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Recent Developments in

Dense Numerical Linear Algebra∗

Nicholas J. Higham†

Abstract

We survey recent developments in dense numerical linear algebra, covering linear
systems, least squares problems and eigenproblems. Topics considered include the
design and analysis of block, partitioned and parallel algorithms, condition number
estimation, componentwise error analysis, and the computation of practical error
bounds. Frequent reference is made to LAPACK, the state of the art package of
Fortran software designed to solve linear algebra problems efficiently and accurately
on high-performance computers.

1 Introduction

Numerical linear algebra with dense matrices is still today, as it was at the time of the
first IMA meeting on the State of the Art in Numerical Analysis in 1965, an extremely
active area of research. There are several reasons. First, we still do not fully under-
stand some of the classical algorithms. For example, the behaviour of the growth factors
for Gaussian elimination and its variants with partial and complete pivoting is not yet
completely understood. Second, novel computer architectures force us to design new
algorithms, modify old ones, and reassess algorithms that were once discarded. In par-
ticular, parallel computers have made the flop counts traditionally used to measure the
cost of an algorithm of dubious relevance, so that some algorithms hitherto considered
inefficient are now of interest again. Third, applications stimulate the development of
new theory and techniques. For example, real-time signal processing applications have
stimulated much work on rank-revealing factorizations and the updating of factorizations
after low rank changes.

We survey research in dense numerical linear algebra over the last decade. Limitations
of space force our treatment to be brief and selective. We assume that the reader is
familiar with the material in Golub and Van Loan’s classic text [69]. We give particular
attention to the mathematics underlying the LAPACK library of Fortran software [2],
because of LAPACK’s practical importance. We say relatively little about accuracy and
stability issues, because they are comprehensively treated in our recent book [85].

∗In I. S. Duff and G. A. Watson, editors, The State of the Art in Numerical Analysis, pages 1–26.
Oxford University Press, 1997.

†Department of Pure and Applied Mathematics, University of Manchester, Manchester, M13 9PL,
England (higham@ma.man.ac.uk, http://www.ma.man.ac.uk/~higham/). This work was supported by
Engineering and Physical Sciences Research Council grant GR/H/94528.
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Level of BLAS Amount of data Amount of work
1 O(n) O(n)
2 O(n2) O(n2)
3 O(n2) O(n3)

Table 1: BLAS data use and arithmetic work.

2 Tools, Techniques and Software

We begin by describing some of the tools, techniques and software that are an integral
part of modern numerical linear algebra.

2.1 BLAS

The notion of Basic Linear Algebra Subprograms (BLAS) goes back at least as far as
Wilkinson [129] in the early days of digital computers, who suggested the “preparation of
standard routines of considerable generality for the more important processes involved in
computation.” The first standardized set of Fortran BLAS was published in 1979 [99]. It
is now referred to as the level 1 BLAS, because it comprises routines operating on vectors,
computing the inner product, the sum αx + y (a “saxpy”), a vector 2-norm and so on.
The benefits of using the level 1 BLAS (principally modularity, clarity and potential
speed improvements by using optimized BLAS) were recognised by the developers of
LINPACK [44], who coded the LINPACK routines so as to call the BLAS from the
innermost loops whenever possible. A natural extension to matrix-vector operations
called the level 2 BLAS, which supports operations such as matrix times vector and
the solution of a triangular system, followed some years later [50], [51]. Subsequently,
a level 3 BLAS standard was published [45], [46], supporting matrix-matrix operations.
The level 3 BLAS have proved to be very useful for obtaining high efficiency on high-
performance computers. The basic reason is that the level 3 BLAS carry out an order
of magnitude more work per unit of data than the level 1 and 2 BLAS, as shown in
Table 2.1. Hence on machines with a hierarchical memory (e.g., main memory, cache
memory, vector registers) the level 3 BLAS involve less data movement per floating point
operation, leading to faster execution. For a more detailed explanation see, for example,
[52], [65], or [69, Ch. 1].

Work is ongoing to extend the BLAS standards to support parallelism and sparsity;
see [48].

It is important to realise that the BLAS comprise subprogram specifications only;
there is freedom in the method used to match the specifications. This freedom is most
relevant in the case of the level 3 BLAS, where fast matrix multiplication techniques
can be applied. There has been interest in using Strassen’s method, which has been
demonstrated to be viable for practical computation in terms of both speed and accuracy
[12], [81]. With the use of level 3 BLAS based on fast matrix multiplication techniques
the existing normwise backward error bounds for block and partitioned algorithms remain
valid with appropriate increases in the constant terms [40].
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2.2 Block and Partitioned Algorithms

The recognition that on high-performance computers it is generally desirable to operate
on large chunks of data, phrasing algorithms in terms of level 3 BLAS, has led to increased
development and use of block algorithms. The term “block algorithm” tends to be used
with two different meanings. To be precise, we will adopt the following terminology. A
partitioned algorithm is a scalar (or point) algorithm in which the operations have been
grouped and reordered into matrix operations. Thus, for example, Gaussian elimination
expressed in terms of level 3 BLAS is a partitioned algorithm. A block algorithm is a
generalization of a scalar algorithm in which the basic scalar operations become matrix
operations (α + β, αβ, and α/β become A + B, AB, and AB−1), and a matrix property
based on the nonzero structure becomes the corresponding property blockwise (in partic-
ular, the scalars 0 and 1 become the zero matrix and the identity matrix, respectively). A
block factorization is defined in an analogous way and is usually what a block algorithm
computes.

To illustrate, we describe a partitioned Cholesky factorization algorithm. For a sym-
metric positive definite A ∈ R

n×n and a given block size r, write

[
A11 A12

AT
12 A22

]
=

[
RT

11 0
RT

12 In−r

] [
Ir 0
0 S

] [
R11 R12

0 In−r

]
, (1)

where A11 is r×r. One step of the algorithm consists of computing the Cholesky factoriza-
tion A11 = RT

11R11, solving the multiple right-hand side triangular system RT
11R12 = A12,

and then forming the Schur complement S = A22 − RT
12R12; this procedure is repeated

on S. The block operations defining R12 and S are level 3 BLAS operations. This par-
titioned algorithm does precisely the same arithmetic operations as any other variant of
Cholesky factorization, but it does the operations in an order that permits them to be
expressed as matrix operations. In contrast, a block LDLT factorization (the most useful
block factorization for a symmetric positive definite matrix) has the form A = LDLT ,
where

L =




I
L21 I
...

. . .

Lm1 . . . Lm,m−1 I


 , D = diag(Dii),

where the diagonal blocks Dii are, in general, full matrices. This factorization is mathe-
matically different from a point Cholesky or LDLT factorization (in fact, for an indefinite
matrix it may exist when the point factorization does not).

LAPACK uses exclusively partitioned factorization alg s, because they provide the
factorizations to which users are accustomed at higher speed. Block factorizations are
in use in various applications, for example for block tridiagonal matrices arising in the
discretization of partial differential equations.

2.3 Condition Number Estimation

One of the novel features of LINPACK [44] was the inclusion with the linear equation
solvers of a method for estimating the matrix condition number κ(A) = ‖A‖‖A−1‖.
Armed with this estimate, the user could estimate the accuracy of a computed solution.
LINPACK’s condition estimation algorithm estimates ‖A−1‖1 by constructing a vector
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x for which the lower bound ‖A−1x‖1/‖x‖1 is actually a good approximation to ‖A−1‖1
[28]. It makes explicit use of an LU factorization of A, but requires only O(n2) operations
beyond the O(n3) operations required to factorize the n × n matrix A. The algorithm
produces an approximate null vector (namely, A−1x), and it is this rather than the ‖A−1‖
estimate that is required in some applications. Indeed a precursor of the LINPACK
algorithm was developed for such an application [71].

The now widespread use of condition estimation relies on two developments. First,
Hager [76] devised a method for estimating ‖B‖1 that computes a (usually small) number
of matrix-vector products involving B and BT . An immediate advantage over the LIN-
PACK estimator is that Hager’s method can be programmed as a black box that requires
no knowledge of the details of how the products Bx and BT x are computed, making it of
general applicability (to mimic the LINPACK estimator, take B = A−1 and use an LU
factorization to compute the products with B). The key to the widespread use of Hager’s
method was the observation by Arioli, Demmel and Duff [3] that the method can be used
to estimate ‖ |A−1|d ‖∞ for any given nonnegative vector d, which could, for example, be
a matrix-vector product. Writing D = diag(d) and e = [1, 1, . . . , 1]T , we have

‖ |A−1|d ‖∞ = ‖ |A−1|De ‖∞ = ‖ |A−1D|e ‖∞ = ‖ |A−1D| ‖∞ = ‖A−1D‖∞. (2)

Since ‖B‖∞ = ‖BT‖1, Hager’s method is clearly applicable, just requiring the solution
of linear systems with coefficient matrices A and AT and multiplication of a vector by
D. LAPACK makes extensive use of condition estimation to provide both condition
estimates and forward error bounds. It implements an algorithm of Higham [80], which
incorporates modifications to Hager’s algorithm that make it more robust, reliable and
efficient. The norm estimates are nearly always within a factor 3 of the true norm.

Counterexamples are known for all existing condition estimators, that is, classes of
matrix are known where the estimate is wrong by an arbitrarily large factor. Indeed, it
seems likely that estimating ‖A−1‖ to within a factor depending only on the dimension
of A is at least as expensive as computing A−1 [35].

2.4 LAPACK and ScaLAPACK

LAPACK, first released in 1992 and regularly updated, is a collection of Fortran 77
programs for solving various linear equation, linear least squares and eigenvalue problems.
It can be regarded as a successor to the 1970s packages LINPACK [44] and EISPACK
[117], [66]. It has virtually all the capabilities of these two packages and much more
besides. LAPACK improves on LINPACK and EISPACK in four main respects: speed,
accuracy, robustness and functionality. While LINPACK and EISPACK are based on
level 1 BLAS, LAPACK was designed at the outset to use partitioned algorithms wherever
possible, so as to exploit the level 3 BLAS. LAPACK can achieve improved accuracy in
solving linear equations and certain types of eigenproblems by the use of techniques and
methods described later in this paper. A C translation of LAPACK is available, as well
as a C++ wrapper for most of the Fortran version of LAPACK [49]. For more about
LAPACK, see the users’ guide [2].

ScaLAPACK is a subset of LAPACK routines redesigned for distributed memory
parallel computers [27], [55]. ScaLAPACK routines make use of BLAS, Parallel BLAS
(distributed memory versions of the level 2 and 3 BLAS) and a set of low level communi-
cation primitives called the BLACS. For solving square linear systems implementations
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of partitioned LU and Cholesky factorization are provided that use a block cyclic data
distribution.

2.5 Matlab

Matlab is an interactive package for matrix computations that was originally developed
by Moler for teaching purposes [104]. It provides easy access to software from the EIS-
PACK and LINPACK libraries. The original Fortran version was rewritten in C in the
mid 1980s and made into a commercial package [103]. While Matlab remains widely
used for teaching, it has become an almost essential computational tool for researchers
in numerical linear algebra, as a glance at current journals reveals. The introduction
of sparse matrix handling in Matlab 4.0 significantly enhanced the usefulness of the
package [67].

2.6 IEEE Arithmetic

Two IEEE standards for floating point arithmetic have been published, one for base 2
[89] and one that is independent of the base [90]. The base 2 standard is supported by
virtually all current workstations and high-performance computers, as well as PCs, via
the Intel 80x86/7 and Pentium chips. The benefits of using a well-designed and precisely
specified arithmetic such as the IEEE standard are now well understood and documented.
They include easier handling or avoidance of underflow and overflow and other arithmetic
exceptions. More subtly, a number of algorithms of interest for their speed or accuracy
can fail or must run slowly in arithmetics that do not satisfy certain properties possessed
by the IEEE standard, such as the correct rounding of floating point operations [38], [85,
Chs. 2, 25].

3 Linear Systems

Developments in dense linear systems have mainly been motivated by the need to solve
large systems efficiently and the desire to estimate or improve the accuracy and stability
of computed solutions. We summarize work in these directions, beginning with new
results on traditional algorithms.

3.1 LU Factorization

Progress has been made on understanding the behaviour of the growth factor for Gaussian
elimination with partial and complete pivoting. Recall that the growth factor is defined by

ρn =
maxi,j,k |a(k)

ij |
maxi,j |aij|

,

where a
(k)
ij (k = 1: n) are the intermediate elements occurring during the elimination

on A ∈ R
n×n. The long-standing conjecture that ρn ≤ n for complete pivoting is now

known to be false. Gould [70] found a counterexample in floating point arithmetic and
Edelman modified it to create a counterexample in exact arithmetic [57], [58]. By how
much ρn can exceed n for complete pivoting is not known. Examples that can occur
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in practical applications where partial pivoting yields exponentially large growth factors
are identified by Foster [64] and Wright [131], while Higham and Higham [86] identify
matrices for which any pivoting strategy gives growth factors of order n. An experimental
investigation by Trefethen and Schreiber [126] suggests that the behaviour of the growth
factor can be explained by statistical means, but no theorems are proved. Yeung and
Chan [133] prove probabilistic results for Gaussian elimination without pivoting. The
most convincing argument to explain why the growth factor is almost always small for
partial pivoting is due to Trefethen [125]: he shows that for a matrix to produce a large
growth factor with partial pivoting its column spaces must possess a certain skewness
property and he proves that this property holds with low probability for random matrices
with elements from a normal distribution.

Componentwise perturbation theory and backward errors for linear systems can be
used to produce practical error bounds, but it is interesting to note that the best a
posteriori forward error bound for an approximate solution x̂ to Ax = b is perhaps the
most trivial. Defining the residual r = b − Ax̂ we have |x − x̂| ≤ |A−1||r|, which is
as sharp a bound as can be obtained if we ignore the signs in A−1 and r. In floating
point arithmetic we obtain not r but r + ∆r, where |∆r| ≤ f(n, u)(|A||x̂| + |b|), where
f(n, u) ≈ (n+1)u is a function of the problem size n and the unit roundoff u. Hence our
practical bound is

‖x− x̂‖∞
‖x̂‖∞

≤ ‖ |A
−1|(|r̂|+ f(n, u)(|A||x̂|+ |b|) ‖∞

‖x̂‖∞
.

This is the bound estimated and returned to the user by LAPACK’s expert driver routine
for linear systems. The bound is optimal in a sense explained in [85, Lem. 7.9].

Symmetric indefinite linear systems are of much current interest because they arise
in applications such as interior methods in constrained optimization, the least squares
problem, and the Stokes problem in PDEs. Dense symmetric indefinite systems are usu-
ally solved using a block LDLT factorization PAP T = LDLT , where P is a permutation
matrix, D is block diagonal with diagonal blocks of dimension 1 or 2, and L is unit lower
triangular. In the 1970s a complete pivoting strategy (O(n3) searching) was developed by
Bunch and Parlett [24] and a partial pivoting strategy (O(n2) searching) was proposed by
Bunch and Kaufman [22]. The Bunch–Kaufman pivoting strategy is used in LINPACK
and LAPACK. While an exponential bound for the growth factor was proved in [22], a
proof that the strategy is backward stable in the absence of large element growth has
only recently been given [84]. For the Bunch–Kaufman pivoting strategy ‖L‖/‖A‖ is
unbounded, which does not affect the stability but is undesirable in certain applications.
Ashcraft, Grimes and Lewis [4] develop some new pivoting strategies for the block LDLT

factorization; in particular, they give a “bounded Bunch–Kaufman” strategy that bounds
‖L‖/‖A‖ and is usually of similar cost to the Bunch–Kaufman strategy, although it can
require O(n3) searching in the worst case.

Vectorized and partitioned algorithms for the standard matrix factorizations are now
well understood, and the algorithms in LAPACK represent the state of the art. Three
representative references for LU factorization spanning the last 12 years include Dongarra,
Gustavson and Karp [47], Ortega [105] and Dongarra, Duff, Sorensen and van der Vorst
[52]. For variants of LU factorization, developing or choosing a partitioned algorithm
may not be trivial. For example, developing a partitioned version of the block LDLT

factorization is somewhat complicated for the Bunch–Kaufman partial pivoting strategy
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[4], [52], [94], [97]. For matrix inversion there is a bewildering choice of variants of
methods based on LU factorization, each with slightly different error bounds, performance
properties and storage requirements [56]. The need for care in designing partitioned
algorithms is illustrated by the fact that the (stable) partitioned algorithm for inverting
a triangular matrix used in LAPACK has an equally plausible variant that is unstable.

Few genuine block algorithms are used for linear system solution, an exception being
block LU factorization. How and when to pivot in block LU factorization are key ques-
tions. A positive result is that if the matrix is diagonally dominant by columns in either
the point or the block sense, then appropriate implementations are perfectly stable [41].
On the other hand, for a symmetric positive definite matrix stability is assured only
if the matrix is well conditioned (this being a rare example where symmetric positive
definiteness is not the most desirable property a matrix can have).

3.2 Iterative Refinement

If y is an approximate solution to a linear system Ax = b then by forming the residual
r = b − Ay and solving Ad = r we obtain the correction d such that x = y + d. In
floating point arithmetic the calculation of r is traditionally done in higher precision and
the process iterated. Nowadays it is more common to carry out the whole process at
the working precision. This fixed precision iterative refinement was first advocated and
shown to be effective in the 1970s [91], [115]. It is used in LAPACK in conjunction with
the linear equation solvers based on LU factorization. Current understanding can be
summarized as follows [82]. Consider any linear equation solver. We require only that
the computed solution x̂ satisfies (A + ∆A)x̂ = b with ‖∆A‖∞ ≤ f(A, n)u‖A‖∞, where
f is a scalar function depending only on A and the dimension n. Provided that f(A, n)
is not too large, A is not too ill conditioned, and the vector |b|+ |A||x| is not too badly
scaled (in particular, it has no zero elements), fixed precision iterative refinement will
eventually produce an improved solution x̃ satisfying

(A + ∆A)x̃ = b + ∆b, |∆A| ≤ ǫ|A|, |∆b| ≤ ǫ|b|, (3)

where ǫ ≤ 4nu. Technically, this result says that x̃ has a small componentwise relative
backward error. The important feature of (3) is that the elements of the perturbation
∆A are bounded relative to the corresponding elements of A, and similarly for b. Thus
any scaling or sparsity in the data is preserved in the perturbations. When the solver is
Gaussian elimination with partial pivoting, a single step of iterative refinement is usually
enough to achieve (3), as shown by Skeel [115].

3.3 Parallel Algorithms

Much research has been devoted to the parallel solution of linear systems. Software in
practical use parallelizes Gaussian elimination with partial pivoting in a straightforward
way, but other, more unusual, methods exist. While new techniques have been devel-
oped, old methods have also attracted renewed interest. For example, pivoting can be
incorporated into Gaussian elimination in a way that avoids the sequential search down
a column required by partial pivoting: at each element-zeroing step we interchange (if
necessary) the pivot row and the row whose first element is to be zeroed to ensure that
the multiplier is bounded by 1. In one particular algorithm, the first stage introduces
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zeros into elements (2, 1), (3, 1), . . ., (n, 1), in this order, and the potential row inter-
changes are 1 ↔ 2, 1 ↔ 3, . . ., 1 ↔ n, instead of just one row interchange as for partial
pivoting. As well as saving on the pivot searching, this method has the advantage of
permitting eliminations to be performed in parallel. For a 6× 6 matrix we can represent
the elimination as follows, where an integer k denotes elements that can be eliminated in
parallel on the kth stage: 



× × × × × ×
1 × × × × ×
2 3 × × × ×
3 4 5 × × ×
4 5 6 7 × ×
5 6 7 8 9 ×




.

In general, there are 2n − 3 stages in each of which up to n/2 elements are eliminated
in parallel. This algorithm is discussed by Wilkinson [130, pp. 236–237] and Gallivan et
al. [65]. Sorensen [119], derives an error bound for the factorization that is proportional
to 4n which, roughly, comprises a factor 2n−1 bounding the growth factor and a factor
2n−1 bounding “L”. This method, along with other variants such as pairwise pivoting, in
which all row operations are between pairs of adjacent rows only, has not attracted wide
use for parallel computing.

Vavasis [127] shows that Gaussian elimination with partial pivoting (GEPP) is P-
complete, a complexity result whose implication is that GEPP cannot be efficiently im-
plemented on a highly parallel computer with a large number of processors. This result
suggests that we look at methods other than Gaussian elimination for efficient solution
of linear systems on massively parallel machines. Other methods are in existence. For
example, Csanky [29] gives a method for inverting an n×n matrix (and thereby solving a
linear system) in O(log2 n) time on O(n4) processors. This method has the optimal com-
plexity amongst currently known methods, but it involves the use of the characteristic
polynomial and has abysmal numerical stability properties!

A more practical method is Newton’s method for A−1, which is known as the Schulz
iteration [113]:

Xk+1 = Xk(2I − AXk) = (2I −XkA)Xk.

It is known that Xk converges to A−1 (or, more generally, to the pseudo-inverse if A is
rectangular) if X0 = α0A

T and 0 < α0 < 2/‖A‖22 [118]. The Schulz iteration is attractive
because it involves only matrix multiplication—an operation that can be implemented
very efficiently on high-performance computers. The rate of convergence is quadratic,
since if Ek = I − AXk or Ek = I −XkA then

Ek+1 = E2
k = · · · = E2k+1

0 .

Like Csanky’s method, the Schulz iteration has polylogarithmic complexity, but, unlike
Csanky’s method, it is numerically stable [118]. Unfortunately, for scalar a > 0,

0 < xk ≪ a−1 ⇒ xk+1 = 2xk − xkaxk
<∼ 2xk,

and since xk → a−1, convergence can initially be slow. Overall, about 2 log2 κ2(A) itera-
tions are required for convergence in floating point arithmetic. Pan and Schreiber [107]
show how to accelerate the convergence by at least a factor 2 via scaling parameters and
how to use the iteration to carry out rank and projection calculations. For an interesting
application of the Schulz iteration to a sparse matrix possessing a sparse inverse, see [1].
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4 The Least Squares Problem

In this section we consider the least squares (LS) problem minx ‖Ax − b‖2, where A ∈
R

m×n with m ≥ n. The most thorough and up-to-date treatment of the LS problem is
given by Björck’s book [19].

4.1 The Seminormal Equations

Given a QR factorization A = QR, where Q ∈ R
m×n has orthonormal columns and

R ∈ R
n×n is upper triangular, the normal equations ATAx = AT b transform to the

triangular system Rx = QT b. Intermediate between these two systems are the seminormal
equations (SNE) RTRx = AT b; since they do not involve Q, they are attractive for
multiple right-hand side problems where Q is too large to store. The SNE method has
been in use since the early 1970s, and its stability is explained by analysis of Björck [18],
who makes the assumption that R is obtained from a stable QR factorization method.
Björck obtains a forward error bound proportional to κ2(A)2, just like for the normal
equations method that Cholesky factorizes ATA; hence the SNE method is not backward
stable. To improve the stability a step of iterative refinement (in fixed precision) can be
added, giving the corrected seminormal equations (CSNE) method:

RTRx = AT b (solve for x)
r = b− Ax
RTRw = AT r (solve for w)
y = x + w

Björck obtains a forward error bound for the CSNE method that can be smaller or larger
than that for a backward stable method, depending on the conditioning of the problem:
hence the refinement process can bring a useful improvement in accuracy.

4.2 Modified Gram–Schmidt

Perhaps the oldest method for computing the QR factorization of a matrix is the Gram–
Schmidt method. It exists in both “classical” and “modified” forms, which are equiva-
lent mathematically but different numerically, with the modified Gram–Schmidt (MGS)
method having the better stability properties. The MGS method is widely used, for ex-
ample within iterative methods such as the Arnoldi method and GMRES. A remarkable
connection between the MGS method and Householder QR factorization has been known
since the 1960s but has only recently been fully exploited [20]: the MGS method applied
to A ∈ R

m×n is equivalent, both mathematically and numerically, to Householder QR
factorization of the padded matrix

[
0n

A

]
∈ R

(m+n)×n. This connection brings two benefits.
First, it leads to shorter and more insightful error analysis for the MGS method. Second,
it leads to new stable algorithms. Björck and Paige [20], [21] derive a new backward
stable MGS-based algorithm for solving the “augmented system”

[
I A

AT 0

] [
y
x

]
=

[
b
c

]
.
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This system characterizes the solutions to the following two problems:

minx ‖b− Ax‖22 + 2cT x,

miny ‖y − b‖2 subject to AT y = c.

Note that these problems include the LS problem and the minimum 2-norm solution of
an underdetermined system as special cases. Björck and Paige’s algorithm reduces to the
usual method for using MGS to solve the LS problem, but gives a new backward stable
method for computing the minimum 2-norm solution to an underdetermined system.

4.3 Block and Partitioned QR Factorization Algorithms

Just as for LU factorization, there are block and partitioned versions of QR factorization.
The key to deriving a partitioned QR factorization algorithm is to aggregate a product of
Householder transformations so that their application becomes a matrix multiplication.
The idea is to represent the product Qr = PrPr−1 . . . P1 of r Householder transformations
Pi = I − viv

T
i ∈ R

m×m (where vT
i vi = 2) in the form

Qr = I + WrY
T
r , Wr, Yr ∈ R

m×r,

as suggested by Bischof and Van Loan [17]. This is achieved using the recurrence

W1 = −v1, Y1 = v1, Wi = [Wi−1 − vi], Yi = [Yi−1 QT
i−1vi]. (4)

A partitioned QR factorization can be developed as follows. Partition A ∈ R
m×n (m ≥ n)

as
A = [ A1 B ] , A1 ∈ R

m×r, (5)

and compute the Householder QR factorization of A1,

PrPr−1 . . . P1A1 =

[
R1

0

]
.

Accumulate the product PrPr−1 . . . P1 = I + WrY
T
r using (4), as the Pi are generated,

and then update B according to

B ← (I + WrY
T
r )B = B + Wr(Y

T
r B),

which involves only level 3 BLAS operations. Repeat the process on the last m− r rows
of B. Extra work is required to accumulate the WY factors but on a high-performance
machine this is outweighed by the gain in speed from applying level 3 BLAS operations.

LAPACK uses this partitioned QR factorization algorithm, though with a more stor-
age efficient variant of the WY form developed by Schreiber and Van Loan [112].

To develop a true block QR factorization a generalization of a Householder matrix
called a block reflector can be used. Given Z ∈ R

m×n (m ≥ n) the “reflector that reverses
the range of Z” is

H = H(Z) = Im − ZWZT , W = 2(ZT Z)+ ∈ R
n×n.

Given E ∈ R
m×n (m > n) a basic task is to find a block reflector H such that

HE =

[
F
0

]
, F ∈ R

n×n (6)
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If this task is carried out within the general framework of the partitioned QR factoriza-
tion described above, then a factorization A = QR is produced with a block triangular
R. Schreiber and Parlett [111] develop theory and algorithms for block reflectors. The
solution of the task (6) is quite expensive and involves computing one or more polar
decompositions, though the whole procedure can be implemented in a way that is rich in
matrix multiplication [111].

4.4 Backward Error

One possible definition of backward error for an approximate solution y to the LS problem
minx ‖Ax− b‖2 is

ηF (y) := min{ ‖[∆A, θ∆b]‖F : ‖(A + ∆A)y − (b + ∆b)‖2 = min }, (7)

where θ is a parameter. It has been known since the 1960s that the computed solution x̂
obtained via a QR factorization has a backward error ηF (x̂) of order u, for θ = 1 (say).
However, we had no way of evaluating ηF (or any minor variant of it) numerically until
recently, when Waldén, Karlson and Sun [128] showed that

ηF (y) =





‖r‖2
‖y‖2

√
µ, λ∗ ≥ 0,

(‖r‖22
‖y‖22

µ + λ∗

)1/2

, λ∗ < 0,

where r = b− Ay and

λ∗ = λmin

(
AAT − µ

rrT

‖y‖22

)
, µ =

θ2‖y‖22
1 + θ2‖y‖22

.

Here, we denote by λmin and σmin the smallest eigenvalue of a symmetric matrix and the
smallest singular value of a general matrix, respectively. For computation, the expression
for ηF is best evaluated as

ηF (y) = min{ η1, σmin([A η1C]) }, η1 =
‖r‖2
‖y‖2

√
µ, C = I − rrT

rTr
.

Sun [123] has found an expression for a generalization of the backward error (7) to multiple
right-hand side problems, and Sun and Sun [124] have evaluated the backward error for
the minimum 2-norm solution to an underdetermined system.

4.5 Rank-Revealing Factorizations

A topic of much research interest in recent years has been the computation of rank-
revealing factorizations. There is no generally agreed definition of what is a rank-revealing
factorization (see [26] for an insightful discussion), but a basic property required is that
for a rank-deficient matrix the factorization indicates the rank and readily yields infor-
mation about the range space and the null space. Practical interest focuses on nearly
rank-deficient matrices, for which we want a factorization that “displays” the near rank-
deficiency. The singular value decomposition (SVD) is the ultimate rank-revealing factor-
ization, and although it is not significantly more expensive than alternative rank-revealing
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factorizations to compute, it is too expensive to update the SVD when a row is added
or removed from the matrix, as happens repeatedly in signal processing applications.
Therefore other factorizations involving orthogonal matrices have been investigated.

For QR factorization we try to choose a permutation matrix Π so that AΠ = QR
is a rank-revealing QR factorization. The standard column pivoting strategy [69, §5.4.1]
tends to be rank-revealing, but it can completely fail to reveal near rank-deficiency.

Foster [63] and Chan [25] develop iterative algorithms for computing rank-revealing
QR factorizations; for both algorithms the bounds that show by how much, in the worst
case, the factorizations may fail to reveal the rank contain factors exponential in the rank
deficiency. Both methods need a condition estimator, to produce approximate null vectors
of certain triangular matrices. Chandrasekaran and Ipsen [26] give a systematic treatment
of algorithms for computing rank-revealing QR factorizations. In an important recent
development, Gu and Eisenstat [75] derive an algorithm that is guaranteed to compute
a strong form of rank-revealing QR factorization whose properties include that it stably
provides an approximation to the null space; the algorithm has the same complexity as
the column pivoting strategy, though is up to 50% more expensive in practice.

Hong and Pan [87] gave the first proof of the existence of a rank-revealing QR factor-
ization (that is, the existence of a suitable Π) with constants that are not exponential
in the dimensions. The proof involves determinant maximization, so does not lead to a
practical algorithm.

Stewart [120] considers a URV decomposition of a rank r matrix A ∈ R
m×n:

A = U

[
R 0
0 0

]
V T ,

where R ∈ R
r×r is upper triangular and U ∈ R

m×m and V ∈ R
n×n are orthogonal. This

is traditionally known as a complete orthogonal decomposition, and was introduced by
Faddeev, Kublanovskaja and Faddeeva [59] and by Hanson and Lawson [77]. Denote
the ith largest singular value of A by σi(A). Stewart defines a rank-revealing URV
decomposition of a matrix A ∈ R

m×n considered to be nearly of rank r by

A = U

[
R F
0 G

]
V T , R ∈ R

r×r,

σr(R) ≈ σr(A), ‖F‖22 + ‖G‖22 ≈ σ2
r+1 + · · ·+ σ2

n.

Stewart shows that the URV decomposition is easy to update (when a row is added) using
Givens rotations and is suitable for parallel implementation [121]; for downdating of the
decomposition see [14], [15], [108]. Initial determination of the URV decomposition can
be done by applying the updating algorithm as the rows are brought in one at a time. An
analogous ULV decomposition exists in which the middle factor is lower triangular. As
shown by the analysis of Fierro and Bunch [62], the rank-revealing ULV decomposition
tends to produce better approximations to the numerical null space, while the rank-
revealing URV decomposition tends to produce better approximations to the numerical
range space (a clue as to why this should be can be obtained by looking at the forms of
RTR and LT L).
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5 The Nonsymmetric Eigenvalue Problem

The QR algorithm, now over thirty years old, remains the method of choice for computing
the complete eigensystem of a nonsymmetric matrix. Although the method is widely
used and regarded as being extremely reliable, no convergence proof exists. Indeed,
matrices are known for which the QR algorithm (with exceptional shifts, as implemented
in EISPACK and LAPACK 2.0) fails to converge, both in exact arithmetic and in floating
point arithmetic [16], [31]; heuristic remedies are proposed by Day [31].

LAPACK includes an implementation of the QR algorithm that uses a multishift
strategy to enhance the performance on high-performance machines [5]. In the Hessenberg
QR iteration, instead of using a single or double shift and chasing the resulting bulge of
dimension 1 or 2 a column at a time down the matrix, k simultaneous shifts are used
and the k × k bulge is chased p columns at a time. Here, k and p are implementation-
dependent parameters. The k shifts are chosen as the eigenvalues of the trailing principal
submatrix of order k. This multishift QR algorithm enjoys a high proportion of level 2
and 3 BLAS operations.

The reduction of a general matrix to Hessenberg form that precedes the QR iteration
can be organized so that it involves level 3 BLAS operations, making use of the WY
Householder aggregation technique described in §4.3 [53]. Extra arithmetic operations
and storage are required, but greater efficiency is obtained through the use of block
operations.

Error bounds and condition estimation for eigenvalue computations are now well de-
veloped, and comprehensive summaries are given in [11], [2, Chap. 4]. A complicating
factor is the large number of different error bounds that one can try to estimate: bounds
for a simple eigenvalue and its eigenvector or for a cluster and the corresponding in-
variant subspace, and both asymptotic and strict bounds of each type. The LAPACK
eigenvalue and singular value expert driver routines provide selected condition estimates,
which make easy the computation of error bounds by the user. Some of the condition
estimation procedures require the reordering of the upper triangular Schur form, so that
the eigenvalues of interest are in the top left-hand corner. This is a computation that
arises in several applications, including that of computing an invariant subspace corre-
sponding to a given group of eigenvalues. LAPACK uses an improved, guaranteed-stable
version of an earlier reordering algorithm [8].

For parallel solution of the nonsymmetric eigenvalue problem there is no clear method
of choice. The QR algorithm is a fine-grained algorithm that has proven difficult to paral-
lelize, though progress has been made in [79]. Various interesting alternative approaches
have been proposed, which we now briefly summarize.

Two new divide and conquer methods work on a upper Hessenberg matrix, and there-
fore, like the QR algorithm, require an initial unitary reduction to Hessenberg form.
Both tear an upper Hessenberg matrix by a subdiagonal element, solve the resulting
independent, smaller Hessenberg eigenproblems in parallel, then merge the answers into
a solution for the original problem. Dongarra and Sidani [54] use Newton’s method for
the merging, while Li and his co-workers use homotopy continuation [100]. Drawbacks
of both approaches, which include possibly ill conditioned subproblems and convergence
difficulties, are described in [92].

An approach called spectral divide and conquer is defined as follows. Let A ∈ R
n×n,

let Q1 ∈ C
n×p have orthonormal columns that span an invariant subspace for A, and
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choose Q2 so that Q = [Q1, Q2] is unitary. Then

Q∗AQ =

[
B11 B12

0 B22

]
, (8)

and the eigenvalues of B11 are those of A corresponding to the invariant subspace spanned
by Q1. This process is repeated on B11 and B22 until the desired eigenvalues are found.
The question is how to choose Q. One way is to use the matrix sign function [110], which
generalizes the usual sign of a complex number. For A ∈ C

n×n with Jordan canonical
form

A = X

[
J+ 0
0 J−

]
X−1,

where J+ has eigenvalues in the open right half-plane and J− has eigenvalues in the open
left half-plane, we define

sign(A) = X

[
I 0
0 −I

]
X−1.

Suppose J+ is k-by-k. Then the first k columns of Q in the (rank-revealing) QR factor-
ization sign(A) + I = QR span the invariant subspace corresponding to J+. This means
that (8) holds, where B11 has eigenvalues in the right half-plane and B22 has eigenvalues
in the left half-plane; thus the spectrum has been divided along the imaginary axis. By
computing the QR factorization of the sign function of αA + βI for complex α and β, or
of (A + βI)2 + αI for real α and β, we can divide the spectrum along other lines in the
complex plane, retaining real arithmetic if A is real [7], [88], [122]. Using this approach,
we can determine the eigenvalues lying within quite general regions of the complex plane.

The matrix sign function can be computed using the Newton iteration Ai+1 = 1
2
(Ai +

A−1
i ), A0 = A, which converges globally and quadratically to sign(A) whenever sign(A)

is defined. Other iterations, some with more natural parallelism, are available too [98].
Bai and Demmel [7] develop a toolbox of routines based on the matrix sign function
for finding all the eigenvalues in a region of the complex plane and the corresponding
invariant subspace. The building blocks are BLAS, QR and LU factorizations and the
matrix sign function. They also develop supporting perturbation theory, stability analysis
and refinement schemes [9].

Tools other than the sign function can be used to obtain the desired invariant subspace
Q1. One alternative is an algorithm involving no matrix inversions that is explored by
Bai, Demmel and Gu [10] and is based on original algorithms of Bulgakov, Godunov and
Malyshev. Other schemes have been suggested; see the references in [10].

The spectral divide and conquer approach can be extended to compute deflating
subspaces of a matrix pencil A − λB and hence to solve the generalized eigenproblem;
see [9], [10]. Condition numbers and error bounds for the generalized eigenproblem
and algorithms for reordering the generalized Schur form are given by K̊agström and
Poromaa [95].

A comprehensive survey of existing parallel eigenroutines and their limitations is given
in [39].

6 The Symmetric Eigenvalue Problem

An important recent development in solution of the symmetric eigenproblem concerns a
divide and conquer algorithm for tridiagonal matrices. The algorithm writes a symmetric
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tridiagonal T in the form

T =

[
T11 0
0 T22

]
+ αvvT ,

where only the trailing diagonal element of T11 and the leading diagonal element of T22

differ from the corresponding elements of T . The eigensystems of T11 and T22 are found
by applying the algorithm recursively, yielding T11 = Q1Λ1Q

T
1 and T22 = Q2Λ2Q

T
2 . Then

we have

T =

[
Q1Λ1Q

T
1 0

0 Q2Λ2Q
T
2

]
+ αvvT

= diag(Q1, Q2)
(
diag(Λ1, Λ2) + αṽṽT

)
diag(Q1, Q2)

T ,

where ṽ = diag(Q1, Q2)
T v. The eigensystem of a rank-one perturbed diagonal matrix D+

ρzzT can be found by solving the secular equation obtained by equating the characteristic
polynomial to zero:

f(λ) = 1 + ρ
n∑

j=1

z2
j

djj − λ
= 0.

Hence by solving such an equation we can obtain the eigendecomposition

diag(Λ1, Λ2) + αṽṽT = Q̃Λ̃Q̃T .

Finally, the eigendecomposition of T is given by

T = UΛ̃UT , U = diag(Q1, Q2)Q̃.

The formation of U is a matrix multiplication and dominates the operation count.
This algorithm was originally suggested by Cuppen [30], and how to solve the secular

equation efficiently was shown by Bunch, Nielson and Sorensen [23], building on work
of Golub [68]. Until recently, it was thought that extended precision arithmetic was
needed in the solution of the secular equation to guarantee that sufficiently orthogonal
eigenvectors are produced when there are close eigenvalues. However, Gu and Eisenstat
[73] have found a new approach that does not require extended precision.

The divide and conquer algorithm has natural parallelism. Even on serial computers
it can be many times faster than the QR algorithm, though it needs more workspace,
hence LAPACK includes the divide and conquer algorithm.

A novel algorithm for the symmetric eigenvalue problem, intended for parallel compu-
tation, is suggested by Yau and Lu [132]. The algorithm involves computing the matrix
exponential exp(iA) and is rich in matrix multiplication, though its practical efficiency
is unclear.

When some but not all eigenvalues and eigenvectors of a symmetric tridiagonal matrix
T are required, the bisection algorithm followed by inverse iteration is attractive. Recall
that if the diagonal entries of T are a1, . . . , an and the off-diagonal entries are b1, . . . , bn−1

then we have the Sturm sequence recurrence

di = (ai − σ)di−1 − b2
i−1di−2,

where di is the determinant of the leading i-by-i principal submatrix of T − σI. The
number of sign changes in the sequence of di’s is the number of eigenvalues of T less
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than σ, denoted count(σ), and this fact is the basis for the application of the bisection
method. An interesting way to introduce parallelism into the Sturm sequence evaluation
is rewrite it as the two-term vector recurrence

[
di

di−1

]
=

[
ai − σ −b2

i−1

1 0

]
·
[

di−1

di−2

]
≡Mi

[
di−1

di−2

]
= Mi ·Mi−1 · · ·M1 ·

[
d0

d−1

]
.

By using the parallel prefix operation (a generalization of the well known fan-in operation
for forming a sum or product of n quantities in log2 n time steps), the recurrence can be
evaluated in O(log2 n) time. The same approach can be used to gain parallelism in other
contexts, for example in the solution of triangular systems [83]. Mathias [102] shows that
using parallel prefix to evaluate the Sturm sequence is numerically unstable, although
instability appears to occur rarely. This is an example of the common phenomenon that
increased parallelism brings decreased numerical stability [36].

Although bisection is a simple and robust algorithm, it can give incorrect results if
the function count(σ) is not a monotonic increasing function of σ, which can happen for
EISPACK’s implementation (even in IEEE arithmetic) but not for LAPACK’s, or for
ScaLAPACK’s parallel implementation. Demmel, Dhillon and Ren [37] give a thorough
analysis of the correctness of the bisection algorithm for different implementations of the
count function and under a variety of assumptions on the arithmetic.

The Jacobi method for diagonalizing a symmetric matrix has attracted renewed inter-
est in recent years, for two reasons. First, the rotations that eliminate pairs of off-diagonal
elements can be applied in parallel for suitable orderings; see, e.g., [114]. Second, the
Jacobi method has been shown by Demmel and Veselić to be more accurate than was
previously thought [43]. Specifically, the Jacobi method determines the eigenvalues of
a symmetric positive definite matrix to the accuracy to which they are determined by
small componentwise perturbations in the data. This is a much stronger result than
holds for the QR algorithm, or any other algorithm that begins by reducing the matrix
to tridiagonal form, because this initial reduction can induce large perturbations in small
eigenvalues in the presence of roundoff. The proof of the result just described combines
rounding error analysis with a new style of perturbation theory that has been developed
in a series of papers beginning with one by Barlow and Demmel [13]. Extensions of the
perturbation theory and error analysis, including to indefinite matrices, have been made;
see Mathias [101] and Slapnic̆ar [116]. On most machines the Jacobi method is slower
than alternative methods based on tridiagonalizing the matrix, so it is not currently
implemented in LAPACK.

7 The Singular Value Decomposition

The standard method for computing the singular value decomposition is the Golub–
Reinsch algorithm, which reduces a full matrix to bidiagonal form B and then applies
the QR algorithm implicitly to the tridiagonal matrix BT B. In an unpublished technical
report in the 1960s, Kahan [96] showed that the singular values of a bidiagonal matrix are
determined to approximately the same relative accuracy as the elements of the matrix.
Demmel and Kahan [42] use this result, together with rounding error analysis, to show
that a zero-shift version of the QR algorithm computes the singular values of a bidiagonal
matrix to high relative accuracy; this algorithm obtains the singular vectors to high
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accuracy, too [34]. Such strong statements do not hold for the previously standard version
of the QR algorithm used, for example, in LINPACK. Fernando and Parlett [60], [109]
have developed a quotient-difference (qd) algorithm for computing the singular values of a
bidiagonal matrix. This algorithm, which goes back to much earlier work of Rutishauser,
is more accurate than the algorithm of Demmel and Kahan and, because it allows the
incorporation of shifts, several times faster.

Implicit Cholesky algorithms with shifts for computing the SVD of a triangular matrix
without reducing it to bidiagonal form are described, and put into historical context, by
Fernando and Parlett [61].

Jacobi algorithms for computing the SVD have received attention in recent years,
for the same reasons as for the symmetric eigenproblem. Either two-sided or one-sided
transformations can be used; in the former case, diagonal form is approached directly,
whereas with one-sided transformations the aim is to orthogonalize the columns of the
matrix, after which the SVD is readily obtained. Relevant references include Hari and
Veselić [78] and de Rijk [33].

Divide and conquer algorithms for finding the SVD of a bidiagonal matrix are de-
veloped by Jessup and Sorensen [93] and Gu and Eisenstat [74]; they are related to the
divide and conquer algorithms for the symmetric eigenproblem. A new algorithm for
computing the SVD of a dense matrix that first reduces to bidiagonal form and then
applies divide and conquer is described by Gu, Demmel and Dhillon [72]. Their method
incorporates algorithmic refinements that make it faster than the current LAPACK QR
algorithm-based SVD code and that enable solution of the least squares problem with
a reduction in operation count by a factor of more than 4 compared with the current
LAPACK code.

Much progress has been made in the last ten years in theory and computation of
generalized singular value decompositions (GSVDs). A GSVD can be defined in various
ways, depending on the number of matrices involved (two in the simplest case), and
the form of the factorization used; see, for example, [32] and the references therein.
LAPACK includes a code for computing a GSVD called the quotient SVD, which uses a
Kogbetliantz algorithm of Paige [106] as refined by Bai and Demmel [6].

8 Concluding Remarks

Research in numerical linear algebra, and in particular research in dense matrix compu-
tations, is as active as ever, with new problems and challenges continually arising from
application areas and from the development of new computer architectures. This brief
survey has given just a flavour of recent work in the subject. More details can be obtained
from the many references and their references.
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