensue. Some numerical
studies [4]-[10] have been carried out into the early development of thermal runaway
from a variety of initial and boundary arrangements.

In general, the ignition position and time 7 and 7, the degree of symmetry of the
ignition kernel (depending on n and 7) as well, of course, as the very existence of
thermal runaway, depend intimately on the conditions leading to ignition. However,
once thermal runaway has begun and these features are known, the local structure and
behavior of the ignition process can, to a large extent, be studied in isolation; broad
classes of conditions, ranging from initially uniform mixtures in fixed temperature
containers to spark ignition and thermal runaway in nonpremixed systems, can be
expected to lead to essentially the same structure of ignition kernel. It is not the
intention of this paper to restrict attention to any specific class of initial and boundary
data, and an investigation of all such classes is beyond its scope. It is intended rather
to maintain generality by being primarily concerned with the local details of the ignition
process itself.

It has already been demonstrated [8] that the early structure of an ignition kernel
is remarkably independent both of the conditions that lead to its formation, and its
geometrical shape (whether it is symmetric about a point, line, or plane). However,
one major characteristic that does emerge is that conductive effects diminish in import-
ance, relative to the reaction rate, as thermal runaway proceeds. In this respect, a
strongly supercritical ignition kernel that starts off only weakly influenced by conduction
is very much like a more fully developed ignition kernel for which conduction has
become less significant. As presented in the next section, this adds one more feature
that needs to be included as a condition for studying the full thermal runaway process,
but ou.erwise it is not really necessary to consider the outer problem from which
thermal runaway arises; with a great deal of generality, the evolution of the ignition
kernel can be studied in isolation from the detailed conditions that produce it.

3. Early temperature growth. With T initially close to unity in value, the early
temperature behaviour can be modeled asymptotically, for large values of 6, by defining
@ such that

(3.1) T(r,t;0)=1+0""¢(r,t)+0(673).

Equation (2.18) then becomes
(3.2) ¢ = d>n+$ ¢, +Ae?

where A(r, t) = Y7 Y3X, and condition (2.23) requires that
(3.3) ¢ (F, 1) =0,

Although (3.2) becomes invalid when ¢ grows to the order of 6, the way in which ¢
approaches the singularity (3.3) provides a first step in determining the full development
of the thermal runaway. Without any spatial variation [15] the solution for ¢ is very
simply, ¢ = —In[A(7—1)] where A = A(F, 7).

If, as would usually be the case, the variation of ¢ is not spatially uniform then
it has been shown [8] that the singular growth of ¢ satisfies the well-defined asymptotic
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form' as t > {:

2 A 2
¢ =-In [f&(t‘—t)]—ln(u%) _IngS5+n p’/4

P
(34) [1+4a  p?/4 :2 : I;an?
re [ (145) o (%)
where
(3.5) (f-DA=e""¢

The constant o depends on the initial or boundary conditions that give rise to thermal
runaway. Broadly speaking, a increases with the degree of supercriticality of these
conditions and can vary from order one to very large values [8]. The variable grouping
p, which is defined such that

(3.6) r—F=up: wi=¢-(i-1),

characterizes the spatial concentration with time of the solution (3.4) for the peak
temperature growth. Because £ increases as a increases, it can be seen that the spatial
size of the ignition region at a given peak temperature is larger for larger values of a.
Correspondingly, the effect of conduction in (3.2) is smaller in relation to the effect
of the reaction rate term. The geometrical factor 7, for the ignition region, is defined
as nif 7=0, or 0 if 7>0.

This result is remarkable in that, to first order as £ 00 with « finite, the growth and
spatial variation of ¢ are independent of both the geometry 7 of the ignition region
and the conditions leading to thermal runaway (on which a depends). It is shown in
[8] that this behavior, and in particular the form of the grouping p, arise from both
the diffusive nature and nonlinearity of (3.2). However a can have large values,
comparable in magnitude to (or even much larger than) 6, which typically lies between
about 10 and 50 in value. Under these circumstances, a would in fact substantially
affect the first-order spatial variation of the temperature T unless £ — a, and hence ¢,
could become unrealistically large.

It is worth noting at this point that, as an asymptotic solution to (3.2), the solution
(3.4) remains valid as t > f however large @ may be. Indeed, since values of ¢ are
greater for larger values of a, the neglected terms actually become smaller, tending to
make the expansion more accurate as a is increased. In the limit as a - oo for finite
values of r and f—¢, (3.5) and (3.6) show that p >0 and ¢- 0. The solution thus
converges to the exact solution without spatial variation, already described above.
There is also no breakdown in the asymptotic structure (3.1) implied by allowing «
to be possibly much greater than 6.

! Until recently it was postulated [5], [6] that the growth of ¢ could adopt the alternative form of
solution ¢ ~ —In (f— 1)+ ¢,[(r — #)/(f — t)"/?], as might superficially be expected from dimensional similarity
arguments associated with (3.2). It turns out [8], [11] that no physically meaningful solutions exist that take
this asymptotic form. However, Buckmaster [16] has suggested that the differences between this alternative
form and the correct solution for temperature growth are only of mathematical interest and make no
qualitative difference to the physical results. In fact, as will be seen in § 6, the predicted size of the ignition
kernel can be an order of magnitude larger and correspondingly more energetic; this could make a substantial
difference to gasdynamic aspects, possibly introducing significant pressure effects in the ignition process
[12]. Also, the nature of the way in which deflagration flames finally emerge, as described in § 7, is qualitatively
very different.
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It will be seen in the next section that such large values of a are easily allowed
for in developing an asymptotic solution of wide validity. The only limitation on the
size of a arises through the possibility of the low Mach number modeling breaking
down. The way in which this can happen and its implication for the allowable size of
a are discussed in § 6.

While describing the growth of the temperature peak, the asymptotic form (3.4)
is not valid for large values of p (namely when In p” becomes of the order of In £).
Because of the definition of p, this restricts the range of values of r for which the
solution is valid to a “shrinking” neighborhood of 7 as t approaches . The asymptotic
solution [8],

3 Iny5+d 1 S[1+A 1 lnz,\/)
(37) ¢=x—a-In(1-1) % 2 1_)‘+,\/ [ 2 l_/‘ln(l /\)]-I—O( &
in which y and A are defined such that (r—?)zf\/4=xe°"x and (t— t‘)f\=/\ e* X
complements the solution (3.4) by describing the temperature in regions which, at
some stage, are left “outside” the shrinking peak-temperature region as t- 7. As
mentioned earlier, (3.2) and both of these solutions become invalid when ¢ becomes
of order 6. At this stage T—1 is no longer small and the consumption of reactants,
which is not represented in (3.2), becomes significant.

4. Substantial temperature growth. In modeling homogeneous thermal runaway,
Kassoy [15] made use of the time-stretching transformation

(4.1) (F—t)A = e 0+8s0)

This is equally useful in the present context where w? in the definition (3.6) of p now
becomes pu’=(a+6s—g)(7—1t). Still following Kassoy, it is useful to define a tem-
perature-related variable 7 such that

(4.2) n=0(1-1/T-5).

The degree of freedom afforded by the choice of the function g(s; ) in (4.1) can now
be exploited to normalize » in some convenient way. Perhaps the simplest choice is
to select the value zero for n at p =0:

(4.3) 7(0, s; 6)=0.
This, in effect, defines the variable s such that at the ignition position, r= 7, the
temperature is given precisely as T(F,t; 6)=1/(1—s). It remains to solve for the

function g(s; ) and for 7 at values of p #0.
The equation satisfied by n becomes

s+ g 1
1+"—i,+[’—)(1——————) +—“—’] -
0—g 2 atlOs—g/ 6

44 (1-s—n/0)2 n 2
—S5—n {d 2
=g+ +
a+0s—g [ # Ftup * 0(1—s)—7)n”]
where
f—t
* = T R
A + v + ’r
(4.5) =A"[YL(1——S "/0)] [YR(I——-—S "/0)]
YL Yr

n 1 +
1—s— ) p(——— ) s
x( s 0) (l—s—n/B)e



468 J. W. DOLD

and

i—t \7? J' P ¥
4.6 ={—— =(F+up)™" F+up)'—ap.
(4.6) w (a+0s_g) v=(f+pup) _w(r ©p) 1=s—n/0%
Here, ' denotes ordinary differentiation with respect to s, and the quantities y; and yx
are defined as vy, = £ Y, /(1+{.Y,), with k representing either L or R. Matching with
(3.4) requires that  behaves as follows:

2 +0s—g)5+A p°
n=—g—ln(l+p—)—ln(a 0s—g) 5+ p*/4

@ 4 atls—g 2 1+p*/4

’ [1+4a  pY/4 ] [lnz(a+0s—g) ]
+(a+0s—g) | —-—L L —In(Q+p¥4) |+0| —~
(a+bs-g) [ 2 Tepya e O e TS

provided that '« s« 1. Applying the condition (4.3), that n =0 at p =0, we require
that

1+ In? (a + 6s) ]
4. = + 1 + +
(4.8) g=(a+0s) 2 O[ (at05) s
and
2 + +i p?
n=—ln(l+p)—ln(a 0s) 5+n p/24
49) 4 a+0s 2 1+p°/4
: 2 2
_ pY4 R [ln (a+6s) ]
—(a+6s) ' —5—In(1+ +0|——+
(a+0s) 1_'_}0;,'/41n(1 p°/4)+0 (at65) s

To continue these expansions to order one values of s the following asymptotic
forms may be considered for n and g:

In (a + 6s) . [lnz(a+0s)]
=not————m+(a+ ez
N=Mot T T M (a+6s) " m,+0 (@t 657 )’
(4.10) | 2( s)
n° (a+6s
=g +(a+0s) g, +0| —=
g=got(a+0s) g 0[ (a+0s)2],

with the coefficient functions no(p, s), 7:(p, s), etc., being smooth® and continuous
functions of p and s, particularly at p =0. Together with go(s), g,(s), etc., they are also
independent of 6. The constant « is included in the gauge functions of these expansions
so that cases for which a is large may be properly modeled with no extra difficulty,
while its omission would lead to unnecessary inaccuracy. As mentioned earlier even
cases with a >» 6, corresponding to very highly supercritical situations, can thus be
consistently modeled in an expansion of wide validity.
To first order, equation (4.4) et seq. gives

@.11) 142, =(1—s/n)"h(l—s/yR)"R(l—s)F(#) et
2 1-—s

2 It may be thought that the appearance of a singularity in n at p =0 could be associated with a need
for an inner matching layer of solution. It is precisely for this reason that solutions in the innermost region
must be smooth and nonsingular. Layers for which r= O(f - t)"/? have already been dismissed [8], [11] as
leading to either trivial or nonphysical results. It is shown in [8] that the only other candidate for an
innermost layer is p = O(1), where ¢ and n must clearly be smooth and nonsingular.
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so that, using condition (4.3) for which 7,(0, s) must be zero, we have

(4.12) g=—In [(1 —=s/yu)(1 —s/yR)”R(l—s)F(Ti—s)]
and
(4.13) no=—In[1+ A}(s)p?/4].

Matching with equation (4.9) requires that A(0) =1, but no more can be said about
the function of integration Ao(s) at this stage. The expansion velocity caused by
chemical heating takes the first-order form

p " [* 4+ ap
wo(p, §) = I p"

1-5 ) s’ 1+A3p%/4
( A
m+2tan”! (Top) , F>0,
(4.14) 2tan_1(-ALp), n=0, =0,
=1 . 2
T(1-5)A, | 2
(1=5)A ——1In(1+A2p%/4), A=1,
Aop
4 App
— | Ap—2t —I(L)]’ n=2

where the product 7#- o should be interpreted as representing zero if 7 =0 and infinity
if 7>0.
At the order In(a + 0s)/(a + 0s), (4.4) gives

P M
. B g =— B
(4.15) 2 M T 1+ A4

which solves to give

Aip*/4
. =A(8) — 55—
(4.16) L 1(s) 1+a(2,p2/4’

with A,(0) =—(5+1)/2 for matching. The condition (4.3) is automatically satisfied so
that there is no need for an equivalent order in the expansion for g.
The order (a + 6s)" is more fruitful. The equation for 7, becomes
Al 1+A

+g—(1+ApY ) By, L0
ntg—(1 oP/)2772p (1-s) 2

+(B+s) { WoAj §+ [In (1+A3p*/4)—(1+ A%PZ/4)]36}
(4.17)

ALl Agpt/16

—|1-2B+s) 20| LR 20

[ (B S)A0]1+A(2,p2/4
A A;,] Alp?/4
+1-—25-2(B+5) =22 | 55—
[1 1oy 2B+ 1+ AZp?/4

where the constant 8 = a/6 has been introduced to allow for cases in which @ may
be large enough for the ratio a/6 to be of order one or greater. Otherwise 8 may be
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set equal to zero. Applying the condition (4.3) and solving the differential equation,
we obtain

1+4 A2
4.1 = +(B+s5)gt
(4.18) & 5 (l—s)2 (B+s)go
and
- — A —_ — +§— + 2 2
72 1+A§p2/4 2($) 1-28 sAo In (1+ Agp©/4)
—B+sgiln (1+A3p*/4)
(
A
Aop[w+2tan“(7"p)], F>0,
-1 AOp A
(4.19) _(ﬂ+s)/(l—s)'* Aop[Ztan (T)], n=0, r=0,
) 1+A2p%/4
o/ In (1+ A2p?/4), i=1,
4 8 _I(Aop) A
—= tan” { — ), n=2

2 ! Ay —1 2 2 2
+{ Ay s—1+2B+s [ﬁ+(l+") ]} A°p2/24 ln( p__ )
(1-ys) Ay 1-3s 1+ Agp?®/4 1+ Agp?/4
with A,(0) =0 for matching with condition (4.9).

The final term of the latter result potentially has a singular second derivative.
Because the expansion for n must be smooth at all orders this term has to be excluded,
requiring the coefficient of In p? in equation (4.19) to be set equal to zero. This leads
to the equation for Ag:

A/(+#) _ 1-Ay/(1-s)
° 2(B+s)

By using the condition for matching, A,(0) =1, this equation can be uniquely solved
to give

(4.20) Apt+
1-5

(1-s)%, A=0,

(1-s)(B+s) A1

4.21) Ai={ B—In(1-5)’ ’
(1-5)*(B+3s) P

B+3[(1-s)"V*-17

Consequently, having applied a smoothness condition to the third order in the
expansion for 7, the first order becomes uniquely determined. A similar effect is seen
in the derivation [8] of the solution (3.4), which describes the temperature in its early
stage of growth.

Unlike the solution (3.4) the solution describing substantial temperature growth
does depend on the geometry 7 to first order. This is because the first-order velocity
term w, (which is negligible in the early stage) introduces a geometrically dependent
element into (4.19), and hence, via the solvability condition (4.20), into the solution
(4.21) for A,. It should also be noted that the analysis remains valid even for large
values of B, that is for a » 6. As mentioned earlier, this corresponds to cases of very
highly supercritical thermal runaway, for which conductive and diffusive effects would
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start off being very small indeed and would remain small throughout the evolution. It
is reasonable, in such cases, to neglect conduction to first order and arrive at results
that are entirely consistent with those presented here. For instance, the behaviour of
Ao in the limit as B -> o0 agrees precisely with the convective effect, for each value of
A, that thermal expansion would produce in the core of the ignition kernel.

Thus the solution for T can be written as

_ B 1 ) 2 In (a + 0s)
(4.22) T—l/{l s+07 In[1+ Agp /4]+O[_0(a+0s)]}

with
(F= A —s/y0)"(1—5/ y)"=(1~ S)F("l'i—s)

1+7 AY/(B+5)
2 (1-s)?

e AN /(1 In’ (a +05)
+(1-95)""=(1-5) F(l—s)/F(l—s)]+O[ (a+0s)* ]}

This result fails to behave asymptotically, and therefore becomes invalid as the reaction
comes close to completion; the order 8" term in the exponent of the right-hand side
fails to be small when

(4.24) s=y,—0(07") or T=1+{Y.—-0(67"),

(4.23) =exp{—0s+0_1[ +or/(yL—s)+vr/(yr—S$)

since y; = yr by definition.

5. Temperature outside the hottest region. As with (3.4), the solution (4.22) success-
fully describes the growth of the temperature peak, but is only valid in a shrinking
neighbourhood of the point r =7 as t - . In order to investigate the evolution of the
temperature in regions that are left outside this shrinking region at some stage, it is
natural to define a family of spatial and time variables x’ and ' such that

A2 4 , 4 , , PP ,
(51) (’_")ZA=XZA(2)(Q,)[0(ﬁ+9)—g(0)]e 0Q'+g(QY)
and
(5.2) w'=(t— A ¥ 5@

where (' is held fixed in the range 0 <Q'< vy,. By using (4.23) to substitute for s and
p in (4.22), and checking that the result is indeed an asymptotic solution of the
governing equations, it is readily found that T is given by

In(a+ 09')]

. T '=1-Q'+6 'In(x?- ’+O[
(5.3) 1-Q n(x“—w') o(a+00)

for a given value of Q.
This result is valid for order one values of x' and, in particular, is valid for x'=1.
Therefore it is simpler to write (5.3) in the form

(5.4) T =1-Q+ 0"1n(l—w)+0[——ln (a+00)]

0(a+6Q)
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where Q (unlike Q') is not a matter of choice, but is a function of r that satisfies

. A4 — (B + —on+g(n)

(5.5) (r=#VA = [0(B +0) - (@] e

and where the corresponding time-like variable grouping w is given by
(5.6) w=(t—1)A "?7E®,

Interestmgly, like the solutlon (3.7), the solution (5.4) becomes singular only as
w-1,0ras t->{+e ¥ D/A which is after the ignition time 7. In the absence of
deﬂagratlon flames this is the time around which the thermal runaway itself would
locally drive the reaction toward completion. However, at least in part of the thermal
runaway region, it may be anticipated that relatively fast-moving deflagration flames,
emerging from the hottest part of the ignition kernel, are likely to destroy the solution
before this can happen. The region in which this is the case will be determined later
in § 7. In this context (5.4) provides the appropriate “upstream” or ‘“‘unburnt” tem-
perature (and mixtures strengths from (2.16)), which help to determine the appropriate
speed of propagation of any deflagration flames.

6. First completion of the reaction. From (4.22)-(4.24) it can be seen that an
appropriate rescaling of space and time to characterize the completion of the reaction
in the core of the ignition region is as follows:

(6.1) t—f=86r and r—7=jx

- ) —v v’ 1
6=0"¢ oyL/[A‘YF Fyx"*(Yr — Y1) (I_VL)F(I_,Y )]’
L

where

(6.2) 5
+ 'YL
=80—5—
AO/ 4
The constant Ao is written for Aq(7y,) and the constants v and v’ are defined such that
(vL, vR), yr=—yL» 07",
(6.3) (v, )= { _
(v +vg, 0), Yr—YL=0(0 1)~

It is also appropriate to define the variable y to characterize the approach of temperature
to its maximum value,

(6.4) y=0[y.—(1-1/T)].
The equation satisfied by y then becomes
A/ (1—y.+y/0)? 7 2/6

(65) yt=y+9%= o/ 1=y, /) [xx - / yz]

0 4(B+1vy.)6 F+ax 1—y.+y/0
where

e () (k) ()
6.6 Y=—-"T—ye 7|1+ F F ,
(66) o’ Y 1-vy, 1_7L+Y/0 1-vy
(6.7) v=(F+4ax)™" J. (F+ pgx)' —ox

- -/ K T y+y/6

and

(6.8) o=0(yr—v)-
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Expanding the solution for y in the form
(6.9) y=yo(x, 7)+0(87")
leads to the equation for y,,

Jo = {ySL e, o»1,
0.,__

(6.10 -
) (o4 yo) sy e, a=0(1).

The case with o = O(1) represents a near stoichiometric mixture of fuel and oxidant.
Equation (6.10) can be solved for time 7 in terms of y,:

7= fo(x) =¥ (yo; fo), with

Yo
z e’ dz, o>»1,

(6.11)

Y(yo; Jo)={ o
j (c+z) rz7"te*dz, o=0(1),
Fo
where 7, is a constant and fy(x) is a function of integration.
It is necessary to match this solution with the results (4.22) and (4.23) if fo(x) is
to be determined. Writing s for y, —s, we can see from (4.22) and (4.23) that, for
1»s»07",

s

(6.12) T:—(;a)u [1+’;’;‘+0(05‘)-1]
and
A 1 +6
(6.13) y=06s+In(1+Ajp*/4)+ o<————n (a YL))
a+ 0y,
with
(6.14) Ap* x* _ Btwm
. 4 —TB+y—a—g/0

This matches automatically with (6.11) for large values of y and fixed x, without
yielding any information about fy(x). In order to obtain this information it is necessary
to match spatial derivatives of y. This requires that

(6.15) yo e [14 0(yo)1f6=2x(84)" e™*/[1+x7(60)" €],

which can only be satisfied if f¢(x) =2x. When the constant of integration is absorbed
into the definition of j, this condition integrates to give

(6.16) x2_7=‘I’(J’o; fo)

in which the constant j, still remains unspecified by the matching process.

In fact, this should not be surprising since 7 and f themselves have been specified
no more precisely than (2.23), which still leaves room for the addition of an arbitrary
constant to the final definition of 7. A reasonable definition, to fix the solutions, would
be to specify 7 and { as (say) the position and time at which the reaction first reaches
a local maximum value. From (6.10) it can be seen that the appropriate choice of j,
for this is such that

(6.17) v/Po+v'/(o+7F)=1.
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An interesting feature of the solution (6.16) is its quadratic wavelike behaviour,
with temperature being a function of x*— 7. Returning to the scalings (6.1) and (6.4),
we have that T satisfies

(6.18) t_f__é(zl/_i(r__":)z
. BtyL 0

For small enough values of r—7, the path along which 6[y, —(1—1/T)] takes a
particular order one value (for example, ) is therefore asymptotically close to the path
R A‘z 4 M2
(6.19) p= iy 2o/4 (1= F)

Bty 0

For € close to 7y, this corresponds exactly to the path at which the solution (5.4)
becomes singular (as w - 1) so that (6.18) matches neatly with the latter result.

Physically, (6.19) represents a parabolic flame path, the movement of which is
controlled by spatial variation in the thermal runaway process which, at this stage, is
the only significant mechanism responsible for driving the reaction to completion.
Although conduction and diffusion are relevant in determining the overall structure
of the thermal runaway, their immediate effect in (6.5) is negligible. They do not play
a direct role in guiding this early “‘thermal-runaway flame,” which can thus be clearly
distinguished from a deflagration flame.

Some solutions for y, in terms of x and 7 are shown in Fig. 1 for various values
of v, with o> 1. In all cases, the wavelike behaviour of the temperature can be seen
to emerge as a moving front of temperature increase. As it is driven outward, the region

~=8¥{0[y.—(1-1/T)]; }?0}-

I 2 4 6 x

32

32

F1G. 1. Temperature profiles in the final-stage of thermal runaway with o> 1 and with (a) v, =1, (b)
v, =2, and (c) v, =3.
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of sharpest temperature rise also becomes narrower and, correspondingly, the region
where the reaction is strongest becomes smaller. Indeed, differentiation of (6.16) shows
that, as it moves outward close to the path x = X (7) =+/7, the thickness of the reacting
region decreases like 1/|X], and, y,, increases in proportion to X?. The analysis fails
when the diffusion terms of (6.5) become significant, that is, in the region

(6.20) x| =v7+O[6(B+y)]1™"% 7=0[6(B+v.)].

When we use (6.7) and (6.16) the velocity component » can be evaluated to first
order in the form

—i i 0,
vo=X ”J x" Y 9x
—fo0 — YL

(6.21)

x " yol0m)
= 0o(0, 7) 53— I x" oy,
2(1=71) Jygxm
the integrals being performed at constant time. Some velocity profiles are shown in
Fig. 2. It can be seen that velocities increase as the fastest reaction rates are approached,
but as the reaction region moves outward and becomes narrower, the maximum velocity
decreases again as shown in Fig. 3. Thus within the time-region 7= O(1), the non-
dimensional velocity u = ToT/dr+ v/ 0 reaches an overall maximum value such that

(6.22) Umax = O[(B+ 1) ™/ 6'"].

It must be remembered from § 2 that gas velocities have been assumed to remain
small enough, compared with the typical sound speed =}, for pressure gradients to

04

FIG. 2. Velocity profiles in the final stage of thermal runaway with o> 1, v, =1, #=0 and (a) n=0, (b)
n=1, and (c) n=2.
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FI1G. 3. Variation of the maximum velocity with time for cases having ¢ »1, v, =1, r=0 and (a) n=0,
(b) n=1, and (c) n=2.

be negligible in the model. If the maximum dimensional velocity were to become as
large as the order of ' times the sound speed, the model would then break down
and significant dynamic pressure/velocity interactions would have to be considered.
Changes that would occur in the nature of the solution have been described elsewhere
[12].

This transition arises essentially when acoustic and induction times, in the heart
of the ignition region, become of the same order. A final-stage induction time (which
estimates the time remaining to complete combustion) can be identified as

(6.23) t¥=0"e "t}

where ¢} is the initial induction time identified in (2.2). Correspondingly a final-stage
acoustic time, which measures the time taken for acoustic waves to cross the core of
the ignition region, is given by

P22=(B+v)0'""" e ATt )al?

(6.24) s
=(B+y )AL il al”.

As shown in [12], dynamic pressure interactions can be neglected provided the acoustic
time remains short compared with the reaction time. If this is the case then thermal
expansion effects have time to propagate outward (leading to the expansion velocity
v/6), and pressure increases remain fairly small. Otherwise thermal expansion simply
does not have time to establish itself, and density changes become small while the
absolute pressure builds up significantly. Thus, for the model that has been used here
to remain valid, it is necessary that ¥ should remain small compared with . When
we use the expressions above, this amounts to the requirement

(6.25) (> (B+y)0kT/al’.

We may recall that £¥/2%? is a measure of the molecular collision time. Thus
Ka=7*aX?/4} represents a typical value of the von Kdrméan number (defined in § 2)
during the final stage of the thermal runaway when the reaction rate will be fastest,
and thus the von Kdrman number will be close to its minimum value. For physical
reasons, K4 must nevertheless still be a large number. The inequality (6.25) can thus
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be written as
(6.26) Ka»a+06y,

requiring that the minimum value of the von Kdrman number must, nevertheless, be
large compared with (8+y.)8. Recalling that 6 is large, it is conceivable for this
inequality to be violated (resulting in more significant pressure changes) for realistic
chemical reactions; large values of @ could produce the same effect. In other words,
a transition toward constant density behaviour can be predicted for values of a + 0y,
greater than, or of the order of Ka/ 6.

7. Emergence of deflagration-flames. Without solving for the detailed structure
of the transition process, it is possible to predict the emergence of deflagration flames
quite simply on phenomenological lines. The speed of the thermal-runaway flame,
traveling along the path (6.19), is found by differentiation to be

20(B+‘YL)/( 7) 20(B+7L)
Az

ar

(7.1) Py

Although initially infinite (at r=1), the speed of this flame decreases as the reciprocal
of the distance traveled. It must eventually become less than the speed with which a
deflagration-flame would propagate under the same locally prevailing conditions. At
this stage deflagration, rather than the thermal-runaway process, will begin to dominate
the remaining combustion. If ignition is considered to be the process by which
self-sustaining combustion waves, such as deflagration flames, are initiated, then
ignition could be said to be complete.
With a burnt temperature of T, =1+{, YL and an unburnt temperature of

(7.2) T,=T,— 0 'T;[Inx*+v In(In x*)]+0(67")
(from (5.4) for w <1) the deflagration flame-speed is shown in the Appendix to be
(7.3) Sa=0""247"(2/ A)(B+v) > T3 Co/ (T, — T.).

The two flame speeds become comparable and so a transition, which allows a deflagra-
tion flame to propagate ahead, will take place when the flame passes through the region

(7.4) x=[0(B+y)]"*In[6(B+ )]/ (T CoAy).

Note that this region is greater by a factor of order In [6(B + y,)] than the region (6.20)
in which the reaction zone of the deflagration flame comes into existence. A sketch of
the situation is shown in Fig. 4.

Subsequent combustion will be dominated by the propagation of deflagration
flames and the possible emergence of diffusion flames as described by Lifidn and
Crespo [18] and Dold and Clarke [13]. The appropriate premixed flame-speed for this
is derived in the Appendix.

8. Conclusions. The effect of heat conduction on the progress of thermal runaway
has been analysed and asymptotic solutions have been presented to describe tem-
perature growth from an early stage to the time when premixed flames begin to emerge
from the core of an ignition kernel. Provided gasdynamic pressure effects remain small,
the results are valid from marginally supercritical to very highly supercritical cases
where conductive effects may be small right from the start. Conditions have been
identified under which substantial pressure increases could be produced (as described
in [12]). These depend on the early effect of conduction being small enough, or the
ignition kernel being large enough at some stage for reaction and acoustic times to
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FI1G. 4. Sketch of the progress from a thermal-runaway flame to a quasi-steady deflagration flame through
the regions in which:

A. conductive effects are negligible;

B. conductive effects become significant in a reaction-zone;

C. transition occurs to a deflagration flame structure; and

D. quasi-steady deflagration flames propagate ahead.

become similar in magnitude. The progressive diminishing of the relative effect of
conduction, as thermal runaway proceeds, contributes to the likelihood of this situation
arising. :

Appendix. Deflagration flame speed. It is sufficient here to analyse the propagation
of premixed flames away from the centre, r = 0. A simple extension taking into account
convection associated with the thermal expansion caused by any inward propagating
flame [13] could be used to extend the results to cases where 7 # 0. The equation

—-1/T\]*
T,+3T,=T2(T,,+1'T,)+o-'[YL(1—‘ / )]
0 r YL

X [YR(I L2y T)] TF(T) VD),

YR

(A1)

must be satisfied, with T~ T,(r, t; 6) ahead of any flame, and T ~ T,(r, t; 6) behind
a flame (recalling that T, =1+{, Y, = (1—vy.)™"). As Zeldovich [19] has pointed out,
a quasi-steady analysis can be used to derive a premixed flame speed, with T, and T,
taken to be locally constant, provided that T, and T, vary slowly on the length scale
of a preheat zone thickness. In the region of the ignition kernel where deflagration
flames begin to emerge ((7.4)) this condition is satisfied. Also the geometrically
dependent term (n/r)T, in (A1) is negligible so that the flame may be considered as
quasi-one-dimensional.

Because of this, the passage of a deflagration flame can be modeled in preheat
and reaction zones using

(A2) T~T,(z) and T~T,—-0'T;T,(6z),
respectively, where z = kr — k? Vt with
(A3) k*=(YL/y)""(Yr/ ¥r)"*(yr — ¥r)" T5 > F(T,)07>™" e,
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The parameters v, v’, and o are defined in (6.3) and (6.8). Analysis of the reaction
zone gives Ty in terms of T; as follows:

T
2 J yredy, o#0(1),
V]

(A4) T = T,
2 I yuoty)®reVdy, o=0(1),
0
which shows T} approaching an order one constant value, Ci(vy, vg, 7), given by
the finite limit of the right-hand sides of (A4) as T, - co. For example, with o » 1, this
gives Co=+2I'(v,+1). Analysis of the preheat zone leads to the result for z in terms
of T,

(AS) Vz=T,In[(T,- T.)/(T,~ T)]+ T.(T, - T,)

where V=V —k™'v/4. Since the reaction is only significant in the reaction zone, V is
constant in the preheat zone, and indeed v can be evaluated to give

(A6) k™'v/0~ T, Ty,

which tends to the constant value T3C, in the preheat zone.
We have that matching of the temperature gradient between the two regions leads
to the following expression for V:

(A7) V= T‘;CO/(Tb_ Tu)-

Note that, had k™'v/ 8 been zero (as it would be for a flame propagating toward r =0,
with still gases ahead of it) this result would have been reduced by the factor T,/ T,,
which is exactly the amount of volumetric expansion caused through the heating of
the gases by the flame. The outwardly propagating flame can thus be seen to have a
flames begin to emerge ((7.4)) this condition is satisfied. Also the geometrically
dependent term (n/r)T, in (A1) is negligible so that the flame may be considered as
quasi-one-dimensional.

ar 0—1—0/2 eO'yL/Z

il _ _ v, v _ v’ 5 1/2 -
(A8) at Z—Sd—[(YL/‘YL) (Yr/YR)*®(Yr — Y1) T,F(T,)]"°C, T,—T,

REFERENCES

[1] D. A. FRANK-KAMENETSKI1, On the mathematical theory of thermal explosions, Acta Physiocochimica
U.R.S.S., 16 (1942), p. 357.

, Diffusion and Heat Exchange in Chemical Kinetics, Princeton University Press, Princeton, NJ,
1955.

[3] YA. B. ZELDOVICH, G. I. BARENBLATT, V. B. LIBROVICH, AND G. M. MAKHVILADZE, The
time-independent theory of thermal explosions, in The Mathematical Theory of Combustion and
Explosions, Plenum Press, New York, 1985, pp. 143-185.

[4] J. W. DoLD, On the autoignition and combustion of a finite region of gaseous fuel, Ph.D. thesis, Cranfield
Institute of Technology, Bedfordshire, U.K., 1979.

[5]1 A. K. KAPILA, Reactive-diffusive system with Arrhenius kinetics: dynamics of ignition, SIAM J. Appl.
Math., 39 (1980), pp. 21-36.

[6] D. R. KAssoY AND J. POLAND, The thermal explosion confined by a constant temperature boundary:
I—the induction period solution, SIAM J. Appl. Math., 39 (1980), pp. 412-430.

, The thermal explosion confined by a constant temperature boundary: 11—the extremely rapid

transient, SIAM J. Appl.. Math., 41 (1981), p. 231.

(2]

(71



480 J. W. DOLD

[8] J. W. DOLD, Analysis of the early stage of thermal runaway, Quart. J. Mech. Appl. Math., 38 (1985),
pp. 361-387.
[9] A. A. LINAN AND G. JOULIN , private communication, 1984.

[10] J. W. DoLD AND J. F. CLARKE, Ignition and criticality of a finite quantity of gas released in the
atmosphere, in Proc. 20th International Symposium on Combustion, Michigan, 1984, pp. 1861-1867.

[11] J. BEBERNES AND D. R. KAssoY, Characterising self-similar blow-up, in Mathematical Modelling of
Combustion and Related Topics, C-M. Brauner and C. Schmidt-Lainé, eds., Martinus Nijhoff,
Dordrecht, 1988, pp. 383-392.

[12] J. W. DoLD, Dynamic transition of a self-igniting region, in Mathematical Modelling of Combustion
and Related Topics, C-M. Brauner and C. Schmidt-Lainé, eds., Martinus Nijhoff, Dordrecht, 1988,
pp. 461-470.

[13] J. W. DoLD AND J. F. CLARKE, in Combustion of a finite quantity of gas released in the atmosphere,
in Proc. 21st International Symposium on Combustion, Munich, Federal Republic of Germany,
1986, pp. 1349-1356.

[14] F. A. WiLLIAMS, Combustion Theory, 2nd ed., Benjamin/Cummings, CA, 1985.

[15] D.R.KAssoY, The supercritical spatially homogeneous thermal explosion—initiation to completion, Quart.
J. Mech. Appl. Math., 30 (1977), pp. 71-89.

[16] J. D. BUCKMASTER, An Introduction to Combustion Theory, in The Mathematics of Combustion, J.
D. Buckmaster, ed., Frontiers 2, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1985, p. 14.

[17] J. F. CLARKE AND M. MCCHESNEY, Dynamics of Relaxing Gases, Butterworth, London, 1976,
pp. 54-58.

[18] A. A. LINAN AND A. CRESPO, An asymptotic analysis of unsteady diffusion flames for large activation
energy, Comb. Sci. Tech., 14 (1976), pp. 95-117.

[19] Y. ZELDOVICH, Flame propagation in a substance reacting at initial temperature, Combustion and Flame,
39 (1980), pp. 219-224.

[20] T. voN KARMAN, Models in thermogasdynamics, in 1 Modelli Nella Technica, Atti del Convegno di
Venezia, 1 (1955), pp. 643-651.



