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Introduction

In the papers [1, 2, 3] a general theory of integrable systems of PDEs of the form

ut = A(u)ux + B(u)uy, (0.1)

where u is an N -component column vector, A(u) and B(u) are N×N -matrices, was developed.
The existence of sufficiently many of the hydrodynamic reductions [4, 1] has been proposed as
the definition of integrability. Unfortunately, for arbitrary N it is difficult to write down
explicitly the conditions for A and B, which follows from this definition. Nevertheless, for
N = 2 the complete set of integrability conditions have been found in the paper [2]. For N > 2
even the verification whether a given equation is integrable is a serious task. Any attempt for
classification of integrable models based directly on this definition seems to be hopeless.

To overcome the difficulties for N > 2 the following two observations [2, 3] are very useful.
First, under some conditions of generic position, the matrix M = (1 + tA)−1(1 + kB) for
integrable models should be diagonalizable by a point transformation u → Φ(u) for generic
values of the parameters t and k. If the eigen-values of M are distinct, this is equivalent to the
fact that the Haantjes tensor [12] of M is identically zero. This gives rise to an overdetermined
system of the first order PDEs for entries of A and B. Given a system (0.1) it is not difficult to
verify whether these PDEs are satisfied or not. The simplest equations from this overdetermined
system also can be useful for classification of integrable models (0.1).

The second observation made in [1] is that for N = 2 the integrability conditions are
equivalent to the existence of the scalar pseudopotential

Ψt = f(Ψy,u), Ψx = g(Ψy,u), (0.2)

for (0.1)1. The scalar pseudopotential plays an important role in the theory of the universal
Whitham hierarchy [5, 6, 7]. A possible importance of pseudopotentials was also noticed in
[8]. The existence of pseudopotential implies a representation of (0.1) as the commutativity
condition for the corresponding characteristic vector fields

∂

∂x
− gξ

∂

∂y
+ gy

∂

∂ξ
,

∂

∂t
− fξ

∂

∂y
+ fy

∂

∂ξ
, where ξ = Ψy.

For recent attempts to use similar representations for integration of dispersionless PDEs see
[10, 11].

In this paper we assume that the matrix A(u) is constant and consider integrable systems
of the form

uit = λi uix +
∑

1≤j≤N

bij(u) ujy, (0.3)

1The latter means that that the overdetermined system (0.2) for Ψ is compatible if and only if u is a solution
of (0.1).
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where λ1, . . . , λN are pairwise distinct constants. Functions bij (as well as all other functions)
are supposed to be locally analytic. Note that the transformation

ui → ψi(ui) (0.4)

preserves the form of the system (0.3) for arbitrary functions of one variable ψi(ui).

For N = 2 such systems were considered in [2]. Our goal is to obtain a list of the most
interesting examples of integrable models (0.3) with N > 2. As far as we know, nobody
systematically investigated such systems before us.

Example 1. Consider equation (0.3) with

bij =
λi − λj

ui − uj

cj, i 6= j,

bii = −
∑

j 6=i

bij, (0.5)

where cj are arbitrary constants. It is not difficult to verify that for arbitrary N this equation
possesses pseudopotential (0.2), where

g =
N∑

i=1

ci log(ui −Ψy), f =
N∑

i=1

ciλi log(ui −Ψy). (0.6)

This pseudopotential has the following structure:

g =
N∑

i=1

hi(ξ, ui), f =
N∑

i=1

λihi(ξ, ui), (0.7)

where ξ = Ψy. In Section 2 we show that (0.7) is true for any integrable equation of the form
(0.3).

Notice that functions hi(ξ, ui) in (0.6) have ”moveable” singularities with respect to the
variable ξ = Ψy. This means that the position of the singularity depends on u.

In this paper we describe all equations (0.3) possessing pseudopotentials such that for any i

the function hi(ξ, ui) has a movable singularity. This leads to series of new interesting examples
of integrable systems (0.3). These examples are presented in Section 1. It would be interesting
to find the hydrodynamic reductions for these equations and describe the multiple waves [13, 1]
in terms of these reductions.

In Sections 2-4 we deduce a functional equation describing the pseudopotentials with move-
able singularities and find all it’s solutions. These solutions correspond to examples of Section
1 and their degenerations.
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1 Examples.

Example 2. Consider equation (0.3) given by

bij = cj(λj − λi)

(
κ +

eui−uj

eui−uj − 1

)
, i 6= j,

and
bii = −

∑

j 6=i

bij.

Here if κ = −1 or κ = 0, then cj are arbitrary constants. For other κ the constants cj should
satisfy the following two relations

N∑
i=1

ci = 0,
N∑

i=1

λici = 0. (1.8)

It is easy to verify that for any N this equation admits a pseudopotential (0.7) with

hi(ξ, u) = ci

(
κ(ξ − u) + log(eξ−u − 1)

)
. (1.9)

Example 3. Consider equation (0.3) with

bij = cj(λj − λi)
ui − uj + 1

ui − uj

· ui

uj

, i 6= j,

bii =
∑

j 6=i

cj(λj − λi)

(
1

uj − ui

+ log(uj)

)
,

where cj are arbitrary constants satisfying conditions (1.8). This equation has a pseudopotential
(0.7) with

hi(ξ, u) = ci

(
(ξ + 1) log(u)− log(u− ξ)

)
. (1.10)

The equation from Example 1 is a particular case of the following model:

Example 4. Let

bij =
(λi − λj)cjP (ui)M(uj)

ui − uj

, i 6= j,

bii = −
∑

j 6=i

(λi − λj)cjP (uj)M(uj)

ui − uj

−
∑

j 6=i

(λi − λj)cjB(uj),

where cj are arbitrary constants, and the functions B, M are defined by quadratures from

B′ = (k3x + k2 + z1) M, M ′ = M
−k3x

2 + z1x + z0

P
.
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Here
P (x) = k3x

3 + k2x
2 + k1x + k0

is an arbitrary polynomial of degree not greater than 3, z1, z0 are arbitrary constants.

The corresponding equation (0.3) possesses pseudopotential (0.7), where

hu(ξ, u) = − M(u)

u− φ(ξ)
· 1

M(φ(ξ))
, hξ(ξ, u) = −B(u) +

P (u)M(u)

u− φ(ξ)
,

φ′ = P (φ) M(φ).

For any given P and z1, z0 the equations for φ(ξ) and h(ξ, u) can be easily solved by quadratures.

Using admissible transformations

ui → aui + b

cui + d
, i = 1, . . . , N,

one can reduce the polynomial P to a canonical form. For example, if all three roots of P are
distinct, then without loss of generality we may put P (x) = x(x− 1). In this case

M(x) = xs1(x− 1)s2 ,

where s1 = −z0, s2 = z0 + z1, and

B(x) = (s1 + s2 + 1)

∫
xs1(x− 1)s2dx.

It is not difficult to find that

h(ξ, u) =
1

φ(ξ)s1(φ(ξ)− 1)s2

∫ u

c

ts1(t− 1)s2

φ(ξ)− t
dt− cs1+1(c− 1)s2+1

∫
dξ

φ(ξ)− c
,

where φ′ = φs1+1(φ− 1)s2+1.

Other two canonical forms are P = x and P = 1. The latter generates Example 1 if
z1 = z0 = 0.

2 Pseudopotentials.

A pair of equations of the form

Ψt = f(Ψy, u1, . . . , uN), Ψx = g(Ψy, u1, . . . , uN), (2.11)

with respect to unknown Ψ is called a pseudopotential for equation (0.3) if the compatibility
condition Ψtx = Ψxt for (2.11) is equivalent to (0.3). Differentiating (2.11), we find that this
compatibility condition is given by

fξ

N∑
i=1

(ui)y ∂ig +
N∑

i=1

(ui)x ∂if = gξ

N∑
i=1

(ui)y ∂if +
N∑

i=1

(ui)t ∂ig.
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Here and below we denote Ψy by ξ and ∂
∂ui

by ∂i. Substituting the right hand side of (0.3)
for t-derivatives and splitting with respect to x and y-derivatives, we get that for any i the
following relations hold:

∂if = λi∂ig, (2.12)

fξ ∂ig − gξ ∂if =
N∑

j=1

bji∂jg. (2.13)

Since λi are pairwise distinct, it follows from the condition (2.12) that

g =
N∑

i=1

hi(ξ, ui),

and

f =
N∑

i=1

λihi(ξ, ui) + c(ξ).

It is easy to see that the integration constant c(ξ) can be distributed between functions hi.

Thus we have arrived at (0.7).

Substituting (0.7) into (2.13), we obtain

∂ihi(ξ, ui)
∑

j

(λj − λi)hj ξ(ξ, uj) =
∑

j

bji ∂jhj(ξ, uj). (2.14)

Remark 1. If we fix a generic value ξ0 of the variable ξ, then it follows from (2.14) that

bii =
∑

j

(λj − λi)φj(uj)−
∑

j 6=i

bji
sj(uj)

si(ui)
, (2.15)

where φj(uj) = hj ξ(ξ0, uj), sj(uj) = ∂jhj(ξ0, uj).

3 Basic functional equation.

Suppose that for any i the function hi(ξ, u) has a singularity with respect to ξ and this singular-
ity depends on u. After a transformation of the form (0.4), we may assume that for each i the
singularity of hi(ξ, u) is located on the diagonal ξ = u. We say that hi(ξ, u) has a singularity
on the diagonal, if for fixed generic u and any ε > 0 we have max{|hi(ξ, u)|, |ξ − u| < ε} = ∞.

Proposition 1. Suppose hi(ξ, u) has a singularity on the diagonal ξ = u for each i. Then
there exist: a function h(ξ, u), functions fi(ξ) and non-zero constants ci such that

hi(ξ, u) = cih(ξ, u) + fi(ξ), (3.16)

bji = (λi − λj)ci ∂ih(uj, ui), i 6= j, (3.17)
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bii =
∑

j 6=i

(λj − λi)(cj ∂ih(ui, uj) + f ′j(ui)), (3.18)

h(ξ, u) = ln(ξ − u) + regular part. (3.19)

Moreover, the following functional equation

hξ(ξ, w) hv(ξ, v) + hv(w, v) hw(ξ, w)− hv(v, w) hv(ξ, v) = ν(ξ, v) (3.20)

holds for some function ν.

Proof. Considering (2.14) near the diagonal ξ = uj, where j 6= i, and comparing the
singularities, we obtain

bji = (λj − λi)µj(uj) ∂ihi(uj, ui), (3.21)

where µj(uj) = limξ→uj

hj ξ(ξ,uj)

∂jhj(ξ,uj)
. We see that the function bji depends on ui, uj only and has the

same singularity on the diagonal as ∂ihi(uj, ui). Considering (2.14) near the diagonal ui = uj,
comparing the singularities and using (2.15), we obtain ∂jhj(ξ, ui)si(ui) = ∂ihi(ξ, ui)sj(ui) or
∂ihi(ξ, ui) = νi(ui)r(ξ, ui) for some functions νi and r. On the other hand, consider (2.14) for
N generic values ξ1, ..., ξN of variable ξ. For each fixed i = 1, ..., N we have a system of N linear
equations for bi1, ..., biN with matrix Q = (qjk), where qjk = νj(uj)r(ξk, uj). This system must
have a unique solution by definition of pseudopotential and therefore ∆ = det Q 6= 0. It is clear
that bji =

Pji

∆
, where Pji is regular on each diagonal uk = ul. It is easy to prove the following

Lemma. Let ∆(u1, ..., um) be the determinant of an m × m matrix Q, whose entries qij

have the form qij = gi(uj) for some functions g1, ..., gm. The function ∆ is not equal to zero
identically iff the functions g1, ..., gm are linearly independent. In this case ∂i∆ 6= 0 on the
diagonal ui = uj for each i 6= j.

From this lemma it follows that the only singularity of bij on the diagonal can be a pole of
order one. Taking into account (3.21), we obtain that near uj = ui

∂ihi(uj, ui) =
αi(uj)

uj − ui

+ regular part

or, after integration,

hi(uj, ui) = −αi(uj) ln(uj − ui) + regular part.

Considering the singular part of (2.14) at ξ = uj, we obtain µj(uj) = −1 and α′i(uj) = 0, i.e.
αi(uj) = −ci for some constant ci. Comparing the singularities in (2.14) at ξ = ui, we find that

bii =
∑

j 6=i

(λj − λi) ∂ihj(ui, uj).

Substituting this expression for bii into (2.14), we obtain

∑

j 6=i

(λj−λi)
(
hj ξ(ξ, uj) ∂ihi(ξ, ui)+∂ihi(uj, ui) ∂jhj(ξ, uj)−∂ihj(ui, uj) ∂ihi(ξ, ui)

)
= 0. (3.22)
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Considering the singular part of (3.22) at ui = uj, we get

cj(hi(ξ, u))u = ci(hj(ξ, u))u,

which gives (3.16) and (3.19). Now (3.17) and (3.18) follow from (3.16) and expressions for bij

and bii already obtained. Using (3.22), we arrive at the relation

∑
j 6=i(λj − λi)cj

(
hξ(ξ, uj) ∂ih(ξ, ui) + ∂ih(uj, ui)∂jh(ξ, uj)− ∂ih(ui, uj)∂ih(ξ, ui)+

(f ′j(ξ)− f ′j(ui)) ∂ih(ξ, ui)
)

= 0.

This relation gives the equation (3.20) for some function ν(ξ, v). ¥
Remark 2. If a pair h(ξ, v), ν(ξ, v) is a solution of (3.20), then

h̃(ξ, v) = h(ξ, v) + f(ξ), ν̃(ξ, v) = ν(ξ, v) + (f ′(ξ)− f ′(v))hv(ξ, v) (3.23)

is also a solution of (3.20). Therefore, if ν(ξ, v) has a form (g(ξ)−g(v))hv(ξ, v) for some function
g, then we can bring ν(ξ, v) to 0 adding to h(ξ, v) a suitable function of ξ.

Remark 3. Without loss of generality, we can assume that fi(ξ) = fj(ξ) for all i, j. Indeed,
only the linear combinations

∑
i fi(ξ) and

∑
i λifi(ξ) appear in (0.7). Furthermore, according

to Remark 2, we may put fi(ξ) = 0.

Remark 4. It follows from (3.17), (3.20) that for any i 6= j the function b = bij(ui, uj)
satisfies the following functional equation

b(w, v)bw(x,w)− b(x, v)bv(v, w) + b(x,w)bw(w, v) + b(x, v)bx(x, w) = 0.

Remark 5. It follows from (3.17), (3.18) that the equation (0.3) defined by (3.17) and
(3.18) with fi(ξ) = 0 can be written in the following divergent form:

uit = λi uix + σiy,

where
σi =

∑

j 6=i

(λj − λi)cjh(ui, uj).

Thus any such equation has at least N linearly independent hydrodynamic conservation laws.

Proposition 2. Let h(ξ, v) be a solution of (3.20) with ν(ξ, v) = 0, then for any nonzero
constants ci the formula

g =
N∑

i=1

cih(ξ, ui), f =
N∑

i=1

λicih(ξ, ui) (3.24)

defines a pseudopotential for equation (0.3) given by (3.17) and (3.18) with fi(ξ) = 0.
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Let h(ξ, v) be a solution of (3.20) with ν(ξ, v) 6= 0, then (3.24) defines pseudopotential for
equation (0.3) given by (3.17) and (3.18) with fi(ξ) = 0 iff the constants ci satisfy the relations
(1.8).

Proof. According to the previous results, (3.24) defines a pseudopotential iff

∑

j 6=i

(λj − λi)cj

(
hξ(ξ, uj) ∂ih(ξ, ui) + ∂ih(uj, ui) ∂jh(ξ, uj)− ∂ih(ui, uj) ∂ih(ξ, ui)

)
= 0.

Substituting (3.20) into this relation, we obtain the statement of the proposition. ¥

4 Classification of solutions for the functional equation.

Proposition 3. Let a pair h(ξ, v), ν(ξ, v) be a solution of (3.20) with asymptotic (3.19). Then
up to substitutions of the form (3.23) it belongs to the following list:

h(x, v) = κ (x− v) + log(x− v), ν(x, v) = κ(κ + 1);

h(x, v) = κ (x− v) + log(ex−v − 1), ν(x, v) = κ(κ + 1),

where κ is an arbitrary constant;

h(x, v) = (x + 1) log(v)− log(v − x), ν(x, v) =
x

v
;

h(x, v) =

∫ v

c

P (φ(x)) φ′(t)2

(φ(x)− φ(t)) P (φ(t)) φ′(x)
dt−

∫
φ′(c)

φ(x)− φ(c)
dx, ν(x, v) = 0.

Here c is a constant and the function φ is defined by the following differential equation:

φ′′ =
(2P ′(φ)

3P (φ)
+

Z(φ)

P (φ)

)
φ′ 2,

where
P (x) = k3x

3 + k2x
2 + k1x + k0, Z(x) = z1x + z0

are arbitrary polynomials such that deg P ≤ 3 and deg Z ≤ 1.

Proof. According to (3.19), we have an expansion of the form

h(w, v) = ln(w − v) +
∞∑
i=0

ai(w)(w − v)i (4.25)

as v tends to w. To describe the solutions of the functional equation (3.20), let us investigate a
set of conditions relating the functions ai. Using expansion (4.25) for h(v, w) and h(w, v) and
equating the coefficients of different powers of v − w, we obtain an infinite sequence of PDEs
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for the function h(x, v) and the coefficients ai(v). The simplest three of these PDEs read as
follows:

hvvv − 2hvhxv + 2a1hvv = 0, (4.26)

hvvvv − 3hvhxvv + 3a1hvvv + 6(a′1 + 2a2)hvv + 3(a′′1 + 6a′2 + 12a3)hv = 0, (4.27)

hvvvvv − 4hvhxvvv + 4a1hvvvv + 12(a′1 + 2a2)hvvv + 12(a′′1 + 4a′2 + 6a3)hvv

+4(a′′′1 + 6a′′2 + 12a′3)hv = 0.
(4.28)

Substituting expansion (4.25) for h(x, v) to (4.26), we observe that all coefficients ai, i > 2 can
be expressed as certain differential polynomials of a1 and a2. For example,

a3 = − 1

12
(a′′1 + 2a1a

′
1 + 4a′2).

This means that the function h(x, v) is uniquely determined by functions a1(v) and a2(v).

The expansion of equations (4.27) and (4.28) leads to differential relations between a1 and
a2. In particular, the simplest relation following from (4.27) has the form

a′′′1 + 6a1a
′′
1 + 6a′1

2 − 6a2
1a
′
1 + 12(a2a

′
1 + a′2a1) = 0.

If a1 6= 0, this implies

a2 =
C − a′′1 − 6a1a

′
1 + 2a3

1

12a1

(4.29)

for some constant C. Eliminating a2 with the help of (4.29), we arrive at an overdetermined
system of ODEs for function a1. If C = 0, we find from this system that

a2
1 a

(4)
1 + 2a1(3a

2
1 − a′1) a

(3)
1 − 4a1 (a′′1)

2 + 2(a′1
2 − 9a2

1a
′
1 + 4a4

1) a′′1 − 16a3
1a
′
1

2 = 0. (4.30)

The general solution of this equation can be written as

a1(x) = −3Z(φ(x))

2P (φ(x))
φ′(x), φ′′ =

(2P ′(φ)

3P (φ)
+

Z(φ)

P (φ)

)
φ′ 2,

where
P (x) = k3x

3 + k2x
2 + k1x + k0, Z(x) = z1x + z0

are arbitrary polynomials such that deg P ≤ 3 and deg Z ≤ 1. For any given P and Z

the equation for φ can be easily integrated by quadratures. Example 4 from Section 1 after
transformation u → φ(u) describes the pseudopotential generated by such a function a1.

Let C 6= 0. Then a simple analysis of the ODE system for a1 shows that either a′1 = 0 or

4(a′1)
3 + 12a2

1 (a′1)
2 + 12(a4

1 − Ca1) a′1 + 4a6
1 + 4Ca3

1 + C2 = 0. (4.31)

It is easy to verify that if a′1 = 0, then a′i = 0 for any i and therefore h(x, v) = H(x − v) for
some function H. Solving equation (4.26), we get

H(x) = c1 + c2x + log(1− e−c3x)
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or
H(x) = c1 + c2x + log(c3x).

These solutions correspond to the model of Example 2 and it’s degeneration.

The left hand side of (4.31) can be decomposed into three factors. Each factor gives rise to
a differential equation of the form

a′1 + (a1 + k)2 = 0, (4.32)

where k is related to the constant C from (4.29) by C = 2k3. The corresponding model is
described in Example 3.

The case a1 = 0 should be considered separately. It is easy to get that in this case

a′′2 + 36 a2
2 = 0. (4.33)

It turns out that it is a particular case of the model described by (4.30). In the corresponding
formulas one has to put Z = 0. ¥
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